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Abstract: This paper considers nonparametric regression to analyze longitudinal data. Some developments of non-
parametric regression have been achieved for longitudinal or clustered categorical data. For exponential family
distribution, Lin & Carroll [6] considered nonparametric regression for longitudinal data using GEE-Local Poly-
nomial Kernel (LPK). They showed that in order to obtain an efficient estimator, one must ignore within subject
correlation. This means within subject observations should be assumed independent, hence the working corre
lation matrix must be an identity matrix. With Lin & Carroll [6], to obtain efficient estimates we should ignore
correlation that exist in longitudinal data, even if correlation is the interest of the study. In this paper we propose
GEE-Smoothing spline to analyze longitudinal data and study the property of the estimator such as the bias, con-
sistency and efficiency. We use natural cubic spline and combine with GEE of Liang & Zeger [5] in estimation.
We want to explore numerically, whether the properties of GEE-Smoothing spline are better than of GEE-Local
Polynomial Kernel that proposed by Lin & Carrol [6]. Using simulation we show that GEE-Smoothing Spline is
better than GEE-local polynomial. The bias of pointwise estimator is decreasing with increasing sample size. The
pointwise estimator is also consistent even with incorrect correlation structure, and the most efficient estimate is
obtained if the true correlation structure is used.

Key—Words:Nonparametric regression, Longitudinal binary data, Generalized estimating equation, Natural cubic
spline, Property of estimator.

1 Introduction ture, provided the mean function is correctly specified.
GEE is part of the class of parametric estimation,

Longitudinal Study iS common in economics’ epi_ |n which the mOdEI Cf.in be stated in a linear func-
demiology or clinical trials in which subjects are fol-  tion and the function is known. Very often the ef-
lowed over time or several occasions to collect re- fect of the covariate cannot be specified in the spe-
sponse variables. The characteristic of these data is Cific function. Nonparametric regression can accom-
that they are no longer independent, in which there Modate this problem by relaxing relationship between
is correlation within subject measurements. Another Covariate and response. In nonparametric regression,
characteristic is that the variances usually are not ho- We assume that the effect of the covariate follows an
mogeneous. Thus methods in the class of gener- unknown functlpn without specific term, that is just
alized linear model (GLM) are no longer valid for & smooth function. To date there are several meth-
these data, since GLM assumes that observations are0ds in nonparametric regression, for example: local
independent. Some developments have been pro- Polynomial kernel regression, penalized splines re-
posed to analyze such data, that can be classified into 9ression, and smoothing splines. Green and Silver-
three types of model, marginal model, subject spe- Man [2] gave a simple algorithm for nonparametric re-
cific effect, and transition model (Davis [1]). In the gression using cubic spline by penalized least square
class of marginal model, Liang and Zeger [5] and estimation. They also gave nonparametric and semi-
Zeger and Liang [9] extended quasi-likelihood esti- Parametric methods for independent observations for
mation of Weddernburn [10] by introducing "working ~ class of generalized linear models.

correlation” to accommodate within subject correla- Some developments of nonparametric and semi-
tion, which is called generalized estimating equation parametric regression for longitudinal or clustered
(GEE). GEE yields consistent estimates of the regres- data have been achieved. Lin and Carroll [6] consid-
sion coefficients and their variances even though there ered nonparametric regression using longitudinal data
is misspecification of the working correlation struc- GEE-Local Polynomial Kernel (LPK). They showed
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that for kernel regression, in order to obtained an effi-
cient estimator, one must ignore within subject corre-
lation. This means within subject observations should
be assumed independent, hence the working correla-
tion matrix must be an identity matrix. This result was
definitely different from GEE of Liang & Zeger'’s, in
which the GEE estimator was consistent even there
are misspecification of the true correlation as working
correlation. Lin and Carroll [7] also studied the be-
havior of local polynomial kernel which was applied
to semiparametric-GEE for longitudinal data. The re-
sult was the same as in nonparametric GEE-LPK in
Lin and Carroll [6]. Welsh et al. [11] studied the local-
ity of the kernel method for nonparametric regression
and compared it to P-splined regression and smooth-
ing splines. The result was that the kernel is local even
when the correlation is taken into account. The re-
sult was different for smoothing splines, in which if
there is no within subject correlation then smoothing
splines is local, and if within subject correlation in-
creases, than smoothing splines become more nonlo-
cal. This implies that for smoothing splines, within
subject correlation must be taken into account in the
working correlation.

This paper considers nonparametric regression to
analyze longitudinal data. In this paper we propose
GEE-Smoothing spline to analyze longitudinal data
and study the property of the estimator such as the
bias, consistency and efficiency. We use natural cubic
spline and combine this with GEE of Liang & Zeger's
in the estimation. We want to show numerically,
whether the properties of GEE-Smoothing spline are
better than GEE-Local Polynomial Kernel that pro-
posed by Lin & Carrol [6]. The simulation study was
carried out to investigate these properties.

The outline of this paper is follows. We give a
sort review of GEE in section 2.1. Section 2.2 consid-
ers brief review of smoothing splines. The algorithm
of the proposed method is considered in section 3.1.
Section 3.2 considers smoothing parameter selection.
Properties of GEE-smoothing spline estimator using
simulation is given in section 4, and conclusion and
discussion in Section 5.

2 Generalized Estimating Equation
and Smoothing Splines

2.1 Generalized estimating equation

Suppose there ar& subjects, and thith subject is
observedn; times for the responses and covariates.
Let Y; = (yil)yi% c ,yini)T be then; x 1 vector
of response variable an; = (z;1,..., %)’ be
n; X p matrix of covariate for the-th subject, and
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Tij = (xijl, Tij2y - xijp)T. It is assumed that the
marginal density ofy;; follows exponential family
with probability density function

ij0i — b(0ij
f(yij) = exp <yj]a(¢)(j) + c(Yij, ¢)>
The first two moments of;; are E(y;;) = V/(6;5) =
pi; andVar(y;;) = b"(0:5)a(¢), whered;; is canoni-
cal parameter. It is assumed that between subject, ob-
servations are independent. The relationship between
w1 and covariates through the link function is

(1)

,3p)T bep x 1 vector of re-

9pis) = mij = 2338
Whereﬁ = (617 ﬁ2a s

gression coefficient.
Generalized estimating equation to solyevas
given by Liang and Zeger [5] as follows:

K

> DIvi s =0 )
=1
where
o 8(b’(01)) _ 3/11' . 8#2‘ 891 877i CAALY.
Di = o8 9B 00; On; 0P = AiliXy,
00 e 1/2

A; is ann; x n; diagonal matrix with diagonal ele-
ments var(y). R(«) is also called a "working cor-
relation”, ann; x n; symmetric matrix which ful-
fills the requirement of being a correlation matrix, and
Si = y; — u; . The estimating equation (2) is similar
to the quasi-likelihood estimating equation, except for
the form of V;. Thus it can be seen as an estimating
equation of by letting ® as the "quasi-likelihood”
score function of they;,ys,...,yx. Solution of 3
can be obtained by minimizing subject tog . Thus
the estimating equation is

o®

op
Liang and Zeger [5] gave the iterative procedure using
modified Fisher scoring fo# and moment estimation

method ofe and¢ . Given the current estimates of
and¢ then the iterative procedure foris

n

=> DIv7's; =0
1=1

n -1
Bs—i-l :Bs + ZD;T(BS)‘;;_IDz(Bs)]
=1

3)

whereV;(8) = Vi{3,a(8,9(8))}. The close form
of moment estimator fo: and¢ for some correlation
structures can be seen in Liang & Zeger [5].
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2.2 Smoothing spline

Green and Silverman [2] gave a simple approach in
estimating smooth functiorf in interval [a, b] using
natural cubic splines. Suppose givanreal num-
ber t1,to,...,t, on the interval[a,b] and satisfy-
inga < t1 < < t, < b. A function f
on [a,b] is cubic spline if two conditions are sat-
isfied. First, f is cubic polynomial on each inter-
val (a,t1),(t1,t2),...,(ts,b); second, the polyno-
mial pieces fit together at the pointsin such a way
that f itself and its first and second derivative are con-
tinuous at each;, thus the function is continuous on
the whole offa, b]. It is said to be natural cubic spline
(NCS), if its second and third derivative are zero at
a andb. Supposef; = f(t;) andvy; = f"(t;) for
i = 1,2,...,n. By definition of NCS, the second
derivative of f att; andt, are zero, se; = v, = 0.
Letf = (fla f27 SERE) fn)T and’Y = (727 s aﬂynfl)T'
Vector~ is numbered in non standard way, starting at
1 = 2. The vectorf and vectory completely specify
the curvef. These two vectors are related and speci-
fied by two matrice$) and R defined below.

Leth; = tit1 — i fori = 1,2,....,n—1. Let
@ be then x (n — 2) matrix with elementsy;;, i =
1,...,n,andj =2,...,n — 1, given by

1

_p—1 - — -1 . —p1
gj-15 =h;_y, ¢j; = —h;_;—h; ", andgjy1; = h; .

The R matrix is defined by thén — 2) x (n —2) sym-
metric matrix with elements;;, for < and j running
from 2to(n — 1), given by

rii = (hi—1 + h;)/3, fori =2,3,..,.n—1
Tiit1 = Tig1, = hi/6, fori =2,3,..,n—1

Matrix R and@ are numbered in non standard way.
The matrix R is strictly diagonal dominant, in which
il > > ;2 Irijl- ThusR is strictly positive-definite,
henceR~! exists. Defined a matrig by
G=QR'Q" 4)

The important result is the theorem below (Greean &
Silverman [2]):

Theorem 1 The vectorf and~ specify a natural cu-
bic splinef, if and only if the condition

Q'f =Ry

is satisfied. If condition above is satisfied then the
roughness penalty will satisfy

b
/1U“@Wﬂt=7TRv=fTGf 5)
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The proof of this theorem can be seen in Green and
Silverman [2].

Green and Silverman [2] proposed smoothing
spline for several conditions, e.g nonparametric and
semiparametric regressions for independent continu-
ous data, nonparametric and semiparametric general-
ized linear models for independent data, and quasi-
likelihood for independent data. They also consid-
ered method for correlated continuous data. For quasi-
likelihood approach, the important result is the solu-
tion of the functionf for nonparametric regression
and parametefs in semiparametric regression, ob-
tained by maximizing "penalized quasi-likelihood”:

= o [ (7o) (6)

Thus the solution of is obtained by maximizing (6)

3 Generalized Estimating Equation-
Smoothing Spline

3.1 Estimation of GEE-smoothing spline

Suppose there ar& subjects and the measurement
of the i-th subject takenn; times. Lety, =
(i1, Vi2, - - - Yin,) ! b€ a vector of responses of the
i-th subject, corresponding to the vector of covariate
ti = (ti,tio, ..., tin,)T and y;; comes from expo-
nential family distribution with canonical parameter
Qij- ThUSE(yij) = b’(&ij) = Mij andVar(yij) =
b"(0i)a(d).

Consider the population average model, where
the systematic component of the exponential family
is nonparametric, rather than parametric, that is
g(/J/ij) =Nij = f(tij)a 1= 1,2, ceey 1 ] = 1,2, ey Ty
We replace the systematic component in (1) with un-
known smooth function, i.e. natural cubic splines,
rather than linear (known) function. In this paper we
use the canonical link functiaf); = n;; . SupposeX;
ann; x q incidence matrix of alt;;'s that can be con-
structed as follows. Let atl;'s haveq different values
that can be ordered to bg) < t(5) < - -+ < t(4) With
relation tox;;x, is z, = 1, if t;; = t(;,) andx;j; = 0,
if tij # -

Let Tij = (xijh Tij2 - - ,l’ijq)T and vector of
the functionsf at different points denoted bj =
[Ftay), f(t), - ft@)]". Then the functionf
at pointt;; can be expressed #$t;;) = m;-’; f. Set

)T
)T

-,xmi)T; Yi = (yilayi2a cee
. 7771711)T7 Hi = (,uih,u’ZQv .-

Xi = (i1, T2, - -
ni = (Mi1s Mizs - -

y Yin;

-5 Min;
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Since functionf can be any arbitrary smooth

function, then to maximize "quasi-likelihood” score = ZXiTAiVi_lsz‘SiTVi_lAz‘Xi
function @ (see Sub-Section 2.1), one might take i=1

as the estimates gf(t;;) and the® will be maximum. o L

But the function obtainedf, is just an interpolation Another possibility of Varf) is model based co-

of the y;;’s and the function is too rough or wiggly. ~ variance obtained from (8), also called naive estima-
One mlg]ht want a smooth function by adding rough- tor- The naive estimator is defined by the inverse hes-
ness penalty to the objective function. This is called Sian matrix, i.e

penalized "quasi-likelihood” function defined by .

Lo Vary(f) = 35" (11)
n-e- o [ epe @

From (2), (3), and (5), the estimating equation 3.2 Smoothing parameter selection
that maximizing penalized "quasi-likelihood” func-

. . ) Smoothing parameter () is an important part in GEE-
tion (7) is defined as 9p () p p

Smoothing Spline. The parameter measures the "trade
n K PR off” or exchange between goodness of fit and the
= = Z DIvts, — — [)\/ [f”(t)]zdt} roughness or the smoothness of the curve. Hence,

i—1 of the performance of the estimator depends on this pa-

K rameter. In selecting smoothing parameter, we use
= ZD;‘FVTI& —AGf =0 a method proposed by Wu & Zhang ([12], p326)
i—1 which is calledeave-one-subject-out cross validated

deviance(SCVD). Smoothing parameteris chosen

Given the current estimates @fand assuming canon- that minimizes SCVD score, where

ical link function is used, following Liang and Zeger
[5] as in (3), then the iterative procedure using modi-

fied Fisher scoring fof, is K &

SCVD() =3 d(yij, i)

-1 i=1 j=1

> DIV 'Di+ G
=1

fs+1 :fs+

whered is "deviance” and j_’ =g 1(X; f( 7’))1] is
(8) the estimate value for theth subject and theth time
observation usmgf R Thef |sf obtained with-
out thei-th observation. Since GEE is based on quasi-
likelihood thus the deviance is also based on quasi-
likelihood (see: Hardin & Hilbe [3], Ch. 4; McCul-
lagh & Nelder [8], Ch. 9).

> DI'V'S; - AGf,

=1

whereD;, V;, andS; are evaluated usinﬁs.

We may use sandwich variance estimator for the
estimate suggested by Liang & Zeger [5]. This esti-
mator is robust due to the misspecification of the cor-

relation structure. The sandwich variance estimator of Direct computation off - is time consuming.
f is defined by Wu & Zhang [12] suggested using approximate of
Varg(f) = Sei gt @) f(_z) computed as follows. Suppose from the final

iteration of (8), we haveD;, V. !, S; and f5. Then

h ~(—1) . . '
where B thef( Vis approximated by

K
w;t = [Z DI'V:7'D; + \G and p .
i=1 A(—i) o~ -
; P =k 4 DIV D, 4G
=" DIV 1587 D; (10) K”A"

i=1 T —1 .
A special case using canonical link funtion, the ZDTVT Sr = AG
00;/0n; = I,,,. Thus the form of (10) becomes el
-1
and We still need to comput¢ for 1 =1,2,...,K,

K
ot =D XTAVTIAX +AG ,
but we do not need to iterate (8) from the beglnnlng.

i=1
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4 Simulation Study

The objective of this simulation is to study the proper-
ties of GEE-smoothing spline, such as biasness, con-
sistency, and efficiency, considering different sample
sizes with correct and incorrect correlation structure
in estimation. In this simulation we only consider bi-
nary data using logit link function.

4.1 Modd and structure of data

the same for data that have high correlation (autore-
gressivep = 0.7), moderate correlation (Exchange-
able,a = 0.35), and independent.

We used standard deviation of 250 replication at
each point estimates to study the consistency and ef-
ficiency. The estimator is consistent if standard devi-
ation tends to zero when sample size is infinity, i.e.
standard deviation decreases while sample size in-
creases. This standard deviation can also be used to
study the efficiency, that is small standard deviation
indicates the efficiency of the estimator. Figure 2 and

We generated correlated binary data using R language Taple 1 show the standard deviation of 250 pointwise

version 2.7.1 (see: Leisch et al [4]). Three corre-
lation structures were considered: (i) autoregressive
with corr(yij, ¥ij+1)) = 0.7, for j = 1,2,...,n;;

(i) exchangeable withcorr(y;;,v;;7) = 0.35, for
', 7 =1,2,...,n;andj’ # j; and (iii) independency
with corr(yi;,yi;7) = 0, for j',7 = 1,2,...,n,; and

j' # j. Each subject is considered to be measured ten
times,t = 7.5,25.5,43.5,...,169.5. The function is
f(t) = sin(nt/90). Response variabley;, related

to covariate t, through canonical link function is as
follows,

f(tij)

E(yij) = ni;  and |09it<1%> =
— Hij

We considerd three sample sizes- 15, n = 30, and

n = 50. For each correlation structure, we estimated

function f using the three correlation structure: au-

toregressive, exchangeable, and independency. Thus

for each one, there are nine combinations of sample
sizes and correlation structure. Each combination was
run 250 times.

4.2 Simulation results

In order to assess the biasness of the estimator we use

pointwise sum of absolute deviation (SAD). SAD is
defined as follows. Suppose the estimat¢ at point

t for ther-th replication isf\"”) and f is the average
of ") of 250 replications, thug* = 5-2° 7" /250,
and the truef at point¢ is f;. SAD is defined as
SAD = 3332, | — fi,1/10. Thus SAD shows the
size of bias of the estimates. Figure 1 (a), (b), and
(c) show the SAD for true correlation structure of au-

toregressive, exchangeable, and independency respec-

tively.

From Figure 1 we can see the biasness of the es-

timators. Refering to the correlation structure, there
is no pattern for the size of bias whether we use cor-
rect or incorrect correlation structure. The degree of

function estimates. From Figure 2 and Table 1 we
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biasness is related to the sample size. Whether using Figure 1: Sum of Absolute Deviation of the Three of

correct or incorrect correlation structure, the bias will

True Correlation Structures

decrease when sample size increases. This pattern is
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Figure 2: Standard Deviation of 250 Replications of
Pointwise Function Estimates

model or just ignore the dependency. The method that
has smaller variance or standard deviaton of estimator
is more efficient than others.

Figure 2 and Table 1 show that if data are corre-
lated (true correlation is autoregressive or exchange-
able), for specific sample size, the biggest standard
deviation is obtained if one assumes that the data are
independent. Whilst using true correlation structure,
the standard deviation is the smallest. This means that
taking into account the dependency into the model is
better than assuming data are independent, even if we
use incorrect correlation structure. The most efficient
estimate is obtained if we use true correlation struc-
ture. The difference between standard deviations of
correlation structure (AR1, EXC, and IND) tends to
get closer when we increase the sample size, hence we
conjecture that the efficiency of correct or incorrect
correlation structure is almost similar if sample size
is large. If true correlation structure is independent,
the standard deviation of AR1, EXC, and IND are al-
most similar, for all sample sizes. Thus in this case,
the efficiency of using incorrect correlation structures
is almost similar to the efficiency of using correct cor-
relation structure.

5 Conclusion and Discussion

From section 4, it can be concluded that GEE-
smooting spline has better properties than GEE-local
polynomial kernel proposed by Lin & Carroll (2000).
The pointwise estimates of GEE-smoothing are con-
sistent, even if we use incorrect correlation structure.
The convergency rates of consistency for independent
data (no correlation), moderate correlation, and high
correkation are the same. If data are correlated, ignor-
ing this correlation in the model, will give the most

can see the consistency of the estimator. The pattern inefficient estimate. Taking into account the depen-

of standard deviation for all true correlation structures

dency into the model is better than ignoring it, even

is the same. It decreases when sample size increasesusing incorrect correlation structure. If data are in-

The same pattern is also observed for all correlation
structures, using correct or incorect correlation struc-

dependent, the efficiency of using correct or incorrect
correlation structures is almost similar. Hence, since

ture. This means that the estimators are consistent andin true situation the correlation is unknown, then it is

the consistency still holds even if we use incorrect cor-
relation structure. The rate of the decreasing of stan-
dard deviation fromn = 15 ton = 30, and from

n = 30 ton = 50, are the same for all true corre-
lation structures. This indicates the convergency rate
is (almost) the same for all conditions of true corre-
lation structures. From the standard deviation we can
also study the efficiency of the estimator. From the re-
sult of the efficiency study we may conclude whether
we need to take into account the correlation into the
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better to assumme the data are correlated rather than
to assume data are independent.

We have shown by simulation that the estimator
of GEE-smoothing spline has good properties. As an
extension for future research, it is imperative these
properties should be shown analitically.
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Sample Assuming Estimate Point
K Corr. f(t)  flte)  fts) f(ta) flts) [f(te) f(tz) flts) [f(to) [f(t1o)
Correlation Structure AR-1

15 AR1 0.545 0.436 0.464 0.472 0460 0474 0513 0533 0519 0.541
EXC 0.549 0.445 0.470 0.481 0.476 0.493 0531 0547 0532 0.568
IND 0.559 0.451 0.480 0.497 0.493 0.508 0.545 0.562 0543 0.575

30 AR1 0.377 0.332 0.339 0.338 0.331 0.343 0.352 0.362 0.368 0.381
EXC 0.376 0.339 0.342 0.344 0.340 0.351 0.357 0.370 0.373 0.399
IND 0.381 0.347 0.352 0.353 0.349 0.359 0.366 0.378 0.380 0.403

50 AR1 0.296 0.262 0.271 0.273 0.263 0.259 0.271 0.282 0.278 0.284
EXC 0.298 0.265 0.272 0.273 0.268 0.262 0.273 0.285 0.280 0.293
IND 0.301 0.270 0.278 0.279 0.273 0.267 0.278 0.290 0.284 0.295

Correlation Structure Exchangeable

15 AR1 0.517 0.445 0.458 0.439 0.403 0.409 0.410 0.417 0.405 0.501
EXC 0.516 0.439 0.445 0.432 0.398 0.404 0.401 0.409 0.393 0.486
IND 0.519 0.449 0.458 0.444 0.410 0.415 0.412 0.420 0.405 0.494

30 AR1 0.368 0.290 0.291 0.297 0.278 0.289 0.301 0.304 0.319 0.358
EXC 0.360 0.287 0.285 0.293 0.275 0.283 0.293 0.301 0.315 0.345
IND 0.363 0.293 0.293 0.301 0.281 0.289 0.300 0.310 0.322 0.348

50 AR1 0.277 0.231 0.247 0.234 0.227 0.221 0.227 0.234 0.230 0.292
EXC 0.272 0.229 0.245 0.229 0.224 0.219 0.225 0.230 0.229 0.283
IND 0.275 0.233 0.250 0.235 0.228 0.223 0.229 0.237 0.234 0.286

Correlation Structure Independent

15 AR1 0.534 0.332 0.379 0.398 0.323 0.322 0.380 0.378 0.363 0.495
EXC 0.534 0.331 0.377 0.397 0.322 0.322 0.379 0.379 0.363 0.495
IND 0.534 0.330 0.377 0.396 0.322 0.322 0.378 0.379 0.363 0.495

30 AR1 0.367 0.237 0.265 0.267 0.240 0.236 0.250 0.274 0.242 0.348
EXC 0.366 0.237 0.265 0.267 0.239 0.236 0.251 0.275 0.242 0.348
IND 0.366 0.237 0.265 0.267 0.239 0.236 0.251 0.275 0.242 0.348

50 AR1 0.282 0.201 0.206 0.203 0.203 0.191 0.217 0.211 0.197 0.265
EXC 0.282 0.201 0.206 0.203 0.202 0.191 0.217 0.212 0.197 0.265
IND 0.282 0.201 0.206 0.203 0.202 0.191 0.217 0.212 0.197 0.265

Table 1: Standard Deviation of the Estimate Points of the Function
References: [5] Liang, K. Y. and S. L. Zeger, Longitudinal
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