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Abstract:This paper considers nonparametric regression to analyze longitudinal data. Some developments of non-
parametric regression have been achieved for longitudinal or clustered categorical data. For exponential family
distribution, Lin & Carroll [6] considered nonparametric regression for longitudinal data using GEE-Local Poly-
nomial Kernel (LPK). They showed that in order to obtain an efficient estimator, one must ignore within subject
correlation. This means within subject observations should be assumed independent, hence the working corre-
lation matrix must be an identity matrix. With Lin & Carroll [6], to obtain efficient estimates we should ignore
correlation that exist in longitudinal data, even if correlation is the interest of the study. In this paper we propose
GEE-Smoothing spline to analyze longitudinal data and study the property of the estimator such as the bias, con-
sistency and efficiency. We use natural cubic spline and combine with GEE of Liang & Zeger [5] in estimation.
We want to explore numerically, whether the properties of GEE-Smoothing spline are better than of GEE-Local
Polynomial Kernel that proposed by Lin & Carrol [6]. Using simulation we show that GEE-Smoothing Spline is
better than GEE-local polynomial. The bias of pointwise estimator is decreasing with increasing sample size. The
pointwise estimator is also consistent even with incorrect correlation structure, and the most efficient estimate is
obtained if the true correlation structure is used.

Key–Words:Nonparametric regression, Longitudinal binary data, Generalized estimating equation, Natural cubic
spline, Property of estimator.

1 Introduction

Longitudinal study is common in economics, epi-
demiology or clinical trials in which subjects are fol-
lowed over time or several occasions to collect re-
sponse variables. The characteristic of these data is
that they are no longer independent, in which there
is correlation within subject measurements. Another
characteristic is that the variances usually are not ho-
mogeneous. Thus methods in the class of gener-
alized linear model (GLM) are no longer valid for
these data, since GLM assumes that observations are
independent. Some developments have been pro-
posed to analyze such data, that can be classified into
three types of model, marginal model, subject spe-
cific effect, and transition model (Davis [1]). In the
class of marginal model, Liang and Zeger [5] and
Zeger and Liang [9] extended quasi-likelihood esti-
mation of Weddernburn [10] by introducing ”working
correlation” to accommodate within subject correla-
tion, which is called generalized estimating equation
(GEE). GEE yields consistent estimates of the regres-
sion coefficients and their variances even though there
is misspecification of the working correlation struc-

ture, provided the mean function is correctly specified.

GEE is part of the class of parametric estimation,
in which the model can be stated in a linear func-
tion and the function is known. Very often the ef-
fect of the covariate cannot be specified in the spe-
cific function. Nonparametric regression can accom-
modate this problem by relaxing relationship between
covariate and response. In nonparametric regression,
we assume that the effect of the covariate follows an
unknown function without specific term, that is just
a smooth function. To date there are several meth-
ods in nonparametric regression, for example: local
polynomial kernel regression, penalized splines re-
gression, and smoothing splines. Green and Silver-
man [2] gave a simple algorithm for nonparametric re-
gression using cubic spline by penalized least square
estimation. They also gave nonparametric and semi-
parametric methods for independent observations for
class of generalized linear models.

Some developments of nonparametric and semi-
parametric regression for longitudinal or clustered
data have been achieved. Lin and Carroll [6] consid-
ered nonparametric regression using longitudinal data
GEE-Local Polynomial Kernel (LPK). They showed
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that for kernel regression, in order to obtained an effi-
cient estimator, one must ignore within subject corre-
lation. This means within subject observations should
be assumed independent, hence the working correla-
tion matrix must be an identity matrix. This result was
definitely different from GEE of Liang & Zeger’s, in
which the GEE estimator was consistent even there
are misspecification of the true correlation as working
correlation. Lin and Carroll [7] also studied the be-
havior of local polynomial kernel which was applied
to semiparametric-GEE for longitudinal data. The re-
sult was the same as in nonparametric GEE-LPK in
Lin and Carroll [6]. Welsh et al. [11] studied the local-
ity of the kernel method for nonparametric regression
and compared it to P-splined regression and smooth-
ing splines. The result was that the kernel is local even
when the correlation is taken into account. The re-
sult was different for smoothing splines, in which if
there is no within subject correlation then smoothing
splines is local, and if within subject correlation in-
creases, than smoothing splines become more nonlo-
cal. This implies that for smoothing splines, within
subject correlation must be taken into account in the
working correlation.

This paper considers nonparametric regression to
analyze longitudinal data. In this paper we propose
GEE-Smoothing spline to analyze longitudinal data
and study the property of the estimator such as the
bias, consistency and efficiency. We use natural cubic
spline and combine this with GEE of Liang & Zeger’s
in the estimation. We want to show numerically,
whether the properties of GEE-Smoothing spline are
better than GEE-Local Polynomial Kernel that pro-
posed by Lin & Carrol [6]. The simulation study was
carried out to investigate these properties.

The outline of this paper is follows. We give a
sort review of GEE in section 2.1. Section 2.2 consid-
ers brief review of smoothing splines. The algorithm
of the proposed method is considered in section 3.1.
Section 3.2 considers smoothing parameter selection.
Properties of GEE-smoothing spline estimator using
simulation is given in section 4, and conclusion and
discussion in Section 5.

2 Generalized Estimating Equation
and Smoothing Splines

2.1 Generalized estimating equation

Suppose there areK subjects, and thei-th subject is
observedni times for the responses and covariates.
Let yi = (yi1, yi2, . . . , yini

)T be theni × 1 vector
of response variable andXi = (xi1, . . . , xini

)T be
ni × p matrix of covariate for thei-th subject, and

xij = (xij1, xij2, . . . , xijp)T . It is assumed that the
marginal density ofyij follows exponential family
with probability density function

f(yij) = exp
(

yijθij − b(θij)
a(φ)

+ c(yij , φ)
)

The first two moments ofyij areE(yij) = b′(θij) =
µij andV ar(yij) = b′′(θij)a(φ), whereθij is canoni-
cal parameter. It is assumed that between subject, ob-
servations are independent. The relationship between
µ and covariates through the link function is

g(µij) = ηij = xT
ijβ (1)

whereβ = (β1, β2, . . . , βp)T be p × 1 vector of re-
gression coefficient.

Generalized estimating equation to solveβ was
given by Liang and Zeger [5] as follows:

K
∑

i=1

DT
i V −1

i Si = 0 (2)

where

Di =
∂(b′(θi))

∂β
=

∂µi

∂β
=

∂µi

∂θi

∂θi

∂ηi

∂ηi

∂β
= Ai∆iXi,

∆i =
∂θi

∂ηi
; Vi = A

1/2
i R(α)A1/2

i .

Ai is an ni × ni diagonal matrix with diagonal ele-
ments var(yij). R(α) is also called a ”working cor-
relation”, anni × ni symmetric matrix which ful-
fills the requirement of being a correlation matrix, and
Si = yi − µi . The estimating equation (2) is similar
to the quasi-likelihood estimating equation, except for
the form ofVi. Thus it can be seen as an estimating
equation ofβ by letting Φ as the ”quasi-likelihood”
score function of they1, y2, . . . , yK . Solution ofβ
can be obtained by minimizingΦ subject toβ . Thus
the estimating equation is

∂Φ
∂β

=
n

∑

i=1

DT
i V −1

i Si = 0

Liang and Zeger [5] gave the iterative procedure using
modified Fisher scoring forβ and moment estimation
method ofα andφ . Given the current estimates ofα̂
andφ̂ then the iterative procedure forβ is

β̂s+1 =β̂s +

[
n

∑

i=1

DT
i (β̂s)Ṽ −1

i Di(β̂s)

]−1

×

[
n

∑

i=1

DT
i (β̂s)Ṽ −1

i Si(β̂s)

]

(3)

whereṼi(β) = Ṽi{β, α(β, φ̂(β))}. The close form
of moment estimator forα andφ for some correlation
structures can be seen in Liang & Zeger [5].
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2.2 Smoothing spline
Green and Silverman [2] gave a simple approach in
estimating smooth functionf in interval [a, b] using
natural cubic splines. Suppose givenn real num-
ber t1, t2, . . . , tn on the interval[a, b] and satisfy-
ing a < t1 < · · · < tn < b. A function f
on [a, b] is cubic spline if two conditions are sat-
isfied. First, f is cubic polynomial on each inter-
val (a, t1), (t1, t2), . . . , (tn, b); second, the polyno-
mial pieces fit together at the pointsti in such a way
thatf itself and its first and second derivative are con-
tinuous at eachti, thus the function is continuous on
the whole of[a, b]. It is said to be natural cubic spline
(NCS), if its second and third derivative are zero at
a and b. Supposefi = f(ti) and γi = f ′′(ti) for
i = 1, 2, . . . , n. By definition of NCS, the second
derivative off at t1 andtn are zero, soγ1 = γn = 0.
Let fff = (f1, f2, . . . , fn)T andγ = (γ2, . . . , γn−1)T .
Vectorγ is numbered in non standard way, starting at
i = 2. The vectorfff and vectorγ completely specify
the curvef . These two vectors are related and speci-
fied by two matricesQ andR defined below.

Let hi = ti+1 − ti, for i = 1, 2, . . . , n − 1. Let
Q be then × (n − 2) matrix with elementsqij , i =
1, . . . , n, andj = 2, . . . , n − 1, given by

qj−1,j = h−1
j−1, qjj = −h−1

j−1−h−1
j , andqj+1,j = h−1

j .

TheR matrix is defined by the(n−2)× (n−2) sym-
metric matrix with elementsrij , for i andj running
from 2 to(n − 1), given by

rii = (hi−1 + hi)/3, for i = 2, 3, .., n − 1
ri,i+1 = ri+1,i = hi/6, for i = 2, 3, .., n − 1

Matrix R andQ are numbered in non standard way.
The matrixR is strictly diagonal dominant, in which
|rii| >

∑

i6=j |rij |. ThusR is strictly positive-definite,
henceR−1 exists. Defined a matrixG by

G = QR−1QT (4)

The important result is the theorem below (Greean &
Silverman [2]):

Theorem 1 The vectorfff andγ specify a natural cu-
bic splinef , if and only if the condition

QTfff = Rγ

is satisfied. If condition above is satisfied then the
roughness penalty will satisfy

∫ b

a
[f ′′(t)]2dt = γT Rγ = fffT Gfff (5)

The proof of this theorem can be seen in Green and
Silverman [2].

Green and Silverman [2] proposed smoothing
spline for several conditions, e.g nonparametric and
semiparametric regressions for independent continu-
ous data, nonparametric and semiparametric general-
ized linear models for independent data, and quasi-
likelihood for independent data. They also consid-
ered method for correlated continuous data. For quasi-
likelihood approach, the important result is the solu-
tion of the functionf for nonparametric regression
and parameterβ in semiparametric regression, ob-
tained by maximizing ”penalized quasi-likelihood”:

Π = Φ −
1
2
λ

∫

[f ′′(t)]2dt (6)

Thus the solution off is obtained by maximizing (6)

3 Generalized Estimating Equation-
Smoothing Spline

3.1 Estimation of GEE-smoothing spline
Suppose there areK subjects and the measurement
of the i-th subject takenni times. Let yi =
(yi1, yi2, . . . , yini

)T be a vector of responses of the
i-th subject, corresponding to the vector of covariate
ti = (ti1, ti2, . . . , tini

)T and yij comes from expo-
nential family distribution with canonical parameter
θij . ThusE(yij) = b′(θij) = µij andV ar(yij) =
b′′(θij)a(φ).

Consider the population average model, where
the systematic component of the exponential family
is nonparametric, rather than parametric, that is

g(µij) = ηij = f(tij), i = 1, 2, ..., n; j = 1, 2, ..., ni

We replace the systematic component in (1) with un-
known smooth function, i.e. natural cubic splines,
rather than linear (known) function. In this paper we
use the canonical link functionθij = ηij . SupposeXi

anni × q incidence matrix of alltij ’s that can be con-
structed as follows. Let alltij ’s haveq different values
that can be ordered to bet(1) < t(2) < · · · < t(q) with
relation toxijk is xijk = 1, if tij = t(k) andxijk = 0,
if tij 6= t(k).

Let xij = (xij1, xij2 . . . , xijq)T and vector of
the functionsf at different points denoted byfff =
[f(t(1)), f(t(2)), . . . , f(t(q))]T . Then the functionf
at pointtij can be expressed asf(tij) = xT

ijfff . Set

Xi = (xi1, xi2, . . . , xini
)T ; yi = (yi1, yi2, . . . , yini

)T

ηi = (ηi1, ηi2, . . . , ηini
)T ; µi = (µi1, µi2, . . . , µini

)T

Proceedings of the 8th WSEAS International Conference on Applied Computer and Applied Computational Science

ISSN: 1790-5117 28 ISBN: 978-960-474-075-8



Since functionf can be any arbitrary smooth
function, then to maximize ”quasi-likelihood” score
functionΦ (see Sub-Section 2.1), one might takeyij

as the estimates off(tij) and theΦ will be maximum.
But the function obtained,̂f , is just an interpolation
of the yij ’s and the function is too rough or wiggly.
One might want a smooth function by adding rough-
ness penalty to the objective function. This is called
penalized ”quasi-likelihood” function defined by

Π = Φ −
1
2
λ

∫ b

a
[f ′′(t)]2dt (7)

From (2), (3), and (5), the estimating equation
that maximizing penalized ”quasi-likelihood” func-
tion (7) is defined as

∂Π
∂f

=
K

∑

i=1

DT
i V −1

i Si −
∂

∂f

[

1
2
λ

∫

[f ′′(t)]2dt

]

=
K

∑

i=1

DT
i V −1

i Si − λGfff = 0

Given the current estimates ofα̂ and assuming canon-
ical link function is used, following Liang and Zeger
[5] as in (3), then the iterative procedure using modi-
fied Fisher scoring forfff , is

f̂ffs+1 =f̂ffs +

[
n

∑

i=1

DT
i Ṽ −1

i Di + λG

]−1

×

[
n

∑

i=1

DT
i Ṽ −1

i Si − λGf̂ffs

]

(8)

whereDi, Ṽi, andSi are evaluated usinĝfffs.
We may use sandwich variance estimator for the

estimate suggested by Liang & Zeger [5]. This esti-
mator is robust due to the misspecification of the cor-
relation structure. The sandwich variance estimator of
f̂ff is defined by

VarS(f̂ff) = Σ−1
0 Σ1Σ−1

0 , (9)

where

Σ−1
0 =

[
K

∑

i=1

DT
i Ṽ −1

i Di + λG

]−1

and

Σ1 =
K

∑

i=1

DT
i Ṽ −1

i SiS
T
i Di (10)

A special case using canonical link funtion, the
∂θi/∂ηi = Ini

. Thus the form of (10) becomes

Σ−1
0 =

[
K

∑

i=1

XT
i AiṼ

−1
i AiXi + λG

]−1

and

Σ1 =
K

∑

i=1

XT
i AiṼ

−1
i SiS

T
i Ṽ −1

i AiXi

Another possibility of Var(̂fff) is model based co-
variance obtained from (8), also called naive estima-
tor. The naive estimator is defined by the inverse hes-
sian matrix, i.e

VarN (f̂ff) = Σ−1
0 . (11)

3.2 Smoothing parameter selection

Smoothing parameter (λ) is an important part in GEE-
Smoothing Spline. The parameter measures the ”trade
off” or exchange between goodness of fit and the
roughness or the smoothness of the curve. Hence,
the performance of the estimator depends on this pa-
rameter. In selecting smoothing parameter, we use
a method proposed by Wu & Zhang ([12], p326)
which is calledleave-one-subject-out cross validated
deviance(SCVD). Smoothing parameterλ is chosen
that minimizes SCVD score, where

SCV D(λ) =
K

∑

i=1

ni∑

j=1

d(yij , µ̂
(−i)
ij )

whered is ”deviance” andµ(−i)
ij = g−1(Xif̂ff

(−i)
)ij is

the estimate value for thei-th subject and thej-th time

observation usinĝfff
(−i)

. Thef̂ff
(−i)

isfff obtained with-
out thei-th observation. Since GEE is based on quasi-
likelihood thus the deviance is also based on quasi-
likelihood (see: Hardin & Hilbe [3], Ch. 4; McCul-
lagh & Nelder [8], Ch. 9).

Direct computation of̂fff
(−i)

is time consuming.
Wu & Zhang [12] suggested using approximate of

f̂ff
(−i)

computed as follows. Suppose from the final
iteration of (8), we haveDi, Ṽ −1

i , Si and f̂̂f̂fs. Then

thef̂ff
(−i)

is approximated by

f̂ff
(−i)

=f̂ffs +





K
∑

i6=r

DT
r Ṽ −1

r Dr + λG





−1

×





K
∑

i6=r

DT
r Ṽ −1

r Sr − λGf̂ffs





We still need to computêfff
(−i)

for i = 1, 2, . . . , K,
but we do not need to iterate (8) from the beginning.
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4 Simulation Study
The objective of this simulation is to study the proper-
ties of GEE-smoothing spline, such as biasness, con-
sistency, and efficiency, considering different sample
sizes with correct and incorrect correlation structure
in estimation. In this simulation we only consider bi-
nary data using logit link function.

4.1 Model and structure of data

We generated correlated binary data using R language
version 2.7.1 (see: Leisch et al [4]). Three corre-
lation structures were considered: (i) autoregressive
with corr(yij , yi(j+1)) = 0.7, for j = 1, 2, . . . , ni;
(ii) exchangeable withcorr(yij , yij′) = 0.35, for
j′, j = 1, 2, . . . , ni andj′ 6= j; and (iii) independency
with corr(yij , yij′) = 0, for j′, j = 1, 2, . . . , ni and
j′ 6= j. Each subject is considered to be measured ten
times,t = 7.5, 25.5, 43.5, . . . , 169.5. The function is
f(t) = sin(πt/90). Response variable,yij , related
to covariate,t, through canonical link function is as
follows,

E(yij) = µij and logit

(

µij

1 − µij

)

= f(tij)

We considerd three sample sizesn = 15, n = 30, and
n = 50. For each correlation structure, we estimated
function f using the three correlation structure: au-
toregressive, exchangeable, and independency. Thus
for each one, there are nine combinations of sample
sizes and correlation structure. Each combination was
run 250 times.

4.2 Simulation results
In order to assess the biasness of the estimator we use
pointwise sum of absolute deviation (SAD). SAD is
defined as follows. Suppose the estimate off at point
t for the r-th replication isf̂ (r)

t andf̂∗
t is the average

of f̂ (r)
t of 250 replications, thuŝf∗

t =
∑250

r=1 f̂
(r)
t /250,

and the truef at point t is ft. SAD is defined as
SAD =

∑10
j=1 |f̂

∗
tj − ftj |/10. Thus SAD shows the

size of bias of the estimates. Figure 1 (a), (b), and
(c) show the SAD for true correlation structure of au-
toregressive, exchangeable, and independency respec-
tively.

From Figure 1 we can see the biasness of the es-
timators. Refering to the correlation structure, there
is no pattern for the size of bias whether we use cor-
rect or incorrect correlation structure. The degree of
biasness is related to the sample size. Whether using
correct or incorrect correlation structure, the bias will
decrease when sample size increases. This pattern is

the same for data that have high correlation (autore-
gressive,α = 0.7), moderate correlation (Exchange-
able,α = 0.35), and independent.

We used standard deviation of 250 replication at
each point estimates to study the consistency and ef-
ficiency. The estimator is consistent if standard devi-
ation tends to zero when sample size is infinity, i.e.
standard deviation decreases while sample size in-
creases. This standard deviation can also be used to
study the efficiency, that is small standard deviation
indicates the efficiency of the estimator. Figure 2 and
Table 1 show the standard deviation of 250 pointwise
function estimates. From Figure 2 and Table 1 we

(a) True correlation is AR-1

(b) True correlation is Exchangeable

(c) True correlation is Independent

Figure 1: Sum of Absolute Deviation of the Three of
True Correlation Structures
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(a) True correlation is AR-1

(b) True correlation is Exchangeable

(c) True correlation is Independent

Figure 2: Standard Deviation of 250 Replications of
Pointwise Function Estimates

can see the consistency of the estimator. The pattern
of standard deviation for all true correlation structures
is the same. It decreases when sample size increases.
The same pattern is also observed for all correlation
structures, using correct or incorect correlation struc-
ture. This means that the estimators are consistent and
the consistency still holds even if we use incorrect cor-
relation structure. The rate of the decreasing of stan-
dard deviation fromn = 15 to n = 30, and from
n = 30 to n = 50, are the same for all true corre-
lation structures. This indicates the convergency rate
is (almost) the same for all conditions of true corre-
lation structures. From the standard deviation we can
also study the efficiency of the estimator. From the re-
sult of the efficiency study we may conclude whether
we need to take into account the correlation into the

model or just ignore the dependency. The method that
has smaller variance or standard deviaton of estimator
is more efficient than others.

Figure 2 and Table 1 show that if data are corre-
lated (true correlation is autoregressive or exchange-
able), for specific sample size, the biggest standard
deviation is obtained if one assumes that the data are
independent. Whilst using true correlation structure,
the standard deviation is the smallest. This means that
taking into account the dependency into the model is
better than assuming data are independent, even if we
use incorrect correlation structure. The most efficient
estimate is obtained if we use true correlation struc-
ture. The difference between standard deviations of
correlation structure (AR1, EXC, and IND) tends to
get closer when we increase the sample size, hence we
conjecture that the efficiency of correct or incorrect
correlation structure is almost similar if sample size
is large. If true correlation structure is independent,
the standard deviation of AR1, EXC, and IND are al-
most similar, for all sample sizes. Thus in this case,
the efficiency of using incorrect correlation structures
is almost similar to the efficiency of using correct cor-
relation structure.

5 Conclusion and Discussion

From section 4, it can be concluded that GEE-
smooting spline has better properties than GEE-local
polynomial kernel proposed by Lin & Carroll (2000).
The pointwise estimates of GEE-smoothing are con-
sistent, even if we use incorrect correlation structure.
The convergency rates of consistency for independent
data (no correlation), moderate correlation, and high
correkation are the same. If data are correlated, ignor-
ing this correlation in the model, will give the most
inefficient estimate. Taking into account the depen-
dency into the model is better than ignoring it, even
using incorrect correlation structure. If data are in-
dependent, the efficiency of using correct or incorrect
correlation structures is almost similar. Hence, since
in true situation the correlation is unknown, then it is
better to assumme the data are correlated rather than
to assume data are independent.

We have shown by simulation that the estimator
of GEE-smoothing spline has good properties. As an
extension for future research, it is imperative these
properties should be shown analitically.
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Sample Assuming Estimate Point
K Corr. f(t1) f(t2) f(t3) f(t4) f(t5) f(t6) f(t7) f(t8) f(t9) f(t10)

Correlation Structure AR-1
15 AR1 0.545 0.436 0.464 0.472 0.460 0.474 0.513 0.533 0.519 0.541

EXC 0.549 0.445 0.470 0.481 0.476 0.493 0.531 0.547 0.532 0.568
IND 0.559 0.451 0.480 0.497 0.493 0.508 0.545 0.562 0.543 0.575

30 AR1 0.377 0.332 0.339 0.338 0.331 0.343 0.352 0.362 0.368 0.381
EXC 0.376 0.339 0.342 0.344 0.340 0.351 0.357 0.370 0.373 0.399
IND 0.381 0.347 0.352 0.353 0.349 0.359 0.366 0.378 0.380 0.403

50 AR1 0.296 0.262 0.271 0.273 0.263 0.259 0.271 0.282 0.278 0.284
EXC 0.298 0.265 0.272 0.273 0.268 0.262 0.273 0.285 0.280 0.293
IND 0.301 0.270 0.278 0.279 0.273 0.267 0.278 0.290 0.284 0.295

Correlation Structure Exchangeable
15 AR1 0.517 0.445 0.458 0.439 0.403 0.409 0.410 0.417 0.405 0.501

EXC 0.516 0.439 0.445 0.432 0.398 0.404 0.401 0.409 0.393 0.486
IND 0.519 0.449 0.458 0.444 0.410 0.415 0.412 0.420 0.405 0.494

30 AR1 0.368 0.290 0.291 0.297 0.278 0.289 0.301 0.304 0.319 0.358
EXC 0.360 0.287 0.285 0.293 0.275 0.283 0.293 0.301 0.315 0.345
IND 0.363 0.293 0.293 0.301 0.281 0.289 0.300 0.310 0.322 0.348

50 AR1 0.277 0.231 0.247 0.234 0.227 0.221 0.227 0.234 0.230 0.292
EXC 0.272 0.229 0.245 0.229 0.224 0.219 0.225 0.230 0.229 0.283
IND 0.275 0.233 0.250 0.235 0.228 0.223 0.229 0.237 0.234 0.286

Correlation Structure Independent
15 AR1 0.534 0.332 0.379 0.398 0.323 0.322 0.380 0.378 0.363 0.495

EXC 0.534 0.331 0.377 0.397 0.322 0.322 0.379 0.379 0.363 0.495
IND 0.534 0.330 0.377 0.396 0.322 0.322 0.378 0.379 0.363 0.495

30 AR1 0.367 0.237 0.265 0.267 0.240 0.236 0.250 0.274 0.242 0.348
EXC 0.366 0.237 0.265 0.267 0.239 0.236 0.251 0.275 0.242 0.348
IND 0.366 0.237 0.265 0.267 0.239 0.236 0.251 0.275 0.242 0.348

50 AR1 0.282 0.201 0.206 0.203 0.203 0.191 0.217 0.211 0.197 0.265
EXC 0.282 0.201 0.206 0.203 0.202 0.191 0.217 0.212 0.197 0.265
IND 0.282 0.201 0.206 0.203 0.202 0.191 0.217 0.212 0.197 0.265

Table 1: Standard Deviation of the Estimate Points of the Function
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