
On one Construction of a Finite Automation 
 
 

  TARIEL KHVEDELIDZE    
           Department of Computer Scienses 

Tbilisi State University  
 University St. 2, Tbilisi 0143 

GEORGIA 
tariel.Khvedelidze@tsu.ge 

  

IRMA ASLANISHVILI 
Department of Computer Scienses 

Tbilisi State University 
University St. 2, Tbilisi 0143 

GEORGIA 
iraslanishvili@posta.ge 

 

Abstract: - An algorithm of the behavior of a finite automation in a stationary random medium with binary 
reactions is proposed. The problem of expedient behavior of the considered automation is studied by the 
methods of the random walk theory and the conditions are obtained under which its behavior in a stationary 
random medium is expedient.  
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1   Introduction 

Finite automata of both determinate and 
probabilistic structure are widely used in the 
mathematical models of a complex system. The idea 
that finite automata are quite a convenient object for 
the construction of complex mathematical models, 
including biological systems, was originally 
proposed by J. von Neumann│1│. However, the 
construction of automata behavior models was 
formulated and developed by M.L. Tsetlin│2│. who 
supposed that an elementary behavioral act can be 
singled out from the complex behavior and an 
elementary behavior problem can be formulated. If, 
after that,  a device (finite automation) that solve 
well an elementary problem, i.e., an automation 
having expedient behavior in an elementary 
situation, then the complex behavior of a complex 
object can be regarded as a result of the joint 
behavior of a large number of elementary objects, 
each of them solving an elementary problem.  

As an elementary behavior problem M.L. Tsetlin 
considered the problem of a choice of one or several 
actions in the conditions of uncertainty, i.e., the 
problem of automation behavior in a random 
medium. The choice of this problem as an 
elementary one is not casual. Indeed, the above-
mentioned statement of the problem can be reduced 
to absurdity in the following way: any complex 
behavior based on a finite storage space can be 
represented as being generated by a realization 
algorithm with a finite memory, i.e., by a finite 
automation. Then the problem of investigation of 
the complex behavior automatically reduces to the 
problem of decomposition of the original 
automation or to the problem of construction of a 

complex automation of elementary (base) automata, 
i.e. to the classical problem of finite automata 
synthesis.  
   An automation is understood as some device 
functioning at a discrete time moment t=1,2,… and 
having a finite or countable set of internal sets. At 
any moment of time t the automation can be in one 
of these states. An automation can receive some 
finite input signals and, depending on a signal 
received, can change its internal state. An 
automation can perform some number of actions, 
this number being determined by its internal state.  

The functioning of an automation in an 
external medium С implies that  the input signals 
(actions) ƒ of the automation are the input 
signals for some device С. To the actions of the ƒ 
automation the medium С produces responses S, 
which in their turn are the input signals for the 
automation The automation uses them, so to say, 
to take decisions on further actions.  

kA

kA

kA

kA

The role of the medium consists in establishing 
relationship between the actions of the automation 
and signals delivered to its input.  
It is of special interest to investigate automata which 
have expedient behavior and do not have, so to say, 
“a priori expediency” of behavior: for a sequence of 
equal input signals delivered when various actions 
are used, the automation must behave equally.  

Thus it is important to construct such a 
symmetric automation that would possess maximal 
expediency in elementary cases and after that to 
study the automata behavior in more complicated 
media.  
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2 Automata Functioning in Random  
Media 

Let the automation  function in a random 
medium .Like in│2│  it is assumed 

that all possible responses S={

kA

1 2( , ,..., )kC a a a

}1, 2 ,..., gs s s of the 

medium C, are understood by the automation as 
belonging to one of the following two classes – the 
class of favorable responses (gain, S = +1) and the 
class of unfavorable responses (loss, S = - 1). The 
information received by the automata from the 
medium C is only the information which response 
(gain, loss) entailed its last action. So the 
automation does not know a priori the character of 
the medium.   

Definition 1. We say│2│ that the automaton 
functions in a stationary random medium  

 if the actions of the automat and 
the values of its input signal are connected as 
follows: the action 

kA

1 2( , ,..., )kC a a a

fα  performed by the automation 
at the moment of time t  implies  that at the moment 
of time we have the value of the signal 1+t 1+=S  

(gain) with probability 
1

2
aq α

α
+

=   and the value 

of the signal (loss) with probability. 1−=S
1

2
ap α

α
−

=  ( k,1=α ). Here the value 

( 1)aa q pα α α= − α <  is used in the sense of 
mathematical expectation of a gain for the action 
fα . 

Since the automation and the random 
medium  in which the automation is 
immersed are independent of each other, it is a 
priori unknown what action of the automation is 
optimal in the sense that an average gain for this 
action is maximal. By varying the numeration of 
actions of automata we can always succeed in 
obtaining ,  certainly assuming that 
at least two values of 

kA

1 2( , ,..., )kC a a a

1 2 ...a a> ≥ ≥ ka
aα are different. Then the 

actions of the automation with an average gain  in 

the medium С will be optimal.  
1a

A question naturally arises by means of what set 
of characteristics the behavior of the automation in a 
random medium can be described. Such 
characteristics are │3│: probabilities ,x ασ of a 

change (at some time) of the action fα  at the start 
from a state x Lα∈

,

; mathematical expectations for 
a random time x ατ  before the change of the action 

fα  at the start from a state x Lα∈ , where Lα - is a 

subset of states in which the action fα ( k,1=α  ) is 
performed.   

If ( )
,
n

x du  is a probability that at the moment of 

time d the finite automation (n
k

)A  (here n is its 
storage capacity) will for the first time change the 
action fα  starting from a state ( ) ,nx Lα∈  then 

( )
,
n

x ασ = ( )
, ,n

0
x du

)(
, ,n
dx xdu

)

d

∞

=
∑

0d
∑
∞

=

   

. )(n
α

)(
,
n

x ατ = L∈

Then the limit average gain of the one-input and 
one-output automation  in a  stationary random 
medium  is defined by the formula 
│4│  

(n
kA

)ka1 2( , ,...,C a a

( )
,

( )
,

1

n
x

k
n

x

aα α

α

τ

τ
=
∑

( ) 1( ; )

k

n
kM A C α

α

==
∑

.  

Note that analogous relations hold also for one-
input and many-output automata. Since the proof of 
this statement completely coincides with that of an 
analogous statement given in │4│ for one-input and 
one-output automata, we omit it here.   

It is natural to compare the gain of such an 
automation with the gain of an automation that 
chooses its actions independently of responses of 
the medium and with equal possibility. The 
mathematical expectation of a gain of such an 
automation is 

0
1

1 .
k

M a
k α

α=

= ∑  

Definition 2. We will say that the automation   
has expedient behavior in the medium 

 if 

kA

1 2( , ,..., )kC a a a ( )( ; )n
0kM A C > M ; if however 

( )( ; )n
k 0M A C =

kA
( )( ; )n
k

M , then  the behavior of the 
automation  in the medium C is indifferent, and if 

0M A C < M , then it is inexpedient.   
It is obvious that  

( )min ( ; )n
ka M A C max .aα ααα

< <  

It is natural to compare an average gain of such 
an automation with an average gain which the man, 
who (as different from the automation) was 
informed in advance   of the parameters 

1 2 , could surely get for himself.  This man 
would evidently perform the action which ensures a 
maximal gain, and the average gain for him would 

, ,..., ka a a
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be equal to a maximal number among the numbers 
.  1 2, ,..., ka a a

For a finite automation  
( )( ; ) maxn
kM A C aαα

< ,  

but we can construct sequences of finite automata 
 such that (1) (2), ,...k kA A

(lim
∞→

M
n

( ) ,...,n
kA

αα
αmax);( )( =CA n

k   ( k,1=α ). 

These sequences are called asymptotically 
optimal.   

Some constructions of finite automata 
having expedient behavior in the random medium 

 are given in│2│.  However 
asymptotic (relative to the storage capacity n) 
analysis of the behavior of these automata was 
based on the study of final (as ) probabilities 
of Markovian chains describing the behavior of 
finite automata in random media, and the behavior 
of individual automata was studied with insufficient 
completeness and strictness. This kind of analysis 
became possible thanks to the investigation of the 
behavior of infinite (with a countable number of 
states) automata │3│.  

1 2( , ,...,C a a

n →∞

)ka

t →∞

It is important to prove the convergence (as 
) of statistical characteristics of the behavior 

of finite automata ( )n
kA  to the corresponding 

statistical characteristics of an automation    of 
the same structure.  

kA

Definition 3.  Following│3│, we say that a 

sequence of finite automata { }( )

1
,n

k n
A

∞

=

)(n
kA

functions in a 

stationary random medium C and has an infinite 
automation   (  = )  as its limit if  kA kA lim

n ∞→

,lim ,
)(

, dx
n
dxn

uu =
∞→

,x d∀ .                         (1)                                                    

  
We immediately note that in the case of the 

continuity theorem │5│ the existence of limit (1) 
can be proved if we establish that the generating 
function  of probabilities of a change of the 
action for a finite automation 

n →∞
( )n
kA converges to the 

corresponding generating function  for an 
infinite automation  converges to the 
corresponding generating function , where 

 and   are generating functions of the 
form  

( ) ( )n
xU z

( )xU z
kA

( ) ( )n
xU z xU ( )z

( ) ( )n
xU z =     =  ( )

,
0

,n d
x d

d
u z

∞

=
∑ ( )xU z ,

0
.d

x d
d

u z
∞

=
∑

 
Note that  

( ) ( )
, (1)n n

x xUασ = ,   
( )
,( )

, 1

( )n
x dn

x z

dU z
dzατ

=
= . 

Analogous formulas hold for , ,x ασ ,x ατ  
(certainly, if the corresponding conditions are 
fulfilled). 

In terms of the above set of characteristics the 
behavior of an infinite (with a countable number of 
states) automation in a random medium is classified 
as follows (recall that by virtue of the condition 

, the action1 2 ... ka a a> ≥ ≥ 1f   is optimal).  
Definition 4. Following │3│, we say that then 

an automation  functioning in the random 
medium  is 

kA
,...,1 2( , )kC a a a

optimal for ,1 1xσ < ,  , 1x ασ =    ( k,2=α )  x∀ ;  

strictly optimal for  ,1 1xσ < , , 1x ασ =  , ,x ατ  <∞    

( k,2=α ) x∀ ; 

quasioptimal for 1, =ασ x , k,1=α , ,1xτ = ∞  , 

,x ατ < ∞    ( k,2=α ) ;  

drawn in for 1, <ασ x , ,x α∀  ; 

drawn out for , 1x ασ = ,      ,x ατ < ∞         ,x α∀ ; 

anti-optimalfor , 1x kσ < , , 1x ασ = , 

( 1,1 −= kα ) x∀ ; 

antiquasioptimal for , 1x ασ =  ( k,1=α ) , ,x kτ = ∞   
x∀ . 

The notion of expedient behavior of an 
automation in a stationary random medium is 
introduced in a natural manner │3│.   

Definition 5. In the  stationary random medium 
, an automation  has statistically 

expedient behavior if 
1 2( , ,..., )kC a a a kA

x,1 ,x ασ σ< , and for 

,1 ,x x ασ σ=  , ,1 ,x x ατ τ> , k,2=α . If however 

,1 ,x x ασ σ= , ,1 ,x x ατ τ= , x∀ , k,2=α , then the 
automation is called indifferent, while if 

,1 ,x x ασ σ> , then the behavior of the automation is 
inexpedient. 

Note that Definition 5 is equivalent to 
Definition 2. 

A corollary of the existence of limit (1) is a 
full classification of the asymptotic (as ) 
behavior of a sequence of finite automata  .  

n →∞
( )n
kA

Definition 6. A sequence of finite automata 

{ }( )n
kA

1n

∞

=
 is called asymptotically optimal (strictly 

optimal) if a limit infinite automation  is optimal 
(strictly optimal).  

kA
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Other sequences of finite automata{ }( )

1

n
k n

A
∞

=
 

are defined analogously if the limit infinite 
automation  possesses the corresponding 
property. 

kA

 
 
3 The Finite Automation Behavior 
Algorithm 

Let the finite automation which has 
 internal states 

 

and can perform two different actions   and   
function in the random medium . It is 
assumed that the first action is performed in the 
states of the 
region , 
while the second action in the states of the region 

. The tactic of 
behavior of the automation  in the medium 

 is given as follows: the automation 
changes the action if a penalty of length  and an 
award of length m  are successively delivered to its 
input. In this case the automation may change its 
action only from the extreme states

2 ,2nT

,...,2,1,1
f

1aC

),...,2−

)

2

( 12 −+= menn
( ) ( ) ( ) ({21 −=∪= LLL nnn

( ) ({1 +−= eL n

( ) ,...,2,1{2 += eL n

( )21 , aaC

)
}1,2),...,1 −+−−−+ meme

1 f
( )2, a

}1,2(),1 −−+−− mem

1,2 −+− mem

2 ,nT

e

2

1=x  and 
1−+= mex . Therefore the automation  has 

one input and two outputs (Fig. 1). 
2 ,nT 2

 

 
1−=S  

 
1+=S  

Fig. 1. Graphs of states for the automation  2 ,2nT
 

In the sequel we will consider mainly the 
automation behavior in the region marked by some 
action before the change of this action, and omit the 
index a for the sake of abbreviation.  

Taking into account the behavior of the 
automation  in the medium  relative 

to probabilities , we obtain the equations  
2 ,2nT

(
xu

( 21,aaC

)(
,1

)(
,1

)(
1,

n
de

n
dx

n
dx uqupu +−+ += ,  1,1 −= ex , 

)(
,1

)(
,1

)(
1,

n
de

n
de

n
de uqupu +−+ += ,                        (2) 

)(
,1

)(
,1

)(
1,

n
dx

n
de

n
dx uqupu +−+ += , 1,1 −++= meex                      

and, due to the probabilistic meaning of  , the 
boundary conditions  

)(
,
n
dxu

1)(
0,0 =nu , , , , 1)(

0, =+
n

meu 0)(
0, =n

xu ∀ 0≠x me + . (3)  

 Mltiplying (2) and (3) by  and performing 
summation over all 

dz
,...2,1,0=d

)()( zU n
x

 we see that the 
generating function  of an action change 
probability is a solution of the following boundary 
value problem:  

)()()( )(
1

)(
1

)( zzUqzzUpzU n
e

n
x

n
x +− +=                                

,1,1 −= ex  
)()()( )(

1
)(
1

)( zzUqzzUpzU n
e

n
e

n
e +− += ,            (4)

                                                                                        
)()()( )(

1
)(
1

)( zzUqzzUpzU n
x

n
e

n
x +− += ,             

1,1 −++= meex , 
 

   .          (5) 1)()( )()(
0 == + zUzU n

me
n

 
From (4) with (5) taken into account we obtain  

)(
1

)(1
)()( )(

1
)( zU

zp
zp

zqzpzU n
e

x
xn

x +−
−

+= , ,1,1 −= ex              (6)                  

)(
1

)(1
)()( )(

1
)( zU

zq
zq

zpzqzU n
e

xme
xmen

x −

−+
−+

−
−

+= ,  1,1 −++= meex     (7)  

From (6) and (7) we  have 

)1(
1

])(1[)()1()(
)( 11

11
)(
1 zq

zpqzqpzpqz
zpzqzpzp

zU meemmmee

eme
n

e −
−++−
−+−

= +++

−−

−

 

)1(
1

])(1[)()1()(
)( 11

11
)(
1 zp

zpqzqpzpqz
zqzpzqzq

zU meemmmee

mem
n

e −
−++−
−+−

= +++

−−

+ . 

Substituting these expressions into (4) we obtain a 
formula for the generating function of an 
action change probability in the form  

)()( zU n
e

 

( )
emmemmee

eemmmmee
n

e zqpzqpzpqz
zpzqzqzqzpzp

zU
+++ −++−

−−+−−
= 111

)1()1()1()1(
)(  .  (8)                    

 It is not difficult to verify that the functioning of 
the automation  in the medium  is 
described by a uniform finite Markovian chain 
which is ergodic. For such automata, probabilities of 
the change of the action  are equal to one, 

while average times  before the change of the 

2 ,2nT

τ

),( 21 aaC

)(n
aσ αf

)(n
α

)
)

,
n
d
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action  are finite in any nondegenerate αf )1( ≠αa  

medium . Therefore, according to 4, the 
finite automata  are of the drawn-out type in 
each stationary random medium.  

),( 21 aa

2 ,nT
C

2

σ

 Thus the optimality of the behavior of such 
automata is excluded and the quality of their 
behavior is defined by a degree of their functioning 
expediency. 
 For the automation  2 ,2nT

( ) ( )
, (1) 1n n

eUα = =l ,
( )

( ) (1 )(1 )n e m
n e

e m m e
a a

p q
dz q p p q q p

α α

α α
α

α α

τ − −
= = < ∞

+ −l, 1
( )

z
z

=

2 ,2n

2 ,2

2≥m

dU

e

 

and therefore T  is a drawn-out automation.  
Let us now investigate the behavior of the 
automation  in the medium . For this 
we will consider the following cases.  

nT ),( 21 aaC

 1. Let , .Then 1=
α

α
ατ p

q m
n −
=

1)(  and it is 

not difficult to verify that ( ) ( )
,1 ,2
n nτ τ>l l . Therefore in 

this case the behavior of the automation  in the 

medium  is expedient.  
2 ,2nT

)2a
1=

1=

,( 1aC
e 2. If , then   and the 

behavior of the automation  is indifferent.  

= m ( ) ( )
,1 ,2 1n nτ τ= =l l

2 ,2nT

 3. For ,  m 2≥e ( )
,

1 e
n ap

qα
α

τ −
=l   and 

( )
,1
n ( )

,2
nτ τ

1p

<l l

2 ,2nT
, and the behavior of the automation 

 is inexpedient.  
 4. Let us now assume that . Then it can 
be easily shown that  

1≠= me

 a) for , 12 >+ p ( ) ( )
,1 ,2
n nτ τ>l l

2 ,2nT
 and therefore the 

behavior of the automation is expedient; 

b)  for 12+ p , ( ) ( )
,1 ,2
n n

1p = τ τ=l l  and the behavior 

of the automation 2 ,2nT  is indifferent; 

c) for 12+ p , ( ) ( )
,1 ,2
n n

1 <p τ τ<l l  and the behavior 

of the automation 2 ,2nT   is inexpedient. 
Now we will consider the behavior of infinite (with 
a countable number of states) analogues of the 
automa tion T  in the stationary random medium 

, subsets 
2 ,2n

)2a,( 1aC )2,1( =ααL

→m

, the states of which 
are equivalent.  
 Assume that  . Then, 
taking into account the probabilistic meaning of the 

value  and the structure of the infinite 

automation , for  we obtain  

∞ )1( ∞→−+= men

dxu ,

xpu
2T

d,1

dxu ,

dequ ,dxu 1, += −+ ,  ,...,2,1,0,,1 == dex   (9)          

10,0 =u , 00, =xu  0>∀x .                             (10)                        

 Multiplying (9) and (10) by dZ and performing 
summation over all ,...2,1,0=d ,  for  we 
obtain the difference equation 

)(zU x

exzqzUz)( +pzU

)

z) =

(0

U exx ,1),(( 1 =−    (11) 

with the boundary condition  
1=zU .                                              (12)                   

From (11) with (12) taken into account we obtain  

exzU
pz
pzqzpz(=zU e

x

x ,1),())( =+x)
1

(1
−
−

   (13) 

From this we finally get  

11
1(
−
−
z

)1(

)) ++
= ee

ee

zpq
zppz(e zU

,

.                 (14) 

From (14) we find 
1== ee Uασ , 

2,1,1
=∞ α

q,τ e

2 e

<
−

αα

α
e

e

p
p

), 21 aa

2,e

=α

1,

.  

Therefore the infinite automation T2 is of the 
drawn-out type and by Definition 5 its behavior in 
the medium  is expedient since for 

 , 
(C

1 aa > σσ =  and 2,1, ee ττ > . 
 Passing to the limit in (8) as , we obtain 
       

∞→m

 . )()(lim zUz em
=

→

)(U n
e∞

Thus we find, Thus the sequence of finite 

automata { }2 ,nT 2 m

∞

1=
  converges to the infinite 

automation T2 and therefore the asymptotic behavior 
of the finite automation  is defined as in │3│,  
by the behavior of  the corresponding infinite 
automation . Thus the sequence of finite automata 
is of the drawn-out type.  

2 ,2nT

2T

 Now  let  us  assume that )1( ∞→−+=∞→ mene  
Then, numerating the automation states in reverse 
order, it is not difficult to verify that the generating 
function of an action change probability is a solution 
of the boundary value problem (11),(12) if we 
replace in it  by , e m p  by and  by q q p . The 
resulting solution has the form  

11

1(

−
=

)
)(

++

−
mm

mm

zqpz

zqzq
zmU . 

Whence we find  
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1, =ασm ,  

2,1,
.

1
1

−
=

= αα

α
m

m

qp
q)(

, =∞<= ατ α
z

m
m dz

zdU
 and   

i.e., th

)()(lim )( zUzU m
n
ee

=
∞→

, 

e sequence of finite automata 

{ }2 ,2 1n m
T

∞

=
converges to the corresponding infinite 

automation
m C

 , the behavior of which in the 2T
amediu ), 21 a  is inexpedient. 

 If ∞→e   and 
(

∞→m , then the infinite 
automation will forever remain in the subset of 
states where it was at the initial m ment of time. In 
that case, the

o
 is of the drawn-

nd  
    

lity prov

 infinite automation 2T
in type a

0,0)()(lim )( >∀== xzUzU n . 
∞→
∞→ ee

m
e

This equa es that the sequence of finite 

automata{ }2 ,2 , 1n e m
T

∞

=
  also conve es to the 

te tomation 2T  for which 
0, =α

rg

correspondin aug infini
σ x , ∞=ατ ,x , α =1,2 and, acco  

Definition 5, it

rding to

 
the automation.  

ses of length m or a series 

of f

recurrence time obtained by 
the 

 does not 
ossess asymptotically optimal behavior.  

 self-reproducing 

ling of biological systems, 

i Mat. Nauk, Vol. 

eory of adaptive systems, 

ry 
nd its applications, Vol. 1. Mir, Moscow, 1967.  

 

ailures of length ℓ”.  
The formula obtained for the generating 

function of an action change probability of the 
considered finite automation completely coincides 
with the well-known formula for a generating 
function of the event 

recurrent method.  
The expedient behavior of a finite automation 

depends both on the parameters of the automation 
and on those of the medium, while the sequence of 
finite automata of the proposed structure
p
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 4 Conclusion 
The proposed structure of a finite automation is 

the finitely automated realization of  the well-known 
statistical rule from the recurrent event theory: 
either a series of succes
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