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Abstract: The maximum clique problem is known to be a typical NP-complete problem, and hence it is believed
to be impossible to solve it in polynomial-time. So, it is important to know a reasonable sufficient condition under
which the maximum clique problem can be proved to be polynomial-time solvable. In this paper, given a graph
of � vertices and whose maximum degree is �, we prove that if � is less than or equal to ������ �� � (� � �: a
constant), then the maximum clique problem is solvable in the polynomial time of �	����
. The proof is based
on a very simple algorithm which is obtained from an algorithm CLIQUES that generates all maximal cliques in
a depth-first way in �	����
-time (which is published in Theoretical Computer Science 363, 2006, as “The worst-
case time complexity for generating all maximal cliques and computational experiments” by E. Tomita et al.). The
proof itself is very simple.
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1 Introduction

It is generally believed that any NP-complete prob-
lem cannot be solved in polynomial-time, and it is
well known that if any one of the NP-complete prob-
lems could be solved in polynomial-time, then all NP-
complete problems would become polynomial-time
solvable. Considerable effort has been expended to
find reasonable conditions under which some NP-
complete problems can be proved to be polynomial-
time solvable [13].

The maximum clique problem [13], [4], or the
complementary problem, the maximum independent
set problem [13], is one of the original 21 problems
shown to be NP-complete by R. Karp [18]. Much
work has been done on this problem, theoretically and
experimentally with many applications, see, e.g., [13],
[4], [16]. The maximum clique problem is known to
be polynomial-time solvable for some special graphs
such as planar graphs [13], chordal graphs [9], com-
parability graphs [7], circle graphs [10], and circular-
arc graphs [11], [2]. The maximum independent set
problem is also known to be polynomial-time solvable
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for some special graphs such as bipartite graphs [21],
chordal graphs [9], circle graphs [10], and circular-
arc graphs [11], [19], comparability graphs [12], and
claw-free graphs [20].

For general graphs, when the maximum degree
� is a constant, then the size of a maximum clique
is bounded above by � � � and hence the maximum
clique problem is polynomial-time solvable [13]. The
maximum clique decision problem for � � � is solv-
able in �	�����
-time [1], where � is the number of
edges and the decision problem is whether there ex-
ists a maximum clique whose size is at least k (see
(5) in Section 2 of this paper). If � is at most 2, then
the maximum independent set problem is polynomial-
time solvable [13].

Experience shows that a maximum clique can be
found easily if the edge density of graphs is sparse,
see e.g., [17] (for the complementary problem), [27],
[29]. However, as yet, a nontrivial, exact condition
is not known for a general graph under which the
maximum clique problem can be proved to be solv-
able in polynomial-time. Such conditions allowing an
exact solution in polynomial-time are important be-
cause satisfactory approximate solutions are difficult
to achieve [14]. Theoretical time-complexity anal-
ysis of the exponential order of the number of ver-
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tices for the maximum clique problem, or the max-
imum independent set problem includes [26], [15],
[23], [25], [3], [24], [6], [8], [22]. Among them, an
algorithm MAXCLIQUE of �	��������
-time in [25]
is simple and runs fast in practice, but the theoretical
time-complexity analysis is very complicated.

In this paper, we prove that the maximum clique
problem is polynomial-time solvable for a general
graph if the maximum degree � of the graph in ques-
tion is in a logarithmic-order of the number � of ver-
tices of the graph. More specifically, if � is less than
or equal to ������ �� � (� � �: a constant), then
the maximum clique problem is solvable in �	����
-
time.

Prior to this paper, we proved that all maximal
cliques can be generated in �	����
-time, which is
optimal as a function of �. The result was proved
on an algorithm CLIQUES that generates all maximal
cliques, in which pruning methods are employed, as
in the Bron-Kerbosch algorithm [5].

The present polynomial-time-complexity result is
based on an algorithm MCP� for finding a maxi-
mum clique, which is a slightly simplified version of
CLIQUES. MCP� is similar to our previous algorithm
MAXCLIQUE, but the time-complexity analysis is
very simple.

2 Definitions and Notation

(1) We are concerned with a simple undirected graph
� � 	�	

 with a finite set � of vertices and a finite
set 
 of unordered pairs 	�	 �
 of distinct vertices,
called edges. A pair of vertices � and � are said to be
adjacent if 	�	 �
 � 
.

For a set � , �� � denotes the number of elements
in � .
(2) For a vertex � � � , let � 	�
 be the set of all
vertices that are adjacent to � in � � 	�	

, i.e.,
� 	�
 � �� � � � 	�	 �
 � 
� ( �� � ).

The number of vertices in � 	�
 is called the degree
of �.
(3) For a subset  � � of vertices, �	 
 �

		
	 

 with 
	 
 � �	�	 �
 � 
 � �	 � ��
is called a subgraph of � � 	�	

 induced by  .
(4) Given a subset � � � of vertices, the induced
subgraph �	�
 is said to be a clique if 	�	 �
 � 
 for
all �	 � � � 	� �� �
. In this case, we may simply
state that � is a clique. If a clique is not a proper
subgraph of another clique, then it is called a maximal

procedure MCP�(�)
begin
������ � � 	�
������ ���� � 	�
EXPAND(� )

end �of MCP��

procedure EXPAND(����)
begin
if ���� � 	 then

if ��� � ������
then ���� � � fi

else � �a vertex with the maximum degree
in the subgraph induced by ����;

� � � 
 ����
����� � � 	�
 � �����
EXPAND(�����)
� � �� ����

��� � ����� ��� � ������

for � � � to �
���� � �

do
�� �the first vertex in 
����
������ � � 	�� 
 � 	
��� 
 �����
�

� � � 
 �����
EXPAND(������)�
� � �� �����

��� � 
��� � ����
od

end �of EXPAND�

Fig.1 Algorithm MCP�

clique.
(5) The Maximum Clique Problem is defined here to
be such a Decision Problem that answers, given a
graph � and a positive integer �, whether the num-
ber of vertices of the maximum clique of � is at least
�.

3 Algorithm MCP�

Our proof of the main result of polynomial-time solv-
ability is based on a simple algorithm MCP� that finds
a maximum clique. MCP� is a modified version of an
algorithm CLIQUES [28] that generates all maximal
cliques in a depth-first way in �	����
-time. Hence,
MCP� is simpler than CLIQUES because the former
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has to output only the maximum among all the maxi-
mal cliques.

3.1 A Basic Algorithm

Our algorithm finds maximal cliques of increasing
size, in a stepwise manner, until it arrives at a max-
imum clique. More precisely, we maintain global
variables � and ��	
, where � consists of vertices
of a current clique, and ��	
 consists of vertices
of the largest clique found so far, respectively. Let
���� � � consist of vertices (candidates) that may
be added to �. We begin the algorithm by letting
� � 	, ��	
 � 	, and ���� � � (the set of
all vertices). We select a certain vertex � from ����

and add � to � (� � � 
 ���). Then we compute
����� � ���� � � 	�
 as a new set of candidate
vertices. This procedure (EXPAND) is applied recur-
sively, while ����� �� 	.

When ����� � 	 is reached, � constitutes a
maximal clique. If � is maximal and ��� � ���	
�
holds, ��	
 is replaced by �. We then backtrack
by removing � from � and ����. We select a new
vertex � from the resulting ���� and continue the
same procedure until ���� � 	. This is a well
known basic algorithm for finding a maximum clique
(see, e.g., [29]). In general, when a current clique is
� � ���	 ��	 � � � 	 ��� then

���� � � � � 	��
 � � 	��
 � � � � � � 	��
.

3.2 Exclusion of Adjacent Vertices

In this basic algorithm, first we choose a vertex �
with the maximum degree in the subgraph induced by
����. Then, we get a set ����� of vertices that
are adjacent to �, and a set 
��� of vertices that are
not adjacent to �, i.e.,

����� � � 	�
 � ����	 and

��� � 	����� ���
� �����.
Then, we consider a set ��� 
 
��� 
 �����

arranged in this order from left to right to be a newly
ordered set ���� of vertices. Note that for any
maximal clique � in �����, we always have a
������ clique � 
 ��� because every vertex in � �
����� � � 	�
����� is adjacent to �. Therefore,
when all the expansions from vertex � are made to
search for a maximum clique, we can exclude search-
ing from vertices in �����. Such a pruning tech-
nique is also used in [5], [28], and we call it an Exclu-
sion of Adjacent Vertices.

3.3 Exclusion of the Last Vertex in ����

As described in 3.2, for the set ���� � ��� 


��� 
 ����� of vertices, we have to expand
searching only from ��� 

���. We let


��� � ���	 ��	 ���	 �������.
and we apply searching from left to right step by step.
In this case, we need not expand searching from the
last vertex ������. The reason is as follows. If the
last vertex ������ were to be expanded, it should be
after all of �, ��	 ��	 ���	 �������� have been deleted.
Then, we have
�����������

� � 	������ �
 � 	�������� 
 �����


� � 	������ �
 � �����

� �����.
Thus, the expansion from ������ cannot find a larger
clique than that in �����.

The process of searching for a maximum clique
by MCP� is represented by a search forest, i.e., a col-
lection of search trees [28]. (See, e.g., Fig. 3 in [28].)
Here, for a vertex �, every vertex in � 	�
 is a child of
� in the search forest.

4 The Worst Case Time-Complexity

Given� � 	�	

 with � �� 	, we evaluate the worst-
case running time of the algorithm MCP�. This is
equivalent to evaluating the worst-case running time
of EXPAND	� 
.

Let � 	�
 � � 	������
 be the worst-case run-
ning time of EXPAND(����) when ������ � �.

Let us consider a non-recursive proce-
dure EXPAND�	����
 that is obtained from
EXPAND(����) by replacing recursive calls
EXPAND(�����) and EXPAND(������) with
EXPAND(	) and EXPAND(	), respectively. The run-
ning time of EXPAND�(����) when ������ � �

can be made to be �	��
 as in [28], and so we
assume that the running time of EXPAND�(����)
is bounded above by  �� �  ������� for some
constant  .

Then, we have the following lemma.

Lemma 1. For a subgraph induced by a set ����
of vertices, the worst-case running time � 	�
 �

� 	������
 of EXPAND(����) is as follows:
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� 	������
  � 	�������


�
��������

�	� � 	������� �
� ������
�,

where � is a vertex with the maximum degree in the
subgraph induced by ����, ����� � � 	�
 �
����, 
��� � ���� � ��� � ����� �

���	 ��	 ���	 �������, and ������ � � 	��
 �
		
��� � ���	 ��	 ���	 �����
 
 �����
.

Proof. This is obvious from the procedure
EXPAND(����) and the definition of the constant
 . �

To prove the main theorem, we prove the follow-
ing important lemmas with regard to the maximum de-
gree � of the graph in question.

Lemma 2. Consider a subgraph induced by
a set ���� of vertices. Let the maximum de-
gree of the subgraph be � � �, and let  � �

��� . Then the worst case time complexities of
EXPAND(�����) and EXPAND(������) are as
follows (where �������  �	 ������� �  �) :

� 	�������
   �������
�	���
�,
� 	������� �
 

�������
�	���
�

	�  �  �
���� � �
.

Proof. The proof is by induction on the maximum
degree �.

To begin with, we consider the case where � �

�. Then, these inequalities simply hold, because
����� � 		 ������ � 	.

Next, we assume that the following inequalities
hold for all nonnegative integers � that are less than
or equal to some fixed value:

� 	�������
 
�������
�	���
�,

� 	������� �
 
�������
�	���
�

	�  �  �
���� � �
,

and consider the case where the maximum degree of
the subgraph induced by ���� is 	� � �
. Let �
be the vertex in ���� with the maximum degree
	� � �
, and let ����� � ���� � � 	�
, then
������� � �� � and the maximum degree of chil-
dren of vertex � in the search forest is less than or
equal to �. Then, the induction hypothesis applies for
�����. We let the maximum degree of children of

vertex � be �� � (�  �  �).

From Lemma 1 and the induction hypothesis to
�����, we can prove the following:

� 	�������


 		���
�	���
 � �
 �  �������
����		��
�
 � �
�� 	���
�

 � �������
����	� � �
� �  	� � �
�

!  �������
�	 �
��������

� �
������������


	� � �
�

  �������
�	 �
��������

� �
���
	� � �
�.

We have that �
��������

! ������ for all � � �, then
� 	�������


!  �������
�	������ � �����
	� � �
�

�  �������
� � ������ � 	� � �
�

!  �������
� � ������
	� � �
�

�  �������
����		� � �
 � �
�.

In the same way as above, we can prove that

� 	������� �


 �������
����		���
��
�

	�  �  �
���� � �
.

Thus, the objective inequalities also hold for �� �.
Therefore, the objective inequalities hold for all

� � �.
Hence, the result. �

Lemma 3. Consider a graph with � vertices whose
maximum degree is � � �. Let us define some
constants as � � � ���� , � �� � ��� � ����, and
� ��� � � � � � �� � � .

The worst-case time-complexity � 	�
 �

� 	������
 of EXPAND(����) is as follows:
� 	�


  ������������.

Proof. From Lemma 1, we have
� 	�


 � 	�������
 � � 	������� �
 �

� 	������� �
 � ���� � 	�����������
����
 �  �

�.
Then, by Lemma 2, we have

� 	�


 	���� �
 �  �������
�	� � �
� �  ��

 	�� �
 �  �������
�	� � �
� �  ��.

Here, from the definition of the constant ��� �

��� � ����, we can easily prove that
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	� � �
� !  ����������

holds for all � where �  �  �� ��

Therefore,
� 	�


 	�� �
 �  �������
� �  ���������� �  ��

! �� � ��������
��������� � ��

� �� �� �������� � ��

� ���������	 � �� � �
�������




 	 � �� �  
���������

�  ������������. �

Now, we have the main result of this paper.

Theorem. Given a graph with � vertices, if the
maximum degree �  ������ �� � (� � �: a con-
stant), then the maximum clique problem is solvable
in �	����
-time.

Proof. When the inequality �  ������ �� � holds
in Lemma 3, we have the following:

� 	�
   �������������
�� �� ���

!  ����� � �� �  �������.

Therefore, � 	�
 � �	����
.
This result specifies an upper bound on the com-

plexity of the NP-hard optimization problem of find-
ing a maximum clique. The corresponding result for
the NP-complete decision problem of the Maximum
Clique Problem follows directly. �

In particular, we have the following property.

Corollary. The maximum clique problem is solvable
in �	��
-time when � is bounded above by a con-
stant.

Proof. This is a direct consequence of Lemma 3. �

5 Concluding remarks

When the prerequisite condition in the theorem is
satisfied, the edge density of the graph is at most
	������ �� �
"	���
. Thus, the theorem matches the
experience as in [17], [27], [29].

As for polynomial-time solvability, exhaustive
search could reach a similar conclusion as long as the
maximum degree is a logarithmic order of the num-
ber of vertices. However, to the best of the authors’

knowledge, no such explicit quantitative analysis re-
sult is ever reported. The constant 2.493 in this paper
can be made larger by using other results for finding a
maximum clique or a maximum independent set, but
it is to be noticed that not only our present algorithm
but also the proof of its time-complexity are straight-
forward and very simple.

The algorithm MCP� is considered to be rein-
forced by using the techniques in [29], [30] to im-
prove the time-complexity of MCP�. Our present
technique is expected to be a new basis for better time-
complexity analysis of the maximum clique problem
of general graphs.
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