
Polynomial-Time Solvability of the Maximum Clique Problem

ETSUJI TOMITA�, HIROAKI NAKANISHI
Advanced Algorithms Research Laboratory, and

Department of Information and Communication Engineering,
The University of Electro-Communications

Chofugaoka 1-5-1, Chofu, Tokyo 182-8585, JAPAN
�tomita, hironaka�@ice.uec.ac.jp

Abstract: The maximum clique problem is known to be a typical NP-complete problem, and hence it is believed
to be impossible to solve it in polynomial-time. So, it is important to know a reasonable sufficient condition under
which the maximum clique problem can be proved to be polynomial-time solvable. In this paper, given a graph
of � vertices and whose maximum degree is �, we prove that if � is less than or equal to ������ �� � (� � �: a
constant), then the maximum clique problem is solvable in the polynomial time of �	����
. The proof is based
on a very simple algorithm which is obtained from an algorithm CLIQUES that generates all maximal cliques in
a depth-first way in �	����
-time (which is published in Theoretical Computer Science 363, 2006, as “The worst-
case time complexity for generating all maximal cliques and computational experiments” by E. Tomita et al.). The
proof itself is very simple.

Key–Words: Maximum clique, NP-complete, Time-complexity, Polynomial-time, Graph, Algorithm

1 Introduction

It is generally believed that any NP-complete prob-
lem cannot be solved in polynomial-time, and it is
well known that if any one of the NP-complete prob-
lems could be solved in polynomial-time, then all NP-
complete problems would become polynomial-time
solvable. Considerable effort has been expended to
find reasonable conditions under which some NP-
complete problems can be proved to be polynomial-
time solvable [13].

The maximum clique problem [13], [4], or the
complementary problem, the maximum independent
set problem [13], is one of the original 21 problems
shown to be NP-complete by R. Karp [18]. Much
work has been done on this problem, theoretically and
experimentally with many applications, see, e.g., [13],
[4], [16]. The maximum clique problem is known to
be polynomial-time solvable for some special graphs
such as planar graphs [13], chordal graphs [9], com-
parability graphs [7], circle graphs [10], and circular-
arc graphs [11], [2]. The maximum independent set
problem is also known to be polynomial-time solvable

�Corresponding author. Jointly with Research and Develop-
ment Initiative, Chuo University, Kasuga 1-13-27, Bunkyo-ku,
Tokyo 112-8551, JAPAN.

for some special graphs such as bipartite graphs [21],
chordal graphs [9], circle graphs [10], and circular-
arc graphs [11], [19], comparability graphs [12], and
claw-free graphs [20].

For general graphs, when the maximum degree
� is a constant, then the size of a maximum clique
is bounded above by � � � and hence the maximum
clique problem is polynomial-time solvable [13]. The
maximum clique decision problem for � � � is solv-
able in �	�����
-time [1], where � is the number of
edges and the decision problem is whether there ex-
ists a maximum clique whose size is at least k (see
(5) in Section 2 of this paper). If � is at most 2, then
the maximum independent set problem is polynomial-
time solvable [13].

Experience shows that a maximum clique can be
found easily if the edge density of graphs is sparse,
see e.g., [17] (for the complementary problem), [27],
[29]. However, as yet, a nontrivial, exact condition
is not known for a general graph under which the
maximum clique problem can be proved to be solv-
able in polynomial-time. Such conditions allowing an
exact solution in polynomial-time are important be-
cause satisfactory approximate solutions are difficult
to achieve [14]. Theoretical time-complexity anal-
ysis of the exponential order of the number of ver-

COMPUTING and COMPUTATIONAL INTELLIGENCE

ISSN: 1790-5117 203 ISBN: 978-960-474-088-8

tices for the maximum clique problem, or the max-
imum independent set problem includes [26], [15],
[23], [25], [3], [24], [6], [8], [22]. Among them, an
algorithm MAXCLIQUE of �	��������
-time in [25]
is simple and runs fast in practice, but the theoretical
time-complexity analysis is very complicated.

In this paper, we prove that the maximum clique
problem is polynomial-time solvable for a general
graph if the maximum degree � of the graph in ques-
tion is in a logarithmic-order of the number � of ver-
tices of the graph. More specifically, if � is less than
or equal to ������ �� � (� � �: a constant), then
the maximum clique problem is solvable in �	����
-
time.

Prior to this paper, we proved that all maximal
cliques can be generated in �	����
-time, which is
optimal as a function of �. The result was proved
on an algorithm CLIQUES that generates all maximal
cliques, in which pruning methods are employed, as
in the Bron-Kerbosch algorithm [5].

The present polynomial-time-complexity result is
based on an algorithm MCP� for finding a maxi-
mum clique, which is a slightly simplified version of
CLIQUES. MCP� is similar to our previous algorithm
MAXCLIQUE, but the time-complexity analysis is
very simple.

2 Definitions and Notation

(1) We are concerned with a simple undirected graph
� � 	�	

 with a finite set � of vertices and a finite
set
 of unordered pairs 	�	 �
 of distinct vertices,
called edges. A pair of vertices � and � are said to be
adjacent if 	�	 �
 �
.

For a set � , �� � denotes the number of elements
in � .
(2) For a vertex � � � , let � 	�
 be the set of all
vertices that are adjacent to � in � � 	�	

, i.e.,
� 	�
 � �� � � � 	�	 �
 �
� (�� �).

The number of vertices in � 	�
 is called the degree
of �.
(3) For a subset � � of vertices, �	
 �

		
	

 with
	
 � �	�	 �
 �
 � �	 � ��
is called a subgraph of � � 	�	

 induced by .
(4) Given a subset � � � of vertices, the induced
subgraph �	�
 is said to be a clique if 	�	 �
 �
 for
all �	 � � � 	� �� �
. In this case, we may simply
state that � is a clique. If a clique is not a proper
subgraph of another clique, then it is called a maximal

procedure MCP�(�)
begin
������ � � 	�
������ ���� � 	�
EXPAND(�)

end �of MCP��

procedure EXPAND(����)
begin
if ���� � 	 then

if ��� � ������
then ���� � � fi

else � �a vertex with the maximum degree
in the subgraph induced by ����;

� � �
 ����
����� � � 	�
 � �����
EXPAND(�����)
� � �� ����

��� � ����� ��� � ������

for � � � to �
���� � �

do
�� �the first vertex in
����
������ � � 	��
 � 	
���
 �����
�

� � �
 �����
EXPAND(������)�
� � �� �����

��� �
��� � ����
od

end �of EXPAND�

Fig.1 Algorithm MCP�

clique.
(5) The Maximum Clique Problem is defined here to
be such a Decision Problem that answers, given a
graph � and a positive integer �, whether the num-
ber of vertices of the maximum clique of � is at least
�.

3 Algorithm MCP�

Our proof of the main result of polynomial-time solv-
ability is based on a simple algorithm MCP� that finds
a maximum clique. MCP� is a modified version of an
algorithm CLIQUES [28] that generates all maximal
cliques in a depth-first way in �	����
-time. Hence,
MCP� is simpler than CLIQUES because the former

COMPUTING and COMPUTATIONAL INTELLIGENCE

ISSN: 1790-5117 204 ISBN: 978-960-474-088-8

has to output only the maximum among all the maxi-
mal cliques.

3.1 A Basic Algorithm

Our algorithm finds maximal cliques of increasing
size, in a stepwise manner, until it arrives at a max-
imum clique. More precisely, we maintain global
variables � and ��	
, where � consists of vertices
of a current clique, and ��	
 consists of vertices
of the largest clique found so far, respectively. Let
���� � � consist of vertices (candidates) that may
be added to �. We begin the algorithm by letting
� � 	, ��	
 � 	, and ���� � � (the set of
all vertices). We select a certain vertex � from ����

and add � to � (� � �
 ���). Then we compute
����� � ���� � � 	�
 as a new set of candidate
vertices. This procedure (EXPAND) is applied recur-
sively, while ����� �� 	.

When ����� � 	 is reached, � constitutes a
maximal clique. If � is maximal and ��� � ���	
�
holds, ��	
 is replaced by �. We then backtrack
by removing � from � and ����. We select a new
vertex � from the resulting ���� and continue the
same procedure until ���� � 	. This is a well
known basic algorithm for finding a maximum clique
(see, e.g., [29]). In general, when a current clique is
� � ���	 ��	 � � � 	 ��� then

���� � � � � 	��
 � � 	��
 � � � � � � 	��
.

3.2 Exclusion of Adjacent Vertices

In this basic algorithm, first we choose a vertex �
with the maximum degree in the subgraph induced by
����. Then, we get a set ����� of vertices that
are adjacent to �, and a set
��� of vertices that are
not adjacent to �, i.e.,

����� � � 	�
 � ����	 and

��� � 	����� ���
� �����.
Then, we consider a set ���

���
 �����

arranged in this order from left to right to be a newly
ordered set ���� of vertices. Note that for any
maximal clique � in �����, we always have a
������ clique �
 ��� because every vertex in � �
����� � � 	�
����� is adjacent to �. Therefore,
when all the expansions from vertex � are made to
search for a maximum clique, we can exclude search-
ing from vertices in �����. Such a pruning tech-
nique is also used in [5], [28], and we call it an Exclu-
sion of Adjacent Vertices.

3.3 Exclusion of the Last Vertex in ����

As described in 3.2, for the set ���� � ���

���
 ����� of vertices, we have to expand
searching only from ���

���. We let

��� � ���	 ��	 ���	 �������.
and we apply searching from left to right step by step.
In this case, we need not expand searching from the
last vertex ������. The reason is as follows. If the
last vertex ������ were to be expanded, it should be
after all of �, ��	 ��	 ���	 �������� have been deleted.
Then, we have
�����������

� � 	������ �
 � 	��������
 �����

� � 	������ �
 � �����

� �����.
Thus, the expansion from ������ cannot find a larger
clique than that in �����.

The process of searching for a maximum clique
by MCP� is represented by a search forest, i.e., a col-
lection of search trees [28]. (See, e.g., Fig. 3 in [28].)
Here, for a vertex �, every vertex in � 	�
 is a child of
� in the search forest.

4 The Worst Case Time-Complexity

Given� � 	�	

 with � �� 	, we evaluate the worst-
case running time of the algorithm MCP�. This is
equivalent to evaluating the worst-case running time
of EXPAND	�
.

Let � 	�
 � � 	������
 be the worst-case run-
ning time of EXPAND(����) when ������ � �.

Let us consider a non-recursive proce-
dure EXPAND�	����
 that is obtained from
EXPAND(����) by replacing recursive calls
EXPAND(�����) and EXPAND(������) with
EXPAND() and EXPAND(), respectively. The run-
ning time of EXPAND�(����) when ������ � �

can be made to be �	��
 as in [28], and so we
assume that the running time of EXPAND�(����)
is bounded above by �� � ������� for some
constant .

Then, we have the following lemma.

Lemma 1. For a subgraph induced by a set ����
of vertices, the worst-case running time � 	�
 �

� 	������
 of EXPAND(����) is as follows:

COMPUTING and COMPUTATIONAL INTELLIGENCE

ISSN: 1790-5117 205 ISBN: 978-960-474-088-8

� 	������
 � 	�������

�
��������

�	� � 	������� �
� ������
�,

where � is a vertex with the maximum degree in the
subgraph induced by ����, ����� � � 	�
 �
����,
��� � ���� � ��� � ����� �

���	 ��	 ���	 �������, and ������ � � 	��
 �
		
��� � ���	 ��	 ���	 �����

 �����
.

Proof. This is obvious from the procedure
EXPAND(����) and the definition of the constant
 . �

To prove the main theorem, we prove the follow-
ing important lemmas with regard to the maximum de-
gree � of the graph in question.

Lemma 2. Consider a subgraph induced by
a set ���� of vertices. Let the maximum de-
gree of the subgraph be � � �, and let � �

��� . Then the worst case time complexities of
EXPAND(�����) and EXPAND(������) are as
follows (where ������� �	 ������� � �) :

� 	�������
 �������
�	���
�,
� 	������� �

�������
�	���
�

	� � �
���� � �
.

Proof. The proof is by induction on the maximum
degree �.

To begin with, we consider the case where � �

�. Then, these inequalities simply hold, because
����� � 		 ������ � 	.

Next, we assume that the following inequalities
hold for all nonnegative integers � that are less than
or equal to some fixed value:

� 	�������

�������
�	���
�,

� 	������� �

�������
�	���
�

	� � �
���� � �
,

and consider the case where the maximum degree of
the subgraph induced by ���� is 	� � �
. Let �
be the vertex in ���� with the maximum degree
	� � �
, and let ����� � ���� � � 	�
, then
������� � �� � and the maximum degree of chil-
dren of vertex � in the search forest is less than or
equal to �. Then, the induction hypothesis applies for
�����. We let the maximum degree of children of

vertex � be �� � (� � �).

From Lemma 1 and the induction hypothesis to
�����, we can prove the following:

� 	�������

 		���
�	���
 � �
 � �������
����		��
�
 � �
�� 	���
�

 � �������
����	� � �
� � 	� � �
�

! �������
�	 �
��������

� �
������������

	� � �
�

 �������
�	 �
��������

� �
���
	� � �
�.

We have that �
��������

! ������ for all � � �, then
� 	�������

! �������
�	������ � �����
	� � �
�

� �������
� � ������ � 	� � �
�

! �������
� � ������
	� � �
�

� �������
����		� � �
 � �
�.

In the same way as above, we can prove that

� 	������� �

 �������
����		���
��
�

	� � �
���� � �
.

Thus, the objective inequalities also hold for �� �.
Therefore, the objective inequalities hold for all

� � �.
Hence, the result. �

Lemma 3. Consider a graph with � vertices whose
maximum degree is � � �. Let us define some
constants as � � � ���� , � �� � ��� � ����, and
� ��� � � � � � �� � � .

The worst-case time-complexity � 	�
 �

� 	������
 of EXPAND(����) is as follows:
� 	�

 ������������.

Proof. From Lemma 1, we have
� 	�

 � 	�������
 � � 	������� �
 �

� 	������� �
 � ���� � 	�����������
����
 � �

�.
Then, by Lemma 2, we have

� 	�

 	���� �
 � �������
�	� � �
� � ��

 	�� �
 � �������
�	� � �
� � ��.

Here, from the definition of the constant ��� �

��� � ����, we can easily prove that

COMPUTING and COMPUTATIONAL INTELLIGENCE

ISSN: 1790-5117 206 ISBN: 978-960-474-088-8

	� � �
� ! ����������

holds for all � where � � �� ��

Therefore,
� 	�

 	�� �
 � �������
� � ���������� � ��

! �� � ��������
��������� � ��

� �� �� �������� � ��

� ���������	 � �� � �
�������

 	 � �� �
���������

� ������������. �

Now, we have the main result of this paper.

Theorem. Given a graph with � vertices, if the
maximum degree � ������ �� � (� � �: a con-
stant), then the maximum clique problem is solvable
in �	����
-time.

Proof. When the inequality � ������ �� � holds
in Lemma 3, we have the following:

� 	�
 �������������
�� �� ���

! ����� � �� � �������.

Therefore, � 	�
 � �	����
.
This result specifies an upper bound on the com-

plexity of the NP-hard optimization problem of find-
ing a maximum clique. The corresponding result for
the NP-complete decision problem of the Maximum
Clique Problem follows directly. �

In particular, we have the following property.

Corollary. The maximum clique problem is solvable
in �	��
-time when � is bounded above by a con-
stant.

Proof. This is a direct consequence of Lemma 3. �

5 Concluding remarks

When the prerequisite condition in the theorem is
satisfied, the edge density of the graph is at most
	������ �� �
"	���
. Thus, the theorem matches the
experience as in [17], [27], [29].

As for polynomial-time solvability, exhaustive
search could reach a similar conclusion as long as the
maximum degree is a logarithmic order of the num-
ber of vertices. However, to the best of the authors’

knowledge, no such explicit quantitative analysis re-
sult is ever reported. The constant 2.493 in this paper
can be made larger by using other results for finding a
maximum clique or a maximum independent set, but
it is to be noticed that not only our present algorithm
but also the proof of its time-complexity are straight-
forward and very simple.

The algorithm MCP� is considered to be rein-
forced by using the techniques in [29], [30] to im-
prove the time-complexity of MCP�. Our present
technique is expected to be a new basis for better time-
complexity analysis of the maximum clique problem
of general graphs.

Acknowledgements:

The authors are grateful to Hiro Itoh and Eric Harley
for their quite helpful suggestions and comments.
They also wish to express their thanks to Takahiro
Tamada who engaged in extensive computational ex-
periments of some related algorithms. This work was
supported in part by Grants-in-Aid for Scientific Re-
search Nos. 16300001 and 19500010 from the Min-
istry of Education, Culture, Sports, Science and Tech-
nology, Japan, and Special Grant for the Strategic In-
formation and Communications R&D Promotion Pro-
gramme (SCOPE) Project by the Ministry of Inter-
nal Affairs and Communications, Japan. The authors
were also given a grant by the Funai Foundation for
Information Technology.

References:

[1] N. Alon, R. Yuster, U. Zwick, Finding and
counting given length cycles, Algorithmica, 17,
1977, pp.209-223.

[2] B. K. Bhattacharya, An �	� � � ��� �
 al-
gorithm for the maximum-clique problem in
circular-arc graphs, J. of Algorithms, 25, 1997,
pp.336-358.

[3] R. Biegel, Finding maximum independent sets
in sparse and general graphs, Proc. Symp. on
Discrete Algorithms, 1999, pp.856-857.

[4] I. M. Bomze, M. Budinich, P. M. Pardalos, and
M. Pelillo, The maximum clique problem, in:
D.-Z. Du and P. M. Pardalos (Eds.). Handbook
of Combinatorial Optimization, Supplement vol.
A, Kluwer Academic Publishers, 1999, pp.1-74.

COMPUTING and COMPUTATIONAL INTELLIGENCE

ISSN: 1790-5117 207 ISBN: 978-960-474-088-8

[5] C. Bron, J. Kerbosch, Algorithm 457, finding
all cliques of an undirected graph, Comm. ACM,
16, 1973, pp.575-577.

[6] J. Chen, I. A. Kanji, G. Xia, Labeled search
trees and amortized analysis: improved upper
bounds for NP-hard problems, Algorithmica, 43,
2005, pp.245-273.

[7] S. Even, A. Pnueli, A. Lempel: Permutation
graphs and transitive graphs, J. Assoc. for Com-
put. Mach. , 19, 1972, pp.400-410.

[8] F. V. Fomin, F. Grandoni, D. Kratsch, Mea-
sure and conquer: A simple �	�������
 indepen-
dent set algorithm, Proc. Symp. on Discrete Al-
gorithms, 2006, pp.18-25.

[9] F. Gavril, Algorithms for minimum coloring,
maximum clique, minimum covering by cliques,
and maximum independent set of a chordal
graph, SIAM J. on Computing, 1, 1972, pp.180-
187.

[10] F. Gavril, Algorithms for a maximum clique and
a maximum independent set of a circle graph,
Networks, 3, 1973, pp.261-273.

[11] F. Gavril, Algorithms on circular-arc graphs,
Networks, 4, 1974, pp.357-369.

[12] F. Gavril, Some NP-complete problems on
graphs, Proc. Conf. on Information Sciences and
Systems, 1977, pp.91-95.

[13] M. R. Garey, D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman and Company,
New York, NY, USA, 1979.

[14] J. Håstad, Clique is hard to approximate within
����, Acta Mathematica, 182, 1999, pp.105-
142.

[15] T. Jian, An �	�������
 algorithm for solving
maximum independent set problem, IEEE Trans.
on Computers, 35, 1986, pp.847-851.

[16] D. S. Johnson, M. A. Trick (Eds), Cliques, Col-
oring, and Satisfiability, DIMACS Series in Disc.
Math. and Theoret. Comput. Sci., vol. 26, Amer-
ican Math. Soc., 1996.

[17] D. S. Johnson, M. Szegedy, What are the least
tractable instances of max independent set, Proc.
Symp. on Discrete Algorithms, 1999, pp.927-
928.

[18] R. Karp, Reducibility among combinatorial
problems, in R. E. Miller, J. W. Thatcher (Eds.),
Proc. Complexity of Computer Computations,
Plenum Press, New York, 1972, pp.85-103.

[19] S. Masuda, K. Nakajima, An optimal algorithm
for finding a maximum independent set of a
circular-arc graph, SIAM J. on Computing, 17,
1988, pp.41-52.

[20] G. J. Minty, On maximal independent sets of
vertices in claw-free graphs, J. Combin. Theory,
Ser. B, 28, 1980, pp.284-304.

[21] R. Mosca, Polynomial algorithms for the maxi-
mum stable set problem on particular classes of
#�-free graphs, Information Processing Letters,
61, 1997, pp.137-143.

[22] I. Razgon, A faster solving of the maximum in-
dependent set problem for graphs with maximal
degree 3, ACiD 2006, Durham, UK, 2006.

[23] J. M. Robson, Algorithms for maximum inde-
pendent sets, J. of Algorithms, 7, 1986, pp.425-
440.

[24] J. M. Robson, Finding a maximum independent
set in time �	����
, Tech. Rep. 1251-01, LaBRI,
Universite Bordeaux, 2001.

[25] M. Shindo, E. Tomita, A simple algorithm
for finding a maximum clique and its worst-
case time complexity, Systems and Computing
in Japan, 21, 1990, pp.1-13.

[26] R. E. Tarjan, A. E. Trojanowski, Finding a max-
imum independent set, SIAM J. on Computing,
6, 1977, pp.537-546.

[27] E. Tomita, T. Seki, An efficient branch-and-
bound algorithm for finding a maximum clique,
Discrete Math. and Theoret. Comput. Sci. 2003,
LNCS 2731, 2003, pp.278-289.

[28] E. Tomita, A. Tanaka, H. Takahashi, The worst-
case time complexity for generating all maximal
cliques and computational experiments, (Invited
paper for the special issue on COCOON 2004),
Theoret. Comput. Sci., 363, 2006, pp.28-42.

[29] E. Tomita, T. Kameda, An efficient branch-and-
bound algorithm for finding a maximum clique
with computational experiments, J. Global Opti-
mization, 37, 2007, pp.95-111 .

[30] E. Tomita, The maximum clique problem and
its applications (Invited lecture), IPSJ SIG Tech.
Rep., 2007-MPS-67, 2007, pp.21-24.

COMPUTING and COMPUTATIONAL INTELLIGENCE

ISSN: 1790-5117 208 ISBN: 978-960-474-088-8

