
Quality metrics for business process modeling

WIEM KHLIF, LOBNA MAKNI, NAHLA ZAABOUB, HANENE BEN-ABDALLAH

Mir@cl Laboratory,

Faculty of Economics and Management Sciences,

Sfax University, Tunisia.

{Wiem.Khlif, Lobna.Makni, Nahla.Haddar, Hanene.Benabdallah}@fsegs.rnu.tn

Abstract

Modeling business processes is vital when improving or automating existing business pocesses, documenting

processes properly or comparing business processes. In addition, it is necessary to be able to evaluate the quality of a

business process model, which in tern requires a set of quality metrics. Most of the works proposed to evaluate

business process models deal with quality by adapting software metrics. This is possible, because software products

and business processes software are quite similar. Our contribution in this paper consists in adapting object oriented

software metrics to business process models. This adaptation is based on correspondences which we establish

between BPMN (Business Process Modeling Notation) concepts and object oriented concepts. By adapting object

oriented metrics, we aim to obtain new metrics which give us more information about the complexity of business

processes, cohesion between process tasks and coupling between processes themselves.

Keywords: Business process modeling notation (BPMN), quality metrics, business process models, design quality,

metric adaptation.

1. Introduction
Modeling business processes is necessary for an

enterprise that desires to evaluate, improve, migrate to

a different technological platform, automate, and/or

document its business processes. Evidently, the quality

of a business process model (BPM) highly influences

the desired activity. This motivated several researchers

to propose metrics to evaluate the quality of BPM.

In fact, the concept of metric was initially introduced

to check software quality. According to [1], a quality

measure is considered as a quantitative scale and a

method that can be used in order to determine the

value taken by a characteristic of a software product.

Since software products and business process software

are quite similar [2] [3], most of the works proposed to

evaluate BPM deal with quality by adapting software

metrics (cf., [4] [5]). Our literature review revealed

that the so-far proposed quality metrics ignored the

similarities between the concepts of object-oriented

software and BPMN (the Business Process Modeling

Notation) [6], the standard notation for business

processes.

After a brief review of the state of the art in software

metrics adapted for BPM, this paper has a two-fold

objective: First, it aims at presenting correspondences

between the concepts of OO software and the concepts

of BPMN. Secondly, it shows how these

correspndances can be used to adapt two classes of

common OO quality metrics for BPMN: coupling

metrics and cohesion metrics.

2. Current metrics adapted to business

processes
Several researchers adapted quality metrics from the

software engineering domain. Similar to their

classification in software engineering, the adaptated

quality metrics can be also classified into three

categories: coupling, cohesion and complexity.

2.1 Coupling metric adaptation
Coupling in business process models (BPM) focuses

on how strongly the activities in a business process are

related, or connected, to each other. An activity is

connected to another activity if and only if they share

one or more information elements. For a given

activity, the coupling metric determines the number of

activities related to it [7]. For a given BPM, its

coupling metric equals to the number of

interconnections between all its activities; in other

words, it counts all pairs of activities in the BPM that

are connected to each other. In addition, the degree of

coupling depends on how complicated the connections

are and also on the type of connections between

activities (AND, OR, XOR). (For the mathematical

definition of this metric, the redear is referred to [7].)

The coupling metric of an activity reflects how

critical/important an activity is within a BPM. In fact,

an activity with a high coupling metric value

functionnaly determines a large number of activities in

Proceedings of the 9th WSEAS International Conference on APPLIED COMPUTER SCIENCE

ISSN: 1790-5109 195 ISBN: 978-960-474-127-4

the business process. Thus, its malfunctioning may

cause several activities to malfunction; this in tern

may jeopardize the overall business process

functionalities. Such activities should be either

avoided within a BPM, or treated with a special care,

e.g., by having a monitoring activity for it.

On the other hand, a BPM with a high coupling metric

indicates a high level of informational dependency

between its activities. Again, such a model produces a

vulnerable process and one which maintainance is

difficult, etc.

One limit of the coupling metric is that it does not give

an indication about the reusability of a BPM. This

quality information is important for design through

reuse. A second limit is that focuses on data

interchange and does not provide information about

the activity dependency in terms of data usage. This

limit is addressed by cohesion metrics.

2.2 Cohesion metric adaptation
Vanderfeesten et al. [3] adapted the cohesion metric as

follows: The cohesion of an activity is the product of

both the relation and information cohesion. The

relation cohesion quantifies how much the different

operations within one activity are related. It

determines, for each operation of an activity, how

many other operations it overlaps with by sharing an

input or output.

On the other hand, the information cohesion focuses

on all information elements that are used either as

input or output by any operation within this activity. It

determines how many information elements are used

more than once in proportion to all the information

elements used. Thus, it counts all information

elements that appear in the intersection of a pair of

operations, considering all pairs. To be normalized,

this number is divided by the total number of

information elements in the activity.

Another adaptation of the cohesion metric is the cross

connectivity metric [8]. This adaptation aims to

quantify the ease of understanding and the interplay of

any pair of model elements. The term ‘Cross-

Connectivity’ is chosen because the strength of

connections between nodes is considered across all

nodes in the model. As a result, the cross connectivity

metric expresses the sum of the connectivity between

all pairs of nodes in a process model, relative to the

theoretical maximum number of paths between all

nodes.

Overall, a BPM whose activities have high cohesion

values indicates a good modular decomposition of its

activities.

One advantage of cohesion metrics is that they can be

used to determine the critical data (highly shared) as

well as the sharing operations. Such information can

be used to impose special treatements, like adding data

distribution activities, etc. (For the mathematical

definition of these metrics, the redear is referred to [3]

and [8].)

2.3 Complexity metric adaptation
Complexity measures the simplicity and

understandability of a design. In this quality

perspective, several researches on business process

metrics have been done, cf., [4] [5].

Both [4] and [5] consider the adaptation of McCabe's

cyclomatic number [9] as a complexity metric for

business processes. The metric is called Control-flow

Complexity (CFC) metric. The main idea behind this

metric is to evaluate the number of possible states that

have to be considered when a designer is developing a

process.

In a BPM, splits introduce these states in processes.

For XOR-splits, the control-flow complexity of an

activity is simply the fan-out of the split connected to

it; for OR-splits, the control-flow complexity is 2n-1,

where n is the fan-out of the split; finally, for an AND-

split, the complexity is simply 1.

Mathematically, the CFC metric is additive. Thus, it is

very easy to calculate the complexity of a BPM, by

adding the CFC of all splits in the BPM. The greater

the value of the CFC, the greater is the overall

architectural complexity of a process.

A second adaptation of complexity is proposed by

Cardoso et al. [4] by mapping business process

elements to the set of primitive measures proposed by

Halstead. With these primitive metrics, they introduce

the notion of Halstead-based Process Complexity

(HPC) metrics for estimating process length, volume

and difficulty as follows:

Process Length: () ()2211 2log2log nnnnN ∗+∗=

Process Volume: () ()2121 2log nnNNV +∗+=

Process Difficulty: () ()221 /2/ nNnD ∗=

Where:

- n1 is the number of unique activities, splits and joins,

and control-flow elements (such as sequence,

switch, loop) of a business process;

- n2 is the number of unique data that are manipulated

by the process and its activities;

- N1 and N2 are process lengths derived from n1 and

n2.

This adaptation views a process activity as a statement

of a software program. It is used to derive another

very simple metric that counts the number of activities

(NOA) in a business process [4]. This second

adaptation is analogeous to the Line of code (LOC)

metric [10].

It should be noticed that the NOA metric characterizes

only one particular view of size, namely the length; it

Proceedings of the 9th WSEAS International Conference on APPLIED COMPUTER SCIENCE

ISSN: 1790-5109 196 ISBN: 978-960-474-127-4

takes into account neither functionality nor

complexity. Thus, a high NOA value may produce bad

process designs with an excessive number of

activities.

Another adaptation of the LOC metric not only maps

activities to program statements, but also takes into

account process control-flow elements (i.e., control

structures). This is a second metric (NOAC) proposed

in [4] to count the activities and control-flow elements

of a process.

On the other hand, the Henry and Kafura metric [11]

is adapted to evaluate the complexity of processes in

the following way [4]: The fanin and fanout can be

mapped directly to inputs and outputs of activities.

Activities are invoked when their inputs (fanin) are

available and the activities are scheduled for

execution. When an activity completes its execution,

its output data is transferred to the activities connected

to it through transitions. Using this hypothesis, [4]

proposes a metric called interface complexity (IC) of

an activity which is defined as:

∗= lengthIC (number of inputs * number of outputs)
 2

The advantages of the IC metric are that it takes into

account data-driven processes and it can be calculated

prior to implementation, during the design stage [4].

In summary, although some researchers proposed

using software metrics to evaluate business process

designs, the number of publications on concrete

metrics and applications in the business process

domain is still small and only of a very recent date.

We also note that object oriented metrics have not

been adapted to business process models despite the

similarities that exist between the latters and object

oriented software. In the next section, we propose to

adapt object oriented measures to business processes.

3. Correspondences between BPMN and

object oriented software
A business process model which is modeled by EPC

(Event-Driven Process Chain), Petri nets, activity

diagrams or BPMN manifest several similarities with

software [2][3]. In fact, business processes and

software products have a similar compositional

structure: a program is composed of modules or

classes, each module consists of statements and each

statement contains variables and constants. In the

same way, a business process has activities each

which is composed of elementary operations and each

operation uses one or more information to produce

new information [2] [3].

Based on these similarities, we determined a set of

correspondences between the Business Process

Modeling Notation (BPMN) concepts [6] and the
object oriented software concepts. The choice of

BPMN is justified by the fact that this formalism

defines an OMG standard notation for modeling

business processes. However, our correspondences

can be adjusted to deal with EPC, or Petrinets.

Table 1 summaizes our proposed correspondences

between object oriented software concepts and BPMN

concepts.

Table 1: Correspondances between BPMN and object
oriented software core concepts.

As illustrated in Table 1, we map a class to a process

(or sub process) in the business process domain. In

particular, we map a composite class to a multi-level

process that contains sub-processes. These sub-

processes may be reused independtly of their

containing process.

S
ta
ti
c
v
ie
w

Object oriented

software
BPMN Notation

Class/package Process, sub-process

Method Task

Variable/ Constant Data object

Comment line Annotation

Interface of

a class

Interface of a process/sub

process: the set of tasks in

a process which send or

receive a flow message.

Local data in a

class.

Process tasks data objects:

data objects related to

process tasks by

associations.

Data used by a

class.

Data object used by

process tasks: data objects

associated with message

flows going into tasks in

the process.

D
y
n
am
ic

v
ie
w

Method invocation

Reception of a sequence

flow or a message flow by

a task.

Proceedings of the 9th WSEAS International Conference on APPLIED COMPUTER SCIENCE

ISSN: 1790-5109 197 ISBN: 978-960-474-127-4

Figure 1. E-Mail Voting Process

In addition, a simple class and its methods are mapped

respectively to a simple process containing tasks as

properties. Note that a task can be either a humain or

an automated one. In addition, a class has local data

used by its methods; it also may use data coming from

other classes. Thus, we map local data to data objects

generated or used by the tasks of a process while data

used by a class correspond to data objects associated

with message flows arriving to the process tasks.

Moreover, all public methods determine the class

interface. By applying this concept to the BPMN

formalism, the process/sub process interface will be

defined by the set of tasks in a process which send or

receive a message flow.

Finally, comment in a software product corresponds to

the annotation in BPMN.

4. Quality metrics for BPMN
In this section, we show how the previous mappings of

OO software engineering to BPMN concepts can be

used to adapt the coupling and cohesion metrics for

business process models. To do so, we use a modified

version of the e-mail Voting Process [6] modeled with

BPMN in Figure 2.

4.1. Coupling metrics for BPMN
Among the various coupling metrics, we adapted four

metrics: IC [12], EC [12], RFC [13] and LD [14].

4.1.1 Imported and exported coupling

In the software engineering domain, two types of

coupling have been defined [12]:

- IC (Imported Coupling) which counts, for each

class C, all interactions in which C uses another

class.

- EC (Exported Coupling) which counts, for each

class C, all interactions in which C is used.

According to our correspondence rules (Table 1), we

adapt these metrics in the business modeling domain

as follows:

- ICP (Imported Coupling of a Process): counts, for

each (sub-) process, the number of

message/sequence flows sent by either the tasks of

the (sub-) process or the (sub-) process itself.

- ECP (Exported Coupling of a Process): counts, for

each (sub-) process, the number of

message/sequence flows received by either the

tasks of the (sub-) process or the (sub-) process

itself.

Let us consider the simple sub-process "Discussion

Cycle" of our example (Figure 2): It sends a sequence

flow to the "Announce Issues" task and two message

flows to the process "Voting members". Thus, its ICP

is equal to 3. In addition, this sub-process receives

two sequence flows: one from the gateway "Any

issues ready" and another from the unnamed sub

process. Thus, the ECP of "Discussion Cycle" is

equal to 2.
Note that a process with high ICP value highly

dependents on several external services offered by

other processes. This might increase delays, costs and

error probability. In addition, a process with a high

ECP has a considerable influence on the whole model

since a multitude of processes depends on its services.

In other words, problems encountered in the business

process may be caused by a fault in this influencial

process.

4.1.2 Response for class coupling
Examining coupling metrics in the software

engineering domain, we noticed that the response for a

class (RFC) metric [14] focuses on the coupling in

terms of control flows. We call the adapted version of

this metric response for a process (RFP) in the

Proceedings of the 9th WSEAS International Conference on APPLIED COMPUTER SCIENCE

ISSN: 1790-5109 198 ISBN: 978-960-474-127-4

business domain. We compute it as follows: RFP =

|RS| where RS is the set of all responses of a process:

RS = {Tj} U {Ri},

where {Ri} is the set of tasks invoked by a task i

in the process and {Tj} is the set of all tasks j in

the process.
Let us consider the "Orchestrator" process which

contains in parallel the two tasks: "Reduce to two

solutions" and "E-mail voters that have to change

vote". Its set of responses (RS) contains the following

tasks:

RS = {"Reduce to two solutions", "E-mail voters

 that have to change vote"}

 U

{"Voting Members", "Announce Issues"}

Thus, the RFP of "Orchestrator" is equal to 4.

Note that, the larger the RFP is, the greater the

complexity of the process is: In deed, if a large

number of tasks can be invoked in response to a

message, then the process becomes complixe and

requires a greater level of understanding.

4.1.3 Locality of data-based coupling

Another coupling metric we see adaptable is

locality of data (LD) [14]. This metric links data

from the activity (process or sub process) to the

total data used by this activity. The adapted

metric, we call locality of data activity (LDA), for

an activity (sub process or task) with n tasks can

be expressed mathematically as follow:

∑

∑

=

==
n

i

i

n

i

i

DT

L

LDA

1

1

where DTi (1≤ i ≤ n) is the set of data associated
to task Ti within the activity, and Li (1≤ i ≤ n) is
the set of data produced by other activities and

used by a task Ti the activity.
Let us consider the "Review Issue List" task in Figure

2; this task uses the "Issue List" data which is produced

by the "Receive Issue List" task. Therefore, the LDA of

the "Review Issue List" task is computed as follows:

{ }

{ } 2

1

gList"IssueVotin" ,IssueList""

""

1

1

1

1 ==

∑

∑

=

=

i

i

IssueList

LDA

Note that activities with a high data locality are more

self-sufficient than those with a low data locality.

Hence, they are more adapted to reuse and easier to

test.

4.2 Cohesion metrics for BPMN

Various metrics in software engineering and especially

object oriented ones have focused on cohesion [13]. On

the basis of these works, we propose adaptations of the

well known metrics TCC and LCC [15].

4.2.1 Tight Class Cohesion

Tight class cohesion (TCC) [15] counts for each

class the percentage of method pairs that are directly
related. Two methods are directly related if they both

use either directly or indirectly a common instance

variable. An instance variable is used directly by a

method M, if the instance variable appears in the body

of the method M. An instance variable is used

indirectly by a method M, if the instance variable is

directly used by a method M’ that is either directly or

indirectly invoked by M.

More specifically, TCC for a class is computed as

follows:

TCC = NDC / NP

where N is the number of public methods in the

measured class; NP is the maximum number of public

method pairs: NP = [N * (N – 1)] / 2; and NDC the

number of direct connections between public methods.

Then TCC is defined as the percentage of method

pairs, which are directly related.for the measured

class.

We adapt the TCC metric as follows: for a process

with N (> 1) public tasks (i.e., tasks contained

within its interface and which are connected to

exterior activities/tasks), we compute its NSP as

the maximum number of public task pairs:

NSP = [N * (N – 1)] / 2

and its NSPDC as the number of direct

connections between its public tasks. The adapted

TPC metrics, which we call Tight Process Cohesion

(TPC), to be the percentage of task pairs directly
related:

TPC= NSPDC / NSP

Two tasks are directly related if they both use (directly

or indirectly) a common data. A data is used directly

by a task T, if it is produced by this task T; a data is

used indirectly by a task T, if it is directly used by a

task T that receives directly or indirectly a

sequence/message flow from the task T.

In our running example, the TPC metric is not

applicable since none of its processes has more than

one public task.

Note that a TPC equal to 0 means that that the tasks

within the measured process are not directly related.

This is the worst cohesion scenario.

Proceedings of the 9th WSEAS International Conference on APPLIED COMPUTER SCIENCE

ISSN: 1790-5109 199 ISBN: 978-960-474-127-4

4.2.2 Loose Class Cohesion
Loose class cohesion (LCC) is a second type of class

cohesion used in OO software engineening. LCC

counts, for each class, the percentage of method pairs

either directly or indirectly related:

LCC = NIC / NP.

where NIC is the number of direct or indirect

connections between the public methods of the

measured class, and NP is the maximum number of

public method pairs in the measured class.

Our adaptation for business processes (which we call

Loose Process cohesion (LPC)), counts the percentage

of task pairs, which are either directly or indirectly

related:

LPC=NSPC/NSP

where NSPC is the number of direct or indirect

connections between the tasks of the measured

process.

In our running example, this metric is not applicable

since all none of its processes has more than one

public task (N >1).

Note that, similarly to TPC, a high LPC is the best

quality scenarion; it means that there are several tasks

directly or indirectly related.

5. Conclusion and perspectives
Quality design metrics can help designers making

their modeling decisions judiciously. To define

metrics to examine the quality of a business process

model, we first overviewed existing quality metrics

and then we explored the adaptation of various OO

metrics for BPMN. In particular, we focused on

adapting coupling and cohesion metrics for BPMN.

Indeed, a good quality model is one whose processes

are loosely coupled and its tasks are highly cohesive.

Our future work focuses on two main axes: 1)

establishing relationships between metrics and quality

dimensions of business process models; and 2)

checking the proposed metrics through empirical

studies.

References
[1]: ISO/FCD 9126-1.19, Software qualiy

characteristics and metrics, Information Technology

Part 1: Quality characteristics and sub characteristics,

ISO/FCD 9126-1. 1998.

[2]: Reijers .H.A., and Vanderfeesten.I, Cohesion and

Coupling Metrics for Workflow Process Design. In:

Desel, J., Pernici, B., and Weske, M., editors, Business

Process Management (BPM 2004).

[3]: Vanderfeesten.I, Reijers.H.A, van der Aalst

W.M.P, Evaluating Workflow Process Designs using

Cohesion and Coupling Metrics, Technische

Universiteit Eindhoven, Department of Technology

Management.

[4]: Cardoso.J, Mendling.J, Neuman.J, Reijers.H.A.

(2006), A discourse on complexity of process models,

In: Eder, J.; Dustdar, S. et al, editors, BPM 2006

workshops. Lecture Notes in Computer Science 4103,

Springer-Verlag, Berlin, pp. 115-126.

[5]: Gruhn.V, and Laue.R, Complexity metrics for

business process models, In: Witold Abramowicz and

Heinrich C. Mayer, editors, 9th international

conference on business information systems (2006),

vol. 85 of Lecture Notes in Informatics, pp. 1-12.

[6]: Business Process Modeling Notation, V1.1, OMG

Available Specification OMG Document Number:

formal/2008-01-17 Standard document.

[7]: Vanderfeesten.I, Cardoso.J, Reijers.H.A, A

weighted coupling metric for business process models,

Technische Universities Eindhoven, Department of

Technology Management, PO Box 513, 5600 MB

Eindhoven, The Netherlands, University of Madeira,

Department of Mathematics and Engineering.

[8]: Vanderfeesten.I, Reijers.H.A, Mendling.J, van der

Aalst.W.M.P, Cardoso.J, On a quest for good process

models: the cross-connectivity metric. Advanced

Information Systems Engineering (Proceedings 20th
International Conference, CAiSE'08, Montpellier,

France, June 18-20, 2008).

[9]: McCabe T.J, A Complexity Measure, IEEE

Transactions on Software Engineering, 2(4), pp. 308-

320, 1976

[10]: Fenton N.E., Pfleeger S.L., Software Metrics: A

Rigorous and Practical Approach, PWS Publishing

Company, Boston, USA, 2ème edition, 1997.

[11]: Henry .S, Kafura.D, Software structure metrics

based on information-flow. IEEE Transactions on

Software Engineering, 7(5):510–518, 1981.

 [12]: Briand.LC, Daly .JW, Porter.V, Wüst.J, A

Comprehensive Empirical Validation of Design

Measures for Object-Oriented Systems. 5th

International Software Metrics Symposium

(METRICS 1998), IEEE Computer Science, 43–53.

[13]: S.R.Chidamber, C.F.Kemerer, Authors’ Reply

to: comments on « A metrics suite for object oriented

design », IEEE Transactions on software Engineering,

21(3), p.265, March 1995.

[14]: M. Hitz and B. Monastery, « Measure Coupling

and Cohesion in Object-Oriented Systems ».

Proceedings of International Symposium on Applied

Corporate Computing (ISAAC’95), October 1995. (pp

24, 25, 274, 279).

 [15] Bielak.J., Maccamy.R.C, Zeng.X, Stable

coupling method for interface scattering problems

by combined integral equations and finit

elements, J, vol. 119, 1995, p. 374–384.

Proceedings of the 9th WSEAS International Conference on APPLIED COMPUTER SCIENCE

ISSN: 1790-5109 200 ISBN: 978-960-474-127-4

