
Computing the Fractal Dimension of Software Networks

Mario Locci, Giulio Concas, Ivana Turnu
Department of Electrical and Electronic Engineering

University of Cagliari
piazza d’Armi – 09123 Cagliari

ITALY
{mario.locci, concas, michele}@diee.unica.it

http://www.diee.unica.it

Abstract: - Given a large software system, it is possible to associate to it a graph, also known as software network, 
where graph nodes are the software modules (packages, files, classes or other software entities), and graph edges 
are the relationships between modules.  A recent paper by some of the authors demonstrated that the structure of 
software networks is also self-similar under a length-scale transformation, and calculated their fractal dimension 
using the “box counting” method. In this paper we describe three possible algorithms for the computation of the 
fractal dimension of software networks, and compare them. We show that a Merge Algorithm firt devised by the 
authors is the most efficient, while Simulated Annealing is the most accurate. A Greedy Coloring algorithm, based 
on the equivalence of the box counting problem with the graph coloring problem, seems nevertheless the best 
compromise,  having  speed  comparable  to  the  Merge  Algorithm,  and  accuracy  comparable  with  Simulated 
Annealing.

Key-Words: - Complex Systems,  Complex Networks,  Self-similarity,  Software Graphs,  Software Metrics, 
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1   Introduction
Software  systems  are  characterized  by  being  com-
posed of software modules, which are related on each 
other.  This  characteristic  holds  irrespectively  of  the 
specific technology or language used for developing 
the system. In a system written in C or Fortran lan-
guage the modules are the functions, which call each 
other, or the source code files, which include, and are 
included  by,  other  files.  In  an object-oriented  (OO) 
system,  the  modules  can  be  classes  and  interfaces, 
source code files holding them, or packages, with de-
creasing  granularity.  Among  OO  classes  and  inter-
faces, many relationships are possible, such as inheri-
tance, composition, dependency, instantiation, imple-
mentation.

A software system composed by modules, can be 
easily mapped to a graph, or a network, being graph 
nodes the software modules, and graph edges the rela-
tionships between modules. We will call software net-
work such a graph. It is already well known that soft-
ware  networks  have  the  characteristics  of  complex 
networks, i.e. are scale-free and small-world [1-4]. A 
recent paper by Song et al. [5] demonstrated that the 
structure of complex networks can also be self-similar 

under a length-scale transformation, and showed how 
to  calculate  their  fractal  dimension using  the  “box 
counting” method.

This  finding  was  applied  to  software  networks 
computed  on  the  classes  and  class  relationships  of 
large Smalltalk and Java systems, which were shown 
to exhibit a consistent self-similar behavior [6]. More-
over, a significant correlation seems  to hold between 
the fractal dimension computed for various OO sys-
tems, and standard metrics related with software qual-
ity [6]. It is worth noting that the fractal dimension is 
just a  single number that characterizes a whole net-
work, and hence a whole software system, while com-
plexity metrics are computed on every module of the 
system  –  think  for  instance  to  Chidamber  and 
Kemerer OO metrics suite [7]. Obviously, the whole 
system  can  be  characterized  by  some  statistics 
computed on all modules, but this is not the same of 
having just one consistent, synthetic measure as with 
fractal dimension. 

For this reason, we believe that the fractal dimen-
sion  of  software  networks  is  a  significant  metric 
describing the regularity of the software structure. It is 
therefore  important  to  have  efficient  and  reliable 
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algorithms to compute it. In fact, as it will be shown 
in the following, the box counting algorithm is NP-
complete,  and  its  exact  computation  for  large 
networks cannot be practically accomplished.

In this paper we recall the definition and meaning 
of fractal  dimension in software networks,  and then 
present  and  compare  three  different  algorithms  to 
compute  it  –  Greedy  Coloring,  a  Merge  Algorithm 
devised  by  the  authors,  and  Simulated  Annealing  – 
discussing the results.

2 The Fractal Dimension of Software 
Networks

2.1 Object-Oriented Systems as Networks
The basic building block of OO programming is the 
class, composed of a data structure and of procedures 
able to access and process these data. The data struc-
ture is made up of fields (instance or class variables) 
that represent the state of an object.

A class has also a behavior expressed in terms of 
methods that represent the procedures able to access 
and process the data structure. Classes may be defined 
at various levels of complexity, and are related across 
different kinds of binary relationships, such as inheri-
tance, composition and dependence, which are well-
known properties of OO design.
Analyzing the source code of an OO system, it is pos-
sible to build its class graph —a graph whose nodes 
are the classes, and the graph edges represent directed 
relationships between classes. In this graph, the in-de-
gree of a class is the number of edges directed toward 
the class, and is related to the usage level of this class 
in the system, while the out-degree of a class is the 
number of edges leaving the class, and represents the 
level of usage the class makes of other classes in the 
system. It has already been shown that OO software 
networks exhibit the scale-free and small-world prop-
erties, and thus can be considered complex networks. 
The in-degree distributions are power laws with expo-
nent γ ≈ 2.5 [1], [3], while the out-degree distributions 
are more controversial, and are mainly log-normal or 
Double-Pareto distributions [3], [8].

2.2 Fractal Dimension of OO Networks
A recent study [5] found that the structure of complex 

networks is often also self-similar, and it is possible to 
calculate their fractal dimension using the box-count-
ing method. This method consists in covering the en-
tire network with the minimum number of boxes  NB 

of linear size lB  For a given network G and box size 
lB,  a  box  is  a  set  of  nodes  where  all  distances  lij 
between any two nodes i and j in the box are smaller 
than lB. If the number of boxes scales with the linear 
size lB following a  power law (see eq. (1)), then dB is 
the fractal dimension, or box dimension, of the graph 
[5]:

(1)

The  computation  of  the  fractal  coefficient  of  a 
network is thus a two-step one. First, an assessment of 
the self-similarity of the network has to be done, com-
puting  the  minimum number  of  boxes  covering  the 
network, varying lB from one to a given number, usu-
aly 10 or 20. This is the most computational intensive 
step. Then, one has to check whether  NB(lB) is linear 
in a log-log plot, showing a power-law behavior. This 
check is somewhat subjective, though it is possible to 
compute  confidence  intervals  to  this  purpose. 
Eventually, an estimate of  dB is made fitting the plot 
with an LMS algorithm.

It has been already reported that OO software net-
works related to classes of large Smalltalk and Java 
systems show a patent self-similar behavior, with frac-
tal  dimension between 3.7 and 5.1 [6].  So,  for  OO 
software networks it is important to have efficient and 
reliable  algorithms able  to  compute  their  fractal  di-
mension.

Fig. 1. Log-log  plot of NB vs. lB for JDK 1.5.0.

N Bl B~lB
−d B
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Fig.  1  shows  the  box  counting  analysis  of  the 
software network related to JDK 1.5.0 Java system. 
The  log-log  plot  of  NB vs.  lB reveals  a  self-similar 
structure. The slope of the fit is 4.24; this value is the 
fractal dimension dB for JDK 1.5.0.

2.3 Computing the Fractal Dimension
Song et. al. in their first paper [5] do not give details 
about how they actually computed the fractal dimen-
sion. Subsequently, Concas et al. shortly presented a 
simple algorithm for computing dB [6]. Later, Song et 
al.  demonstrated  that  this  computational  problem is 
equivalent to the graph coloring problem, and conse-
quently  took  advantage  of  the  many  well-known 
greedy algorithms to perform this task [9].  Here we 
compare  three  algorithms  both  in  terms  of  perfor-
mance  and precision –  greedy coloring  as  in  [9],  a 
merge algorithm similar  to that  reported in [6],  and 
simulated annealing, which is considered one of the 
best  approaches  to  find  the  global  minimum  of 
difficult, multi-modal problems.

2.3.1   Greedy Coloring (GC)
Song et al. demonstrate that the box counting problem 
can be mapped to the graph coloring problem, which 
is  known  to  belong  to  the  family  of  NP-hard 
problems. Vertex coloring is a well-known procedure, 
where colors are assigned to each vertex of a network, 
so  that  no  edge  connects  two  identically  colored 
vertexes [10]. We used the greedy algorithm described 
by Song et al. For this implementation we need a two-
dimensional matrix cil of size N × lB

max, whose values 
represent  the  color  of  node  i for  a  given  box  size
l = lB. The algorithm works in the following way [9]:

(1) Assign a unique id from 1 to  N to all 
network  nodes,  without  assigning  any 
colors yet.

(2) For all lB values, assign a color value 
0 to the node with id=1, i.e. cil = 0.

(3) Set  the  id  value  i =  2.  Repeat  the 
following until i = N.
(a) Calculate the distance  lij from  i to 

all the nodes in the network with id 
j less than i.

(b) Set lB = 1.
(c) Select one of the unused colors cjlij 

from all nodes j<i for which lij≥ lB.

This is the color cjlB of node i for 
the given lB value.

(d) Increase  lB by  one  and  repeat  (c) 

until lB = lB
max..

(e) Increase i by 1.

This greedy algorithm is  very efficient,  since it 
can cover the network with a sequence of box sizes lB 

performing only one network pass.

2.3.2   Merge Algorithm (MA)
This  method is  based on the union of two or more 
clusters into a third one. Two clusters are merged if 
the distance between them is less than lB. MA uses the 
configuration at  lB to obtain the starting point for the 
successive aggregation at lB+1  = lB + 1.

In  the  initial  configuration  each  cluster  ck con-
tains only a node, so each node is marked with a dif-
ferent  label.  Let  n be  the  number  of  nodes  of  the 
network, and lmax the maximum value for  lB. The al-
gorithm works in the following way:

lB = 2;
C ≡ {c1, c2 , c3 ,..., cn};

while lB  lmax;
D ≡  Φ;
repeat

get a random cluster ck from C;
C’ ≡ {cj  C| d(ck,cj) ≤ lB};
get a random cluster ci from C’;
ĉ = merge(ck,cj);
C = C - {ck,cj}; 
D = D  {ĉ};

until size(C) < 2 or C’= Φ  c C;
D = D  C;
NB = size(D);
lB := lB +1;
C = D;

end while;

In  order  to  find the  set  C’ we  use  an efficient 
burning  algorithm to  determine  in  a  single  step  all 
clusters belonging to C’.

2.3.3   Simulated Annealing(SA)
The MA described  above  is  an  efficient  method to 
estimate  the  fractal  dimension,  and  the  base  for 
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Simulated  Annealing  algorithm.  SA  is  a  class  of 
algorithms  inspired  by  the  annealing  process  in 
metallurgy  [11].  In  the  SA context,  a  box  partition 
(box covering) is the state  S of the physical  system 
and the number of boxes NB is the “internal energy” in 
that state.

In  order  to  consider  a  neighbor  state  S’  of  the 
current  state  S we  compute  three  fundamental 
operations:

• movement of nodes;
• creation of new clusters;
• union of clusters.

If  S’  is  a  solution  worse  that  S,  there  is  a 
probability  to  accept  the  state  S’  even  if  it  has  the 
energy E(S’) > E(S). 

A new state or partition with boxes of size  lB is 
obtained from the current state by moving nodes and 
merging clusters. Let A and B be two generic clusters of 
the current partition. We define the following operations:

• movement: a node is moved from A to B if B 
diameter doesn’t exceed  lB, and  A includes at 
least two nodes;

• creation:  a  node  is  taken  from cluster  A to 
form a new cluster;

• merge:  all  clusters  are  merged  by  using  the 
merge algorithm described in section 2.3.2..

At each “temperature” we perform k1 movements 
and  k2 creations of nodes, and a single merge of all 
clusters by using MA. We always accept a better or 
equal solution, while we accept  a solution  S’ worse 
than S with probability:

(2)

At each step the system is cooled down to a lower 
temperature  T0   = cT ,  where  c < 1 is  the  cooling 
constant. The typical starting temperature  T is about 
0.6 and the typical values of k1 and k2 are 5000 and 5, 
respectively. Similar values are used by Zhou et al. in 
their  implementation  of  the  SA  algorithm  [12].  In 
deeper  detail,  the  algorithm works  in  the  following 
way:

create first configuration S using MA
for j (j = 1, 2, ....,k3) do

move k1 nodes;

create k2 new clusters;
if E(S’) ≤ E(S) then

S := S’
else

get a random number RND;
if RND < exp(−(E(S’)−E(S))/T) then

S := S’
endif;

endif;
merge clusters using MA algorithm;
T := cT;

endFor;

We  perform  about  5000  steps  at  each 
temperature, and then reduce T. The number of outer 
cycles (temperature reductions) is  k3, and it is set to 
20, with cooling constant c set to 0.995 [12].

3 Results
We  implemented  in  Java  the  three  algorithms  and 
compared  their  performance  in  terms  of  speed  and 
quality of the result. In fact, being the box partitioning 
problem  NP-complete,  on  large  networks  its  exact 
solution is not feasible. Consequently, it is not enough 
to  have  a  fast  algorithm  to  compute  the  box 
partitioning,  but  the  results  must  be  trusted,  in  the 
sense  that  the  partitioning  found  should  be  close 
enough  to  the  global  minimum  to  guarantee  the 
consistency of the results. We tested the goodness of 
the results by repeatedly running the same algorithm, 
selecting randomly the initial configuration. We then 
checked  the  variance  of  the  resulting  estimate  of 
NB(lB) for various values of lB, which in turn depends 
on the number of boxes found in each partitioning.

We used for the tests the software network related 
to Java JDK 1.5 system, which includes the standard 
Java  libraries  and  development  tools.  The  JDK 
network has 8499 nodes and 42048 edges, so it can be 
considered a quite large network.

3.1 Execution speed
We  computed  the  execution  speed  on  the  whole 
computation  of  dB,  which  is  what  actually  matters, 
running  the  three  algorithms  starting  from  random 
configurations  of  the  initial  box  partitioning  and 
performing 100 times the computation. The results for 
a PC with Windows XP and a processor Intel Core
1.4 GHz are reported in Table 1.

p=e
−

E S '− E S 
T
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Table 1. Average execution times for dB computation 
on JDK 1.5 class graph.

Algorithm Time (s) dB

GC 410 3.96
MA 289 4.24
SA 8807 4.06

As you can see,  the most  efficient  algorithm is 
MA, and this is confirmed also by other test runs on 
other  networks,  not  reported  here  for  the  sake  of 
brevity. GC is  still very efficient, while SA is much 
worse as regards execution speed, being at least one 
order of magnitude slower.

Regarding the quality of results, they look similar 
but not exactly the same. This is discussed in detail in 
the next section.

Fig. 2. Empirical distributions of the values of NB for six  

values of lB, for GC algorithm run 1000 times.

3.2 Result Quality
We  computed  the  reliability  of  the  three  tested 
algorithms by testing for  their  repeatability  in  1000 
runs on a smaller  network than the whole JDK 1.5 
software  graph,  the  E.  Coli  protein  interaction 
network [5]. This network has 2859 nodes and ,6890 
edges.  We varied  lB,  from 2 to 7.  Figs.  2,  3 and 4 
show the empirical distributions of the values of  NB 

for  each  value  of  lB,  and  for  GC,  MA  and  SA 
algorithms, respectively.

As you can see, GC and SA algorithms show a 
very small  dispersion of the resulting values of  NB, 
showing that  both are  highly  reliable.  On the  other 
hand,  the  results of  Fig. 3  regarding  MA  algorithm

Fig. 3. Empirical distributions of the values of NB for 

six values of lB, for MA algorithm run 1000 times.

show a much higher dispersion. Consequently, despite 
its high performances, we deem that MS algorithm is 
not suitable for the computation of software networks 
fractal dimension.

Fig. 4. Empirical distributions of NB for six values of lB, for  
SA algorithm run 50 times.

We report in Fig. 5 the standard deviation of the 
computed NB for the three algorithms, for eight values 
of lB, from 2 to 9. Fig. 5 confirms the previous results 
on the reliability of the three algorithms. The standard 
deviation  of  MA results  is  consistently  higher  than 
that  of  GC and SA.  The latter  algorithms are  quite 
similar, with a slightly better average performance of 
SA over GC on the eight test values of lB. 
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Fig. 5. Standard deviations of the values of NB for eight  

values of lB, for MA algorithm run 1000 times.

4 Conclusion
The fractal  dimension of  software  networks has  the 
potential  to  be  a  significant,  synthetic  metric 
describing the regularity of the structure of a software 
system,  and  moreover  it  has  been  proven  to  be 
correlated  to  source  code  quality  metrics  of  OO 
systems. It is therefore important to have efficient and 
reliable algorithms to compute it. 

In this  paper we presented three different  algo-
rithms to compute the fractal dimension of networks, 
which  to  our  knowledge  cover  all  the  approaches 
proposed  in  literature.  These  algorithms  –  Greedy 
Coloring,  Merge  Algorithm,  and  Simulated 
Annealing, have been described and compared using 
the  software  network related to  Java JDK 1.5 open 
source system and,  for  the purpose of assessing the 
algorithm  reliability,  also  using  a  smaller  protein 
interaction network.

We found that SA is the best algorithm in terms 
of  precision,  but  it  is  by  far  the  worst  in  terms  of 
speed. The time performance of MA is better than GC 
for large networks but the greedy coloring produces 
more  precise  solutions.  In  conclusion,  the  Greedy 
Coloring algorithm, based on the equivalence of the 
box  counting  problem  with  the  graph  coloring 
problem,  looks  the  best  compromise,  having  speed 
comparable  to  MA,  and  accuracy  comparable  with 
SA.
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