
Computing the Fractal Dimension of Software Networks

Mario Locci, Giulio Concas, Ivana Turnu
Department of Electrical and Electronic Engineering

University of Cagliari
piazza d’Armi – 09123 Cagliari

ITALY
{mario.locci, concas, michele}@diee.unica.it

http://www.diee.unica.it

Abstract: - Given a large software system, it is possible to associate to it a graph, also known as software network,
where graph nodes are the software modules (packages, files, classes or other software entities), and graph edges
are the relationships between modules. A recent paper by some of the authors demonstrated that the structure of
software networks is also self-similar under a length-scale transformation, and calculated their fractal dimension
using the “box counting” method. In this paper we describe three possible algorithms for the computation of the
fractal dimension of software networks, and compare them. We show that a Merge Algorithm firt devised by the
authors is the most efficient, while Simulated Annealing is the most accurate. A Greedy Coloring algorithm, based
on the equivalence of the box counting problem with the graph coloring problem, seems nevertheless the best
compromise, having speed comparable to the Merge Algorithm, and accuracy comparable with Simulated
Annealing.

Key-Words: - Complex Systems, Complex Networks, Self-similarity, Software Graphs, Software Metrics,
Object-Oriented Systems.

1 Introduction
Software systems are characterized by being com-
posed of software modules, which are related on each
other. This characteristic holds irrespectively of the
specific technology or language used for developing
the system. In a system written in C or Fortran lan-
guage the modules are the functions, which call each
other, or the source code files, which include, and are
included by, other files. In an object-oriented (OO)
system, the modules can be classes and interfaces,
source code files holding them, or packages, with de-
creasing granularity. Among OO classes and inter-
faces, many relationships are possible, such as inheri-
tance, composition, dependency, instantiation, imple-
mentation.

A software system composed by modules, can be
easily mapped to a graph, or a network, being graph
nodes the software modules, and graph edges the rela-
tionships between modules. We will call software net-
work such a graph. It is already well known that soft-
ware networks have the characteristics of complex
networks, i.e. are scale-free and small-world [1-4]. A
recent paper by Song et al. [5] demonstrated that the
structure of complex networks can also be self-similar

under a length-scale transformation, and showed how
to calculate their fractal dimension using the “box
counting” method.

This finding was applied to software networks
computed on the classes and class relationships of
large Smalltalk and Java systems, which were shown
to exhibit a consistent self-similar behavior [6]. More-
over, a significant correlation seems to hold between
the fractal dimension computed for various OO sys-
tems, and standard metrics related with software qual-
ity [6]. It is worth noting that the fractal dimension is
just a single number that characterizes a whole net-
work, and hence a whole software system, while com-
plexity metrics are computed on every module of the
system – think for instance to Chidamber and
Kemerer OO metrics suite [7]. Obviously, the whole
system can be characterized by some statistics
computed on all modules, but this is not the same of
having just one consistent, synthetic measure as with
fractal dimension.

For this reason, we believe that the fractal dimen-
sion of software networks is a significant metric
describing the regularity of the software structure. It is
therefore important to have efficient and reliable

Proceedings of the 9th WSEAS International Conference on APPLIED COMPUTER SCIENCE

ISSN: 1790-5109 146 ISBN: 978-960-474-127-4

algorithms to compute it. In fact, as it will be shown
in the following, the box counting algorithm is NP-
complete, and its exact computation for large
networks cannot be practically accomplished.

In this paper we recall the definition and meaning
of fractal dimension in software networks, and then
present and compare three different algorithms to
compute it – Greedy Coloring, a Merge Algorithm
devised by the authors, and Simulated Annealing –
discussing the results.

2 The Fractal Dimension of Software
Networks

2.1 Object-Oriented Systems as Networks
The basic building block of OO programming is the
class, composed of a data structure and of procedures
able to access and process these data. The data struc-
ture is made up of fields (instance or class variables)
that represent the state of an object.

A class has also a behavior expressed in terms of
methods that represent the procedures able to access
and process the data structure. Classes may be defined
at various levels of complexity, and are related across
different kinds of binary relationships, such as inheri-
tance, composition and dependence, which are well-
known properties of OO design.
Analyzing the source code of an OO system, it is pos-
sible to build its class graph —a graph whose nodes
are the classes, and the graph edges represent directed
relationships between classes. In this graph, the in-de-
gree of a class is the number of edges directed toward
the class, and is related to the usage level of this class
in the system, while the out-degree of a class is the
number of edges leaving the class, and represents the
level of usage the class makes of other classes in the
system. It has already been shown that OO software
networks exhibit the scale-free and small-world prop-
erties, and thus can be considered complex networks.
The in-degree distributions are power laws with expo-
nent γ ≈ 2.5 [1], [3], while the out-degree distributions
are more controversial, and are mainly log-normal or
Double-Pareto distributions [3], [8].

2.2 Fractal Dimension of OO Networks
A recent study [5] found that the structure of complex

networks is often also self-similar, and it is possible to
calculate their fractal dimension using the box-count-
ing method. This method consists in covering the en-
tire network with the minimum number of boxes NB

of linear size lB For a given network G and box size
lB, a box is a set of nodes where all distances lij
between any two nodes i and j in the box are smaller
than lB. If the number of boxes scales with the linear
size lB following a power law (see eq. (1)), then dB is
the fractal dimension, or box dimension, of the graph
[5]:

(1)

The computation of the fractal coefficient of a
network is thus a two-step one. First, an assessment of
the self-similarity of the network has to be done, com-
puting the minimum number of boxes covering the
network, varying lB from one to a given number, usu-
aly 10 or 20. This is the most computational intensive
step. Then, one has to check whether NB(lB) is linear
in a log-log plot, showing a power-law behavior. This
check is somewhat subjective, though it is possible to
compute confidence intervals to this purpose.
Eventually, an estimate of dB is made fitting the plot
with an LMS algorithm.

It has been already reported that OO software net-
works related to classes of large Smalltalk and Java
systems show a patent self-similar behavior, with frac-
tal dimension between 3.7 and 5.1 [6]. So, for OO
software networks it is important to have efficient and
reliable algorithms able to compute their fractal di-
mension.

Fig. 1. Log-log plot of NB vs. lB for JDK 1.5.0.

N Bl B~lB
−d B

Proceedings of the 9th WSEAS International Conference on APPLIED COMPUTER SCIENCE

ISSN: 1790-5109 147 ISBN: 978-960-474-127-4

Fig. 1 shows the box counting analysis of the
software network related to JDK 1.5.0 Java system.
The log-log plot of NB vs. lB reveals a self-similar
structure. The slope of the fit is 4.24; this value is the
fractal dimension dB for JDK 1.5.0.

2.3 Computing the Fractal Dimension
Song et. al. in their first paper [5] do not give details
about how they actually computed the fractal dimen-
sion. Subsequently, Concas et al. shortly presented a
simple algorithm for computing dB [6]. Later, Song et
al. demonstrated that this computational problem is
equivalent to the graph coloring problem, and conse-
quently took advantage of the many well-known
greedy algorithms to perform this task [9]. Here we
compare three algorithms both in terms of perfor-
mance and precision – greedy coloring as in [9], a
merge algorithm similar to that reported in [6], and
simulated annealing, which is considered one of the
best approaches to find the global minimum of
difficult, multi-modal problems.

2.3.1 Greedy Coloring (GC)
Song et al. demonstrate that the box counting problem
can be mapped to the graph coloring problem, which
is known to belong to the family of NP-hard
problems. Vertex coloring is a well-known procedure,
where colors are assigned to each vertex of a network,
so that no edge connects two identically colored
vertexes [10]. We used the greedy algorithm described
by Song et al. For this implementation we need a two-
dimensional matrix cil of size N × lB

max, whose values
represent the color of node i for a given box size
l = lB. The algorithm works in the following way [9]:

(1) Assign a unique id from 1 to N to all
network nodes, without assigning any
colors yet.

(2) For all lB values, assign a color value
0 to the node with id=1, i.e. cil = 0.

(3) Set the id value i = 2. Repeat the
following until i = N.
(a) Calculate the distance lij from i to

all the nodes in the network with id
j less than i.

(b) Set lB = 1.
(c) Select one of the unused colors cjlij

from all nodes j<i for which lij≥ lB.

This is the color cjlB of node i for
the given lB value.

(d) Increase lB by one and repeat (c)

until lB = lB
max..

(e) Increase i by 1.

This greedy algorithm is very efficient, since it
can cover the network with a sequence of box sizes lB

performing only one network pass.

2.3.2 Merge Algorithm (MA)
This method is based on the union of two or more
clusters into a third one. Two clusters are merged if
the distance between them is less than lB. MA uses the
configuration at lB to obtain the starting point for the
successive aggregation at lB+1 = lB + 1.

In the initial configuration each cluster ck con-
tains only a node, so each node is marked with a dif-
ferent label. Let n be the number of nodes of the
network, and lmax the maximum value for lB. The al-
gorithm works in the following way:

lB = 2;
C ≡ {c1, c2 , c3 ,..., cn};

while lB lmax;
D ≡ Φ;
repeat

get a random cluster ck from C;
C’ ≡ {cj C| d(ck,cj) ≤ lB};
get a random cluster ci from C’;
ĉ = merge(ck,cj);
C = C - {ck,cj};
D = D {ĉ};

until size(C) < 2 or C’= Φ c C;
D = D C;
NB = size(D);
lB := lB +1;
C = D;

end while;

In order to find the set C’ we use an efficient
burning algorithm to determine in a single step all
clusters belonging to C’.

2.3.3 Simulated Annealing(SA)
The MA described above is an efficient method to
estimate the fractal dimension, and the base for

Proceedings of the 9th WSEAS International Conference on APPLIED COMPUTER SCIENCE

ISSN: 1790-5109 148 ISBN: 978-960-474-127-4

Simulated Annealing algorithm. SA is a class of
algorithms inspired by the annealing process in
metallurgy [11]. In the SA context, a box partition
(box covering) is the state S of the physical system
and the number of boxes NB is the “internal energy” in
that state.

In order to consider a neighbor state S’ of the
current state S we compute three fundamental
operations:

• movement of nodes;
• creation of new clusters;
• union of clusters.

If S’ is a solution worse that S, there is a
probability to accept the state S’ even if it has the
energy E(S’) > E(S).

A new state or partition with boxes of size lB is
obtained from the current state by moving nodes and
merging clusters. Let A and B be two generic clusters of
the current partition. We define the following operations:

• movement: a node is moved from A to B if B
diameter doesn’t exceed lB, and A includes at
least two nodes;

• creation: a node is taken from cluster A to
form a new cluster;

• merge: all clusters are merged by using the
merge algorithm described in section 2.3.2..

At each “temperature” we perform k1 movements
and k2 creations of nodes, and a single merge of all
clusters by using MA. We always accept a better or
equal solution, while we accept a solution S’ worse
than S with probability:

(2)

At each step the system is cooled down to a lower
temperature T0 = cT , where c < 1 is the cooling
constant. The typical starting temperature T is about
0.6 and the typical values of k1 and k2 are 5000 and 5,
respectively. Similar values are used by Zhou et al. in
their implementation of the SA algorithm [12]. In
deeper detail, the algorithm works in the following
way:

create first configuration S using MA
for j (j = 1, 2,,k3) do

move k1 nodes;

create k2 new clusters;
if E(S’) ≤ E(S) then

S := S’
else

get a random number RND;
if RND < exp(−(E(S’)−E(S))/T) then

S := S’
endif;

endif;
merge clusters using MA algorithm;
T := cT;

endFor;

We perform about 5000 steps at each
temperature, and then reduce T. The number of outer
cycles (temperature reductions) is k3, and it is set to
20, with cooling constant c set to 0.995 [12].

3 Results
We implemented in Java the three algorithms and
compared their performance in terms of speed and
quality of the result. In fact, being the box partitioning
problem NP-complete, on large networks its exact
solution is not feasible. Consequently, it is not enough
to have a fast algorithm to compute the box
partitioning, but the results must be trusted, in the
sense that the partitioning found should be close
enough to the global minimum to guarantee the
consistency of the results. We tested the goodness of
the results by repeatedly running the same algorithm,
selecting randomly the initial configuration. We then
checked the variance of the resulting estimate of
NB(lB) for various values of lB, which in turn depends
on the number of boxes found in each partitioning.

We used for the tests the software network related
to Java JDK 1.5 system, which includes the standard
Java libraries and development tools. The JDK
network has 8499 nodes and 42048 edges, so it can be
considered a quite large network.

3.1 Execution speed
We computed the execution speed on the whole
computation of dB, which is what actually matters,
running the three algorithms starting from random
configurations of the initial box partitioning and
performing 100 times the computation. The results for
a PC with Windows XP and a processor Intel Core
1.4 GHz are reported in Table 1.

p=e
−

E S '− E S
T

Proceedings of the 9th WSEAS International Conference on APPLIED COMPUTER SCIENCE

ISSN: 1790-5109 149 ISBN: 978-960-474-127-4

Table 1. Average execution times for dB computation
on JDK 1.5 class graph.

Algorithm Time (s) dB

GC 410 3.96
MA 289 4.24
SA 8807 4.06

As you can see, the most efficient algorithm is
MA, and this is confirmed also by other test runs on
other networks, not reported here for the sake of
brevity. GC is still very efficient, while SA is much
worse as regards execution speed, being at least one
order of magnitude slower.

Regarding the quality of results, they look similar
but not exactly the same. This is discussed in detail in
the next section.

Fig. 2. Empirical distributions of the values of NB for six

values of lB, for GC algorithm run 1000 times.

3.2 Result Quality
We computed the reliability of the three tested
algorithms by testing for their repeatability in 1000
runs on a smaller network than the whole JDK 1.5
software graph, the E. Coli protein interaction
network [5]. This network has 2859 nodes and ,6890
edges. We varied lB, from 2 to 7. Figs. 2, 3 and 4
show the empirical distributions of the values of NB

for each value of lB, and for GC, MA and SA
algorithms, respectively.

As you can see, GC and SA algorithms show a
very small dispersion of the resulting values of NB,
showing that both are highly reliable. On the other
hand, the results of Fig. 3 regarding MA algorithm

Fig. 3. Empirical distributions of the values of NB for

six values of lB, for MA algorithm run 1000 times.

show a much higher dispersion. Consequently, despite
its high performances, we deem that MS algorithm is
not suitable for the computation of software networks
fractal dimension.

Fig. 4. Empirical distributions of NB for six values of lB, for
SA algorithm run 50 times.

We report in Fig. 5 the standard deviation of the
computed NB for the three algorithms, for eight values
of lB, from 2 to 9. Fig. 5 confirms the previous results
on the reliability of the three algorithms. The standard
deviation of MA results is consistently higher than
that of GC and SA. The latter algorithms are quite
similar, with a slightly better average performance of
SA over GC on the eight test values of lB.

Proceedings of the 9th WSEAS International Conference on APPLIED COMPUTER SCIENCE

ISSN: 1790-5109 150 ISBN: 978-960-474-127-4

Fig. 5. Standard deviations of the values of NB for eight

values of lB, for MA algorithm run 1000 times.

4 Conclusion
The fractal dimension of software networks has the
potential to be a significant, synthetic metric
describing the regularity of the structure of a software
system, and moreover it has been proven to be
correlated to source code quality metrics of OO
systems. It is therefore important to have efficient and
reliable algorithms to compute it.

In this paper we presented three different algo-
rithms to compute the fractal dimension of networks,
which to our knowledge cover all the approaches
proposed in literature. These algorithms – Greedy
Coloring, Merge Algorithm, and Simulated
Annealing, have been described and compared using
the software network related to Java JDK 1.5 open
source system and, for the purpose of assessing the
algorithm reliability, also using a smaller protein
interaction network.

We found that SA is the best algorithm in terms
of precision, but it is by far the worst in terms of
speed. The time performance of MA is better than GC
for large networks but the greedy coloring produces
more precise solutions. In conclusion, the Greedy
Coloring algorithm, based on the equivalence of the
box counting problem with the graph coloring
problem, looks the best compromise, having speed
comparable to MA, and accuracy comparable with
SA.

References:

[1] S. Valverde, R. Ferrer-Cancho, and R. Sole´,
Scale-Free Networks from Optimal Design. Eu-
rophysics Letters, vol. 60, 2002, pp. 512-517.

[2] C. Myers, “Software Systems as Complex
Networks: Structure, Function, and Evolvability
of Software Collaboration Graphs”. Physical
Rev. E, vol. 68, 2003.

[3] G. Concas, M. Marchesi, S. Pinna, and N. Serra,
Power-Laws in a Large Object-Oriented Software
System, IEEE Transactions on Software
Engineering, vol. 33, No. 10, 2007, pp. 687-708.

[4] P. Louridas, D. Spinellis and V. Vlachos, Power
Laws in Software. ACM Trans. Software Eng.
and Method., Vol. 18, No. 1, 2008.

[5] C. Song, S. Havlin and Makse H. A., Self-
similarity of complex networks, Nature, vol. 433,
pp. 392-395, and related supplementary infor-
mation, 2006.

[6] G. Concas, M. Locci, M. Marchesi, S. Pinna, and
I. Turnu, Fractal dimension in software networks,
Europhysics Letters, vol. 76, 2006, pp. 1221-
1227.

[7] S. Chidamber, and C. Kemerer, “A Metrics Suite
for Object-Oriented Design”, IEEE Trans. Soft-
ware Eng., vol. 20, no. 6, pp. 476-493, June 1994.

[8] G. Concas, M. Marchesi, A. Murgia, R. Tonelli,
I. Turnu, Stochastic models of software
development activities, submitted for publication.

[9] C. Song, L.K. Gallos, S. Havlin, H. A. Makse,
How to calculate the fractal dimension of a
complex network: the box covering algorithm,
Journal of Statistical Mechanics, P03006, 2007.

[10] D.W. Matula, G. Marble and J.D. Isaacson,
Graph Coloring Algorithms. In Graph Theory
and Computing (Ed. R. Read). New York:
Academic Press, pp. 109-122, 1972.

[11] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi,
Optimization by Simulated Annealing. Science,
vol. 220, 1983, pp. 671-680.

[12] W.X. Zhou, Z.Q. Jiang, D. Sornette, Exploring
self-similarity of complex cellular networks: the
edge-covering method with simulated annealing
and log-periodic sampling. Physica A vol. 375,
No. 2, 2007, pp. 741-752.

Proceedings of the 9th WSEAS International Conference on APPLIED COMPUTER SCIENCE

ISSN: 1790-5109 151 ISBN: 978-960-474-127-4

