Modeling Service-Driven Architecture for Distributed Enterprise Portal for Maintaining Global Patch Consistency

Hui-Ling Lin1, Shao-Shin Hung2, and Derchian Tsaih3
1Department of International Business, Ling Tung University, Taiwan, R.O.C
2Department of Computer Science and Information Engineering, WuFeng Institute of Technology, Chiayi, Taiwan, R.O.C
3Department of Electronic Commerce Management, Nanhua University, Chiayi, Taiwan, R.O.C
1ljoyce@mail.ltu.edu.tw; 2hss@cs.ccu.edu.tw; 3dtsaih@mail.nhu.edu.tw

Abstract: Service-oriented architectures are increasingly used in the context of business processes. However, the proven practices for process-oriented integration of services are not well documented yet. In addition, modeling approaches for the integration of processes and services are neither mature nor do they exactly reflect the proven practices. This paper presents the design, implementation of an extensible, scalable, web services ripple propagate routable base, transnational hierarchical global patch consistent model called THGPCM (Transnational Hierarchical Global Patch Consistent Model). Improving the OPDS (Original Patching Data Source) enabled network equipments, capable of updating patch parameter that existed in enterprise with specified OPDS partially dependency relationships. The paper also proposed a new scalable patching replica routing service algorithm, that dynamic reconfiguration distributed forwarding data path within enterprises hierarchical region enterprise portal. Apply scenario can reduce the global patch service cost of transnational enterprise network equipments and minimum the turnaround time of patch service delay.

Keywords: Service-oriented, patch, consistency, routing, distributed

1. Introduction

Service-oriented architectures (SOA) are an architectural style in which all functions, or services, are defined using an interface description and have invokable, platform-independent interfaces that are called to perform business processes. Unfortunately, the design principles and proven practices (also referred to using the term “best practices”) behind process-driven SOAs have not been well documented so far [1, 12]. On the other side, new services and applications demands increase growth in future generation network and gradually leading to the concept of extensible enterprise portal (EP). Deploying new services within an EP in a dynamic and flexible manner requires open architectures for controlling new data flow and web service processing functionality at run time. Traditional EP, has monolithic architectures which limit flexibility and extensibility for supporting dependency copies consistency issues. In other words, they always have the following problem — in large scale distributed systems, caching and replication could greatly speedup access and increase availability of distributed shared objects’. Both caching and replication create multiple copies of the state of an object which introduces the problem of consistency among the copies. The performance and functionality of such a distributed system could depend very much on the level of consistency it provides. Consistency of replicated state can be guaranteed by forcing operations to occur...
Several studies are currently focusing on the design and concept of using caching, middleware and database replication technologies [1-3] to provide modular and flexible EP to meet the requirements. However, existing EP architectures do not meet the efficiency and scalability global data consistency.

This paper presents the design, implementation of an extensible, scalable and distributed hierarchical based routing portal, called THGPCM (Transnational Hierarchical Global Patch Consistent Model), capable of supporting ripple-and-propagate updating copies that exist in internal heterogeneity of database with specified OPDS (Original Patch Data Source) partially dependency relationships. The paper also proposed a new scalable replica routing policies that dynamic reconfiguration distributed forwarding data path in hierarchical enterprise databases.

However, wide area global dependency patch replica consistency in TDHEO (Transnational Distributed Hierarchical Enterprise Organizations) become increasingly important and popular. To meet this aim, our approach can be divided into 2 phases. First, a novel global dependent replica updating platform was proposed in the first phase, which consists of active, real time, automation, and global FPC (Forwarding Portal Clusters) web services routing technologies. When OPDS object was triggered by update event, all patch replica with the specific OPDS dependent relationship could be automatically and real time updated. Second, the following phase proposes a specific OPDS mechanism with dependent patch replica consistency maintenance scheme; i.e., a framework that provides update routing policy with adaptive and adjustable properties — like update reserve priority, and value added update services, based on usage mining results of patch replica with specific OPDS dependency relationships.

Based on the core of the ubiquitous updating process framework, several models were built. The usage mining rate for OPDS dependency patch replica is a function of dependency replica operation response time and turnaround time. The updating route policy scheduling rate is a function of usage mining and reservation priority. The production rate of activity represented as a time variable. Different value added update service schema was also analyzed. For example, active updating pushed by real time, periodic, reservation, and queuing with priority / degradation / preemption etc. Apply scenario can reduce the global patch service cost of transnational enterprise network equipments and minimum the turnaround time of patch service delay.

Section 2 of this paper summarizes related work. In Sect. 3-1, the active OPDS dependency copies wide area consistency processing models are presented. In Sect. 3-2, we illustrate a OPDS agents [4-7] and web service [8-11] driven architecture. In Sect. 3-3, we illustrate the agent through a variety of flexibility and customization message publishes mechanism to transfer OPDS update copy. In Sect. 3-4, Forwarding EP (Enterprise Portal) agent use pipeline mechanism automatically conversion of all kinds of dependency patch replica format and update TDHEO patch replica with OPDS dependencies. In Sect. 3-5, we show the system sequential diagram. The OPDS hierarchical ripple propagation routing algorithm discussion is given in Sect. 4. Finally, the distribution of web service processing functions over distinct and heterogeneous entities must be achieved according to capabilities. Current cluster based EP do not provide these needed mechanisms and architectures to create a distributed data path composed of multiple
web service processing functions located in different clusters. This is exactly the aim of THGPCM which provides scalable and high performance replica forwarding path using the optimization framework proposed in Sect. 5.

2. Related work

Today’s global patch consistent solution have been proposed of following kinds: data integration middleware [12][13], xml-based integration middleware, xml-based data integration platform and xml-powered integration middleware. All these data integration system that enables enterprises to rapidly build web services and applications that can query multiple, disparate data sources and provides a unified result. That also provides direct access to business information which was previously cumbersome, time-consuming, or cost-prohibitive to acquire.

Enterprises must pay more effort to keep global network equipment patch consistent than before, but the original version of patch replica dataset is locked up in a patchwork of disparate systems: legacy systems, relational databases, flat files, document repositories, data warehouses, Microsoft excel files, web pages, email and more other data sources. Beyond a company’s firewall is an ocean of additional data in partner, customer and supplier systems. Because these systems were never designed to work together, it’s extremely challenging to take full advantage of the information locked up in all that data. Yet competitive market requires that companies do the job exactly.

If patch replicas having partial dependency relationships with specific OPDS object inside TDHEO can’t keep mutual consistency, the following problems will be happened. 1. The Bullwhip Effect will be occurred in dependency patch replicas flow chain operation. 2. Enterprise network equipments can’t make sure the newest version patches. 3. It is easy for TDHEO knowledge base to occur horizontal information lacks harmony. 4. The OPDS can’t control its patch replicas updating flow, transaction, usage mining results and it can’t support different priority and value added updating services. 5. The dependent patch replicas usage mining results can’t be sent to OPDS site to make adaptive patch replicas updating route policies and value added updating services.

3. Concept model description

3.1 THGPCM model of patch consistency

In this paper, a novel framework was proposed which consists of active, real time, automation, and global routing patch replica from OPDS domain to TDHEO set. See in Figure 1.

![Figure 1. THGPCM concept model](image-url)

When OPDS object occurred add/insert events, according to subscribe lists. New copies will propagation push to all global TDHEO portal which contained dependency patch replica. The EP then make one of the choices about discard/rerouting to lower hierarchy portal, automatic pipeline processing and schema transformation. All wide area OPDS dependent patch replica
In this section, which consists of OPDS subscribe and ripple propagation message chain shown in Figure 4 and 5. When OPDS object was triggered by update event, the message chain was propagation in active, real time, and automation. Then all patch replica with the specific OPDS dependent relationship could be globally updated.

Figure 2. THGPCM infrastructure model

3.2 Enterprise portal model

Application operation patch replica in intranet have three kinds of models. In Figure 3, patch replica with partial specific remote OPDS dependency relationships were denoted by (a). Patch replica with OPDS role in extranet enterprise flow chain was denoted by (b). A replica with partial dependency with a specific self-enterprise intranet OPDS was denoted by (c). Each EP can be two roles: FP (Forwarding Portal) and FPC (Forwarding Portal Cluster).

Figure 3. enterprise portal model

3.3 OPDS ripple propagate routing mechanism

In this section, which consists of OPDS subscribe and ripple propagation message chain shown in Figure 4 and 5. When OPDS object was triggered by update event, the message chain was propagation in active, real time, and automation. Then all patch replica with the specific OPDS dependent relationship could be globally updated.

Figure 4. OPDS ripple propagation request info.

3.4 Portal agent pipeline conversion schema

The EP then make one of the choices about discard/ reroute to lower hierarchy portal/automatic pipeline processing and schema transformation. See in Figure 6
Routing algorithm was built into each EP for assisting the xml data stream route path choosing.

4.1 Basic principle

The routing table fields description include: 1. OPDS dependency replica updates request information always maintained by EP. 2. Information Included UUID value, PK value, Hop count, web service client etc. need to log in portal routing table from lower hierarchy enterprise request issues. 3. Portal’s replica update routing information can come from intranet and extranet enterprise. 4. When a OPDS update replica publish to Portal, it will discard, send to processing unit, or reroute to lower portal depend on routing table check results. 5. For each route request from lower hierarchy portal will add a HC value to routing table’s Hop Count value field.

4.2 Routing algorithms

Apply the rules to each route request. The ASF (Action State Flag) is sent from lower layer EP by portal agent and web services.
Figure 8. DHWS routing algorithms

The following: Figure 9; is a demonstration for using above algorithm to adjust the P1 portal routing table

Figure 9. demonstration for routing algorithm

5. THGPCM model

5.1 Motivation

This section aims at deriving a mathematical model for the THGPCM forwarding plane to enable performance evaluation and optimal solution of the distributed routing data path. The analysis and modeling in fact leads to the well known shortest path optimization problem that has been extensively studied in the literature. Consequently, the paper will limit the analytical work to the derivation of the model and the mathematical expressions to minimize. The choice of an optimization criterion or performance metric determines the analytical model and the techniques that will be selected for optimization.

For simplicity, the paper focuses only on web service loss performance since adding an end-to-end constraint does not change the model. The objective is to minimize web service loss rate by selecting the appropriate set of FPC to form the routing data path. As described in Sect. 3.3 the distributed EP topology is composed of multiple interconnected EPs located in different Forwarding Portal Clusters. To enable load sharing over the THGPCM, the same EP function can exist in several Forwarding Portal Clusters. For a given EP, the next EP (or neighbor EP) may be located in the same Forwarding Cluster or in a different Forwarding Cluster. The distributed data path should take the shortest path, to minimize web service loss from the ingress to the egress EP along the logical distributed EP topology. It is more logical to forward web services from a given EPi to a next EPj located in the same Forwarding Cluster rather than send them to the EPj (with the same functionality) located in a different
Forwarding Cluster. This is due to the web service loss that affects traffic performance between clusters (see Sect. 5.4, performance evaluation). Moving update patch replica from an EP to other EPs located in other clusters should be minimized. The ERP (Enterprise Root Portal), root of EP topology, is responsible for calculating and creating the THGPCM data path by configuring the EP web service forwarding tables involved in the data path web service processing. The objective for the ERP is to determine the most efficient path with respect to a given constraint (web service loss rate) to satisfy the requirements of multimedia traffic. This is known as the constraint-based path selection problem.

The ERP (Enterprise Root Portal) can get optimize web service routing table according by receiving dependency replica updating request from low layer EPs. Then ERP configure each EP web service forwarding table based on a shortest path algorithm to create the appropriate distributed data path.

5.2 Problem formulation

For a given data path, a set of EPs are needed to perform web service processing functions from an ingress EP to an egress EP, and these EPs can be physically distributed and can be duplicated. Hence, several paths are possible between ingress and egress EP nodes since multiple duplicated EPs can perform the distributed data path.

For a given data path, DP is used to denote a vector of EPj involved in the data path formation:

\[DP = (EP_j) \quad \text{for} \quad 1 \leq j \leq F. \]

(1)

that is also equivalent to a vector of sets A involved in the data path formation:

\[DP = (A_j) \quad \text{for} \quad 1 \leq j \leq F. \]

(2)

Figure 10 shows an example of a given FPC data path DP in enterprise intranet and extranet environment.

Symbol description: Enterprise is denoted by E. Routing path is denoted by r. Flow path is denoted by c and b. EP encountered OPDS dependency patch replica flow will generate three kinds of message flow path, as follows.

Apply in enterprise extranet data path, like formula (3).

\[\text{E5} \rightarrow b3 \rightarrow r1 \rightarrow r3 \rightarrow \{c7|c8\} \rightarrow \{E7|E8\} \rightarrow \{b6|b9\} \rightarrow r1 \rightarrow r3 \]

(3)

For redirect updating replica to other hierarchy enterprise, flow path like formula (4).

\[\text{E5} \rightarrow b3 \rightarrow r1 \rightarrow r2 \rightarrow \{c1|c2|c3|c4\} \rightarrow \{E1| E2| E3| E4\} \rightarrow \{b1|b2|b4|b7\} \rightarrow r1 \rightarrow r2 \]

(4)

For synchronize trigger multiple EP horizontal patch replica consistency, the feedback intranet OPDS updating copy must be built in, like formula (5)

\[\text{E8} \rightarrow b9 \rightarrow r1 \rightarrow \{r2 \Rightarrow \text{same above (a)}\} | \{r3 \Rightarrow \text{same above (b)}\} \]

(5)
6. Conclusion and future work

This paper presents the design, implementation of an extensible, scalable, web services ripple propagate routable base, transnational hierarchical global patch consistent model. This model provide adaptive adjustable update routing policies, update reserve priority, and value added update services based on usage mining results of patch replica with specific OPDS dependency relationships. It's mainly contribution as follows. 1. The OPDS dependency patch replica usage mining rate is a function of dependency replica operation response time and turnaround time. 2. The updating route policy scheduling rate is a function of usage mining and reservation priority. The production rate of activity represented as a time variable. 3. Different value added update service schema was also analyzed. For example, active updating pushed by real time, periodic, reservation, and queuing with priority / degradation / preemption etc. With these resolution models, optimization of the correct copy inputs and switching time of each activity in a recursive routing are calculated to obtain the minimum total cost of the project. The result can reduce the global patch service cost of transnational enterprise network equipments and minimum the turnaround time of patch service delay.

References

[7] Aurora Vizcaíno and Juan Pablo Soto and Javier Portillo-Rodriguez and Mario

