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Abstract: The concept of Bond Graph (BG), introduced by Paynter and perfected by Karnopp and Rosenberg 
[1] contributed a unified method to describe dynamic models of multidisciplinary systems since they can be 
modelled using elements possessing the properties of generation (Se, Sf), storage (I, C), dissipation (R) and 
transformation of energy (TF, GY). These elements interrelate in a conservative energy field by means of   
bonds that indicate the energy transfer and bonds (0, 1), which symbolise the system’s dynamic behaviour. The 
resulting structure offers a global view of the system and its physical structure. Moreover, after obtaining 
causality, this technique also offers the computational structure and reveals any possible mathematical 
problems in simulating it. The entire system remains open and accessible unlike the classical methods. 

Starting out from a study of the different simulation programs available, this paper presents a simulation 
program based on the BG technique, which represents a considerable advance towards improving current 
automatic modelling methods. As will be seen in the following pages, the technique contributes a causal 
assignation algorithm specifically designed to allow the modeller maximum freedom without their having to 
take any kind of decision that might affect the end calculation. It also automatically provides the optimised, 
reduced state equations required to symbolically analyse linear and non-linear systems. To do so, it solves the 
problems arising when simulating models with differential causality without any need to modify the graph 
charts and reduces the model to the set of differential equations required to perform the simulation, eliminating 
where possible the restriction equations, thereby reducing the computation time used in the simulation.  
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1   Introduction 

Efforts to automate the BG method in recent years 
have focused on solving the problem of the 
dependent co-ordinates that frequently appear in 
mechanical [2], electrical [3] and thermal [4] 
systems. Some solutions that have appeared up to 
now consist in handling the state equations either 
manually [2] or with the help of symbolic calculators 
[5]. Other solutions add stiff type elements that allow 
relaxing the system by increasing its degrees of 
freedom [6]. Finally, some authors propose 
introducing Lagrange multipliers to solve the 
problem [2] [7]. 

Another mainly unsolved problem is that of 
automatically obtaining the mathematical model of 
complex systems where there is any number and type 
of zero order causal paths (ZCP); that is, paths along 
which there are no integration operations. These 
ZCPs generate mathematical models comprising 
DAE systems that can present varying degrees of 

difficulty when it comes to solving them by means 
of numerical integration. 

Therefore, an important objective that was dealt 
with in the development of Bondin © was to 
generate alternative procedures to existing ones, 
that would automatically implement causality, 
analyse the BG and obtain the break variables, if 
necessary, and consider the DAE equations 
associated with the break variables inside the 
differential equations and finally solve the resulting 
system of equations. 

 
 

2   State-of-the-art 
The first simulation program performed using 

the BG technique was called ENPORT [8] and was 
developed at the beginning of the 70s at the 
University of Michigan. At the end of this decade 
the University of Twente, in Holland, developed 
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another BG-based tool called THTSIM in Europe and 
TUTSIM in the United States. 

Later, at the beginning of the 90s, the same 
research group that had developed THTSIM-
TUTSIM produced  CAMAS, based on the SIDOPS 
simulation language that would eventually evolve 
into 20-SIM. Also at the beginning of the 90s, 
Madrid Technical University, the University of 
California and the University of Michigan developed 
other similar software (BONDYN, CAMP-G and 
CAMBAS), the two latter with the purpose of 
converting a BG into a series of data that would be 
valid for digital simulation languages (DSL) and for 
working with machines running the SUN operating 
system respectively. Halfway through the 90s, 
Research Park Ideon, Sweden, developed DYMOLA, 
a general purpose modelling and simulation program 
developed in the language oriented towards 
MODELICA objects, which offered the possibility of 
representation using BG. Also halfway through the 
90s, the University of Glasgow generated software 
called MTT. At the end of the 90s a modelling 
workbench developed in partnership with EDF 
(Electricité de France) generated MS1, which 
performed a symbolic manipulation of the equations 
in the model by means of causal analysis, generating 
the code required to run the simulation. Also in the 
same period the Indian Institute of Technology 
carried out SYMBOLS, which permitted hierarchic 
modelling using objects and systems control. 

Apart from the tools specified above, there are 
other less widespread applications (ARCHER, 
PASION-32, BONDLAB, HYBRSIM). 

In sum, it may be said that the most advanced 
applications usually generate instructions in a 
particular language so that once complied it can be 
run and simulated. Some of the other computer 
applications can only be used with linear systems and 
constant parameters. In other cases, the user is 
required to make decisions that usually lead to 
unequal results. Finally, should there be any, the 
equations obtained, either symbolically or 
numerically, are only for the user to understand the 
simulation model and not to be worked with in depth. 

Therefore, taking the existing software as a basis, 
in 2002 work was begun on a tool that would be 
capable of correctly obtaining the causality of the 
models so that the modeller would have maximum 
freedom and the tool then automatically provide the 
optimised reduced state equations required to analyse 
linear and non-linear systems symbolically and 
finally go on to simulate ODE and DAE systems. 
Bondin © has been used in numerous papers [10]-
[15] and pieces of research work undertaken by the 
authors since then and it has now been decided to 
propagate it among the scientific community. 

3   Main characteristics 
This software incorporates algorithms for causal 

analysis and for reducing DAE systems of 
equations to ODE, whenever possible, that have 
been developed to that end. Thus, the main features 
are: 

 

• Bond Graph model simulation and variable 
parameters that are user- programmable, either 
under   pseudo-programming or by calling on 
external dynamic libraries without the need to 
do any compilation whatsoever. 

• The different elements are parametrically and 
symbolically defined. 

• Subset libraries are east to create. 

• A model can be given unlimited hierarchical 
structuring using subsets. 

• Automatic generation of causality. 

• The equations resulting from the model can be 
obtained symbolically and legibly. 

• Obtaining the minimum set of equations by 
reducing the number of constraint equations 
and using symbolic operations automatically. 

• Numerical resolution of the model and graphic 
output. 

 
Throughout the following sections a brief 

description will be made of the visible part and of 
the different algorithms developed that have been 
used. 

 
 

4   Interface 
The software described here basically consists 

of a menu bar, a tool bar and a work window where 
the model to be simulated is defined (fig. 1), either 
by the notation of ports and graphs or by means of 
subsets encapsulated under icons that are 
hierarchically structured in the program installation 
directory and automatically reflected in a pop-up 
window. 

As each element is inserted, the program asks 
the user for the symbolic expression associated 
with its definition in order to be able to relate the 
different parameters with one another and thus be 
able to go on to produce an optimal formulation of 
the equations associated with the model once it has 
been fully implemented (fig 2). 
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Figure 1: Schematic capabilities of Bondin ©. 

 
In respect of the name of the elements, as will be 

seen further on, this will serve to refer to the 
variables associated with the different ports when the 
user needs to program and also to interpret the 
different equations and graphs produced. 

 

 
 

Figure 2: Parameters dialogue box. 
 
In respect of the value associated with each 

element, this may be a numerical, symbolic or mixed 
expression. In the latter case the expression may be 
dependent on the generic variable ‘t’ (time) or on the 
independent variables. Besides the basic operators 
contained in the whole expression (+, -, *, /), these 
expressions may contain any of the following typical 
functions or constants: 

 

• Trigonometric functions: sin, cos, tan, cot, asin, 
acos, atan, ascot, sinh, cosh, tanh, coth, arsinh, 
arcosh, artanh, arcoth. 

• Mathematical functions: sqr, sqrt, exp, lg, ln, 
abs, sgn, round, fac, rand. 

• Universal constants: pi, e. 

• Operators: ! (factorial), ^ (power), % (percentage). 
 

So that the results graphs show a correct result 
(displacement, speed, pressure, temperature, angle, 
…) and the values associated with each port have 
the correct units of measurement, the physical 
domain to which the different elements of a model 
simulation belong can be selected. 

Once the composition of a BG model has been 
completed, as to both the form and the values 
associated with the different elements, everything is 
now ready for proceeding to the simulation. To do 
this, initially almost all the options are disabled, 
since the functions associated with each option 
require a certain order. Due to this, as one function 
or another is completed, new menu options will be 
automatically activated. 

 
 

5   Obtaining causality 
In order to carry out the simulation of a model, 

firstly an analysis of causality must be made to 
indirectly determine the dependent and independent 
variables, the number of algebraic and differential 
equations and detect any possible problems. It is for 
this reason that the only option activated at the 
beginning is this one. 

 

 
 

Figure 3: ´Calculation´ menu. 
 
Using the ‘Causality’ option a causal analysis of 

the model is performed and the result is shown by 
means of the causality lines on the graphs and their 
being assigned one colour or another. 

 

 
 

Figure 4: Electrical operation of a lathe by using PI type 
regulators with solved causality in Bondin ©. 
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The colour blue is assigned to the graphs where 
causality has been obtained from other pre-calculated 
causalities or due to the imposition of integral or 
differential causalities on the different I or C ports 
(fig. 4) while pink is reserved for the graphs where 
causality needed to be imposed in order to obtain a 
correct analysis. 

The program consists of two causal assignation 
algorithms. It initially attempts to assign causality 
using the first algorithm, but if this cannot be done 
successfully, it does so with the second one. If this is 
the case a message appears to inform of this with the 
only purpose of stating which of the two algorithms 
has been satisfactorily used. 

Karnopp and Rosemberg [1] introduced the 
sequential causality assignation procedure (SCAP), 
this being the conventional procedure to use.  

This procedure consists of the following steps: 
1.- Assign appropriate causality to one of the 
sources and extend across the other nodes. Repeat 
until all the sources have been taken account of. 
2.- Choose any I or K element and assign integral 
causality. Extend it across the other nodes. Repeat 
until all the I and K ports have been taken into 
account. 
3.a.- Examine the state of the BG: If there is an 
incomplete causality, with no conflicts, continue 
in step 4. 
3.b.- Examine the state of the BG: If there is an 
incomplete causality, with conflicts, stop and 
correct the model by the user. 
3.c.- Examine the state of the BG: If there is a 
complete causality, finalise. 
4.- Choose a resistance port without assigned 
causality, assign an arbitrary causality and extend 
it. Repeat until all the resistances have been taken 
into account. 
5.- Choose an intermediate bond without assigned 
causality, assign an arbitrary causality and extend 
it. Repeat until all the bonds have been completed. 
 
In order to study a greater number of cases 

without having to change the BG model structure, 
some modifications have been made to this 
procedure. These are in point 3.b, where the option of 
causal compatibility or conflicts has been considered. 
Firstly, if the conflict occurs in a node to which a 
type I or C port is attached, the causality of these 
ports changes automatically. They will initially have 
integral causality and then become differential. When 
all the type I or C ports have been concluded, if a 
conflict is produced in a node to which no type I or C 
element is attached, the next step is to eliminate all 
information referring to causality in resistances and 
intermediate bonds. Then, after changing 

automatically one of the integral causalities to 
differential causalities, the study can be continued. 
If another similar conflict is again found, the same 
operation is performed on successive integral 
causalities. By this procedure, there should only 
remain as many ports with integral causality as 
there are degrees of freedom.  

If the algorithm is incapable of continuing and 
enters into a recurring loop, the causality 
assignation starts again and checks that each time a 
causality is imposed if a conflict is created or not. If 
the case is affirmative, go back and clean 
everything that has happened since this latest 
imposition of causality and carry on with the 
following element or intermediate bond. 

If the causal analysis has been successfully 
completed, the ‘Parameters’ option will be 
activated in the menu below the ‘Causality’ menu, 
from which, strictly speaking, the simulation will 
be performed after assigning numerical values or 
programming on the user-inserted parameters. To 
do this, the program automatically analyses each 
and every one of the written expressions and 
deduces the names of the different parameters. 

 
 

6   Obtaining the equations 
Having calculated causality and inserted the 

different parameters requested, the following two 
options of the submenu (fig. 3) become active and 
from here we proceed to calculate the differential 
and/or algebraic-differential equations of the model 
in a symbolic form depending on the independent 
variables and those inserted by the user. According 
to the compelexity of the model, reducing the 
system of equations can involve a large amount of 
computation time. 

At ICBGM’05 (New Orleans, USA) [9] two of 
the authors presented a procedure for obtaining the 
minimum number of equations necessary and for 
reducing a system of algebraic-differential 
equations to a purely differential one within a 
simulation model carried out with a bond graph, 
and based only on causal assignation. The method 
employs a series of basic rules for assigning 
causality correctly in order to avoid any type of 
incompatibility. Subsequently, depending on the 
different types of causal paths and algebraic loops 
coexisting, through a succession of algebraic 
operations carried out on matrices, the method is 
capable of obtaining a system of reduced equations, 
all of which is done by using symbolic notation. 

As can be seen from the paper mentioned above 
[9], any model can be condensed into a general one 
that contemplates ports with integral and 
differential causality, and type “R” elements or 
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intermediate bonds where it has been necessary to 
assign arbitrary causality. The way to proceed is 
exactly the same in the singular cases but, obviously 
the complexity will be somewhat greater, as there 
will now be three interrelated systems instead of two.  

In these cases, once the three systems of equations 
have been formed: 
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To reduce the systems (1) to (3), which are 

composed by differential and algebraic equations, 
we can reformulate the systems and a final system 
of differential equations can be obtained:  
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The equations (4) can be generated 

automatically simply by operating and deriving the 
different matrices as follows: 
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To obtain the equations defining a model totally 

automatically that are user-transparent Maple © must 
be used. This should be installed in the computer to 
carry out symbolic operations such as matrix 
manipulation, deriving and simplifying expressions. 

 
 

===================== NON-REDUCED EQUATIONS (DAE) ===================== 
----------------------------------------- 
 - Algebraic-differential equations - 
----------------------------------------- 
 

    d/dt[VI_1]=-1/m1*R*VI_1+1/m1*K*XK_1-1/m1*m2*g+1/m1*R*Vo-g - 
    - 1/m1*m2*d/dt[VI_2] 

 

    d/dt[XK_1]=-VI_1+Vo 
 

    VI_2=VI_1 
     
======================= REDUCED EQUATIONS (ODE) ======================= 
------------------------------ 
 - Differential equations - 
------------------------------ 
 
 

    d/dt[VI_1]=(-1/(m2+m1)*R)*VI_1+(1/(m2+m1)*K)*XK_1+(1/(m2+m1))* 
               *(-m2*g) + (1/(m2+m1)*R)*(Vo)+(1/(m2+m1))*(-m1*g) 
 
 

    d/dt[XK_1]=(-1)*VI_1+(1)*(Vo) 
 

---------------------------- 
 - Algebraic equations - 
---------------------------- 
    VI_2=VI_1 
 

    d/dt[VI_2]= d/dt[VI_1] 

 
Figure 5: File with equations obtained from a model 

composed by two inertances with a rigid union. 
 
As soon as the calculation of the ODE/DAE 

expressions has been concluded, these can be viewed 

in a form that is user-readable (fig. 5) and they can 
be numerically simulated.  

When a pre-calculation of the DAE and ODE 
system equations has been made, they can then be 
simulated independently in order to reach 
conclusions and undertake time studies. 

 
 

7   Calling the variables 
To define the value associated with the different 

elements, it has been seen that those values can be 
numerical or symbolic expressions. In the latter 
case, the parameters can be constant, conditioned 
variables inserted by the user or the dependent and 
independent variables associated with the different 
ports. 

In order to be able to call a dependent or 
independent variable, either when writing the 
expression associated with a specific parameter or 
when writing a certain condition, these variables 
must take the form shown below. 

Should the variable correspond to an   
'Inertance' type port (named 'I_n'), that variable 
must be the speed 'V' of that port (in translational 
mechanics) and its integral, and  'X' the movement 
(also in translational mechanics), which means it 
will be called by placing the letter 'V' or 'X' before 

equations.txt 
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the name of the port (I_n); in addition the character 
reserved '_' will need to be placed before and after.  

 
'_' + 'V' or 'X' + name_port_Inertance + '_' 

 

Thus, '_VI_n_' would be used to indicate the 
speed or the independent variable associated with the 
inertance 'I_n' and '_XI_n_' to indicate its movement 
or the integral of the previous independent variable. 

If dealing with 'Compliance' type ports (named 
'C_n'), the variable to be taken into account is its 
movement 'X' (in translational mechanics), its 
integral having no physical sense. Therefore, in this 
type of port, the letter 'X' should be placed before the 
name of the element in question (C_n) and the 
character '_' placed before and after. 

 
'_' + 'X' + name_port_Compliance + '_' 

 

Thus, we will get '_XC_n_' to indicate the 
movement made by the spring 'C_n' or the 
independent variable associated with that element. 

 
 

8   Programming: scripts and dlls 
Sometimes, when it is wished to perform a 

simulation with greater realism and therefore greater 
complexity, it is not sufficient to insert constant 
parameters or variables that are governed by a 
particular expression. What must be done is to 
program a series of conditions that will make these 
variables vary in one way or another. While on some 
occasions it is sufficient to write some simple 
conditions, on others it is not and functions belonging 
to more complex external libraries need to be called 
on. 

To this end, two modules have been designed 
through which conditions can be inserted in one way 
or another. 

Should it be wished to insert conditions directly, 
each of them must begin with the reserved word ‘if’ 
and immediately after in brackets the requirement 
wished to be met must be written. Then, in brace 
brackets the numerical value must be placed or the 
expression linked to the condition. Finally, in order 
to indicate that writing the condition has concluded, a 
semi-colon must be put in place. Should there be 
several requirements in a single condition, each of 
these must be in brackets and separated by the 
reserved word 'and'. 

Thus, in order to program a variable damper so 
that depending on the difference of speed between its 
ends (inertances ‘I1’ and ‘I2’), the damper is softer or 
harder, it would suffice to write it as shown in figure 
6. 

 

 
if ((abs(_VI1_-_VI2_)>0) and (abs(_VI1_-_VI2_)<=5)) 
{ 
    750 
}; 
 
if ((abs(_VI1_-_VI2_)>5) and (abs(_VI1_-_VI2_)<=10)) 
{ 
    1000 
}; 
 
if (abs(_VI1_-_VI2_)>10) 
{ 
    1500 
}; 
 

 

Figure 6: Pseudo-code of a variable parameter. 
 
Calling a function from an external *.dll-type 

library will be done when the code is too complex 
to do it using simple conditions and must be 
compiled as a dynamic library (DLL). 

To make the call the reserved word 'DLL' must 
first appear to indicate that an external library 
needs to be loaded, and then the name of the '*.dll' 
dynamic library that it is wished to load and the 
name of the function to be called. Finally, the 
different variables must be indicated in the 
appropriate order, whose numerical values are 
required to be passed to the function in question, it 
not being necessary to do it with the time variable   
't' since this is an internal variable. The different 
names and variables mentioned above must be 
separated by the reserved character '$'. 

 
DLL$library$function$parameter1$..$ parameterN$ 

 
Therefore, if it is wished to define the value of 

the damper in the previous example by calling the 
'hardness' function corresponding to the library  
'characteristics.dll', by passing on to it as 
parameters the speed of the inertances situated at 
the ends 'I1' and ‘I2’ (‘_VI1_’ and‘_VI2_’), it will 
need to be written in the following form: 

 
DLL$characteristics$hardness$_VI1_$_VI2_$ 

 
 

9   Creating and handling subsets 
When it is required to repeatedly create models 

containing several similar structures, as for 
example, a hydraulic circuit [13] or a mechanism 
comprising several bars [15], this task can be 
simplified by saving these structures individually 
and then inserting them where they are needed, as 
if they were new elements. 

To create a subset, all that needs to be done is to 
design the model in question and leave a series of 
incomplete nodes through which the remaining 
elements of the end model will be connected at a 
future time. 
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Figure 7: Front-loader mechanism by using subsets in Bondin ©. 

 
As can be seen, the speed with which a complex 

model can be prepared from previously saved and 
configured models makes this a very useful tool for 
generating large models. On the other hand, if it is 
compared with its original model, its simplicity 
makes it much easier to understand. Finally, given 
the importance of the issue, particular emphasis has 
been placed on the fact that a subset can be inserted 
into another as many times as required, with no limits 
of levels. 

 
 

10   Obtaining the results 
When a simulation has been successfully 

completed, the results can be shown in graphic form 
using a dialogue box that allows choosing the 
variables to be displayed, either individually or as a 
set, and lets certain areas be zoomed in on. 

 

 
 

Figure 8: Superimposed graphs obtained. 

As we have commented throughout, the systems 
generated can be of type ODE or DAE. While the 
former can be solved with a large quantity of 
algorithms, the latter requires specific numerical 
methods to solve it, for which reason Dassl [16] 
has been chosen for its robustness and rapid 
convergence. 

 
 

11   Conclusion 
The problems involved in any model made by a   

Bond-Graph are directly related to causality and are 
greater the more complex the calculation. Many of 
the options put forward in other works attempt to 
simplify the calculation of causality and oblige the 
user to carry out changes or simplifications to the 
original model. This means that since it is the 
modeller that makes the decisions, in many cases 
the results vary or the simulation is simply not 
carried out to completion.  

On the other hand, the difficulty of numerically 
solving a system of equations depends on the type 
of system (ODE or DAE), and on the number of 
equations, that is to say, the number of variables  
and on the integration pass that is conditioned by 
the appearance of certain elements. 

Finally, every calculation that is made 
symbolically instead of numerically allows a 
clearer interpretation to be made together with a 
global view of each and every parameter in the 
model. 

Angle of ‘J1’ (rad) _ Time (s)  
Angle of ‘J2’ (rad) _ Time (s) 
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However, it is essential to have appropriate   
software for solving the causality of a BG model, for 
simplifying the resulting system of equations, 
working symbolically and finally carrying out the 
simulation. In Bondin © the algorithms proposed in 
this paper have been developed in a condensed way 
that allows the software to meet all of these 
conditions. 
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