BONDIN: A new engineering simulation software for ODE and DAE systems with symbolic notation based in the Bond Graph technique

ROMERO, G.; FÉLEZ, J.; CABANELLAS, J. M.; MAROTO, J.;
Escuela Técnica Superior de Ingenieros Industriales. Universidad Politécnica de Madrid
C/José Gutiérrez Abascal Nº 2. 28006 Madrid. Spain
e-mail: [gregorio.romero, jesus.felez, josemaria.cabanellas, joaquin.maroto]@upm.es

Abstract: The concept of Bond Graph (BG), introduced by Paynter and perfected by Karnopp and Rosenberg [1] contributed a unified method to describe dynamic models of multidisciplinary systems since they can be modelled using elements possessing the properties of generation (Se, Sf), storage (I, C), dissipation (R) and transformation of energy (TF, GY). These elements interrelate in a conservative energy field by means of bonds that indicate the energy transfer and bonds (0, 1), which symbolise the system’s dynamic behaviour. The resulting structure offers a global view of the system and its physical structure. Moreover, after obtaining causality, this technique also offers the computational structure and reveals any possible mathematical problems in simulating it. The entire system remains open and accessible unlike the classical methods.

Starting out from a study of the different simulation programs available, this paper presents a simulation program based on the BG technique, which represents a considerable advance towards improving current automatic modelling methods. As will be seen in the following pages, the technique contributes a causal assignation algorithm specifically designed to allow the modeller maximum freedom without their having to take any kind of decision that might affect the end calculation. It also automatically provides the optimised, reduced state equations required to symbolically analyse linear and non-linear systems. To do so, it solves the problems arising when simulating models with differential causality without any need to modify the graph charts and reduces the model to the set of differential equations required to perform the simulation, eliminating where possible the restriction equations, thereby reducing the computation time used in the simulation.

Key words: Bond Graph, software, differential equations, algebraic equations, causality, symbolic.

1 Introduction

Efforts to automate the BG method in recent years have focused on solving the problem of the dependent co-ordinates that frequently appear in mechanical [2], electrical [3] and thermal [4] systems. Some solutions that have appeared up to now consist in handling the state equations either manually [2] or with the help of symbolic calculators [5]. Other solutions add stiff type elements that allow relaxing the system by increasing its degrees of freedom [6]. Finally, some authors propose introducing Lagrange multipliers to solve the problem [2] [7].

Another mainly unsolved problem is that of automatically obtaining the mathematical model of complex systems where there is any number and type of zero order causal paths (ZCP); that is, paths along which there are no integration operations. These ZCPs generate mathematical models comprising DAE systems that can present varying degrees of difficulty when it comes to solving them by means of numerical integration.

Therefore, an important objective that was dealt with in the development of Bondin © was to generate alternative procedures to existing ones, that would automatically implement causality, analyse the BG and obtain the break variables, if necessary, and consider the DAE equations associated with the break variables inside the differential equations and finally solve the resulting system of equations.

2 State-of-the-art

The first simulation program performed using the BG technique was called ENPORT [8] and was developed at the beginning of the 70s at the University of Michigan. At the end of this decade the University of Twente, in Holland, developed
another BG-based tool called THTSIM in Europe and TUTSIM in the United States.

Later, at the beginning of the 90s, the same research group that had developed THTSIM-TUTSIM produced CAMAS, based on the SIDOPS simulation language that would eventually evolve into 20-SIM. Also at the beginning of the 90s, Madrid Technical University, the University of California and the University of Michigan developed other similar software (BONDYN, CAMP-G and CAMBAS), the two latter with the purpose of converting a BG into a series of data that would be valid for digital simulation languages (DSL) and for working with machines running the SUN operating system respectively. Halfway through the 90s, Research Park Ideon, Sweden, developed DYMOLA, a general purpose modelling and simulation program developed in the language oriented towards MODELICA objects, which offered the possibility of representation using BG. Also halfway through the 90s, the University of Glasgow generated software called MTT. At the end of the 90s a modelling workbench developed in partnership with EDF (Electricité de France) generated MS1, which performed a symbolic manipulation of the equations in the model by means of causal analysis, generating the code required to run the simulation. Also in the same period the Indian Institute of Technology carried out SYMBOLS, which permitted hierarchic modelling using objects and systems control.

Apart from the tools specified above, there are other less widespread applications (ARCHER, PASION-32, BONDLAB, HYBRSIM).

In sum, it may be said that the most advanced applications usually generate instructions in a particular language so that once compiled it can be run and simulated. Some of the other computer applications can only be used with linear systems and constant parameters. In other cases, the user is required to make decisions that usually lead to unequal results. Finally, should there be any, the equations obtained, either symbolically or numerically, are only for the user to understand the simulation model and not to be worked with in depth.

Therefore, taking the existing software as a basis, in 2002 work was begun on a tool that would be capable of correctly obtaining the causality of the models so that the modeller would have maximum freedom and the tool then automatically provide the optimised reduced state equations required to analyse linear and non-linear systems symbolically and finally go on to simulate ODE and DAE systems. Bondin © has been used in numerous papers [10]-[15] and pieces of research work undertaken by the authors since then and it has now been decided to propagate it among the scientific community.

3 Main characteristics

This software incorporates algorithms for causal analysis and for reducing DAE systems of equations to ODE, whenever possible, that have been developed to that end. Thus, the main features are:

- Bond Graph model simulation and variable parameters that are user-programmable, either under pseudo-programming or by calling on external dynamic libraries without the need to do any compilation whatsoever.
- The different elements are parametrically and symbolically defined.
- Subset libraries are easy to create.
- A model can be given unlimited hierarchical structuring using subsets.
- Automatic generation of causality.
- The equations resulting from the model can be obtained symbolically and legibly.
- Obtaining the minimum set of equations by reducing the number of constraint equations and using symbolic operations automatically.
- Numerical resolution of the model and graphic output.

Throughout the following sections a brief description will be made of the visible part and of the different algorithms developed that have been used.

4 Interface

The software described here basically consists of a menu bar, a tool bar and a work window where the model to be simulated is defined (fig. 1), either by the notation of ports and graphs or by means of subsets encapsulated under icons that are hierarchically structured in the program installation directory and automatically reflected in a pop-up window.

As each element is inserted, the program asks the user for the symbolic expression associated with its definition in order to be able to relate the different parameters with one another and thus be able to go on to produce an optimal formulation of the equations associated with the model once it has been fully implemented (fig 2).
In respect of the name of the elements, as will be seen further on, this will serve to refer to the variables associated with the different ports when the user needs to program and also to interpret the different equations and graphs produced.

In respect of the value associated with each element, this may be a numerical, symbolic or mixed expression. In the latter case the expression may be dependent on the generic variable ‘t’ (time) or on the independent variables. Besides the basic operators contained in the whole expression (+, -, *, /), these expressions may contain any of the following typical functions or constants:

- Trigonometric functions: sin, cos, tan, cot, asin, acos, atan, ascot, sinh, cosh, tanh, coth, arcsinh, artanh, arcot.
- Mathematical functions: sqr, sqrt, exp, lg, ln, abs, sgn, round, fac, rand.
- Universal constants: pi, e.
- Operators: ! (factorial), ^ (power), % (percentage).

So that the results graphs show a correct result (displacement, speed, pressure, temperature, angle, ...) and the values associated with each port have the correct units of measurement, the physical domain to which the different elements of a model simulation belong can be selected.

Once the composition of a BG model has been completed, as to both the form and the values associated with the different elements, everything is now ready for proceeding to the simulation. To do this, initially almost all the options are disabled, since the functions associated with each option require a certain order. Due to this, as one function or another is completed, new menu options will be automatically activated.

5 Obtaining causality

In order to carry out the simulation of a model, firstly an analysis of causality must be made to indirectly determine the dependent and independent variables, the number of algebraic and differential equations and detect any possible problems. It is for this reason that the only option activated at the beginning is this one.

Using the ‘Causality’ option a causal analysis of the model is performed and the result is shown by means of the causality lines on the graphs and their being assigned one colour or another.
The colour blue is assigned to the graphs where causality has been obtained from other pre-calculated causalities or due to the imposition of integral or differential causalities on the different I or C ports (fig. 4) while pink is reserved for the graphs where causality needed to be imposed in order to obtain a correct analysis.

The program consists of two causal assignation algorithms. It initially attempts to assign causality using the first algorithm, but if this cannot be done successfully, it does so with the second one. If this is the case a message appears to inform of this with the only purpose of stating which of the two algorithms has been satisfactorily used.

Karnopp and Rosemberg [1] introduced the sequential causality assignation procedure (SCAP), this being the conventional procedure to use.

This procedure consists of the following steps:

1.- Assign appropriate causality to one of the sources and extend across the other nodes. Repeat until all the sources have been taken account of.
2.- Choose any I or K element and assign integral causality. Extend it across the other nodes. Repeat until all the I and K ports have been taken into account.
3.a.- Examine the state of the BG: If there is an incomplete causality, with no conflicts, continue in step 4.
3.b.- Examine the state of the BG: If there is an incomplete causality, with conflicts, stop and correct the model by the user.
3.c.- Examine the state of the BG: If there is a complete causality, finalise.
4.- Choose a resistance port without assigned causality, assign an arbitrary causality and extend it. Repeat until all the resistances have been taken into account.
5.- Choose an intermediate bond without assigned causality, assign an arbitrary causality and extend it. Repeat until all the bonds have been completed.

In order to study a greater number of cases without having to change the BG model structure, some modifications have been made to this procedure. These are in point 3.b, where the option of causal compatibility or conflicts has been considered. Firstly, if the conflict occurs in a node to which a type I or C port is attached, the causality of these ports changes automatically. They will initially have integral causality and then become differential. When all the type I or C ports have been concluded, if a conflict is produced in a node to which no type I or C element is attached, the next step is to eliminate all information referring to causality in resistances and intermediate bonds. Then, after changing automatically one of the integral causalities to differential causalities, the study can be continued.

If another similar conflict is again found, the same operation is performed on successive integral causalities. By this procedure, there should only remain as many ports with integral causality as there are degrees of freedom.

If the algorithm is incapable of continuing and enters into a recurring loop, the causality assignation starts again and checks that each time a causality is imposed if a conflict is created or not. If the case is affirmative, go back and clean everything that has happened since this latest imposition of causality and carry on with the following element or intermediate bond.

If the causal analysis has been successfully completed, the ‘Parameters’ option will be activated in the menu below the ‘Causality’ menu, from which, strictly speaking, the simulation will be performed after assigning numerical values or programming on the user-inserted parameters. To do this, the program automatically analyses each and every one of the written expressions and deduces the names of the different parameters.

6 Obtaining the equations

Having calculated causality and inserted the different parameters requested, the following two options of the submenu (fig. 3) become active and from here we proceed to calculate the differential and/or algebraic-differential equations of the model in a symbolic form depending on the independent variables and those inserted by the user. According to the complexity of the model, reducing the system of equations can involve a large amount of computation time.

At ICBGM’05 (New Orleans, USA) [9] two of the authors presented a procedure for obtaining the minimum number of equations necessary and for reducing a system of algebraic-differential equations to a purely differential one within a simulation model carried out with a bond graph, and based only on causal assignation. The method employs a series of basic rules for assigning causality correctly in order to avoid any type of incompatibility. Subsequently, depending on the different types of causal paths and algebraic loops coexisting, through a succession of algebraic operations carried out on matrices, the method is capable of obtaining a system of reduced equations, all of which is done by using symbolic notation.

As can be seen from the paper mentioned above [9], any model can be condensed into a general one that contemplates ports with integral and differential causality, and type “R” elements or
intermediate bonds where it has been necessary to assign arbitrary causality. The way to proceed is exactly the same in the singular cases but, obviously the complexity will be somewhat greater, as there will now be three interrelated systems instead of two.

In these cases, once the three systems of equations have been formed:

\[
\frac{d}{dt} \begin{bmatrix} P_m(t) \\ XK_1(t) \end{bmatrix} = \begin{bmatrix} \frac{d}{dt} \frac{P_m(t)}{Sgn} - \frac{P_m(t)}{N} \end{bmatrix} \begin{bmatrix} E[J] \\ G[J] \end{bmatrix} + \begin{bmatrix} \frac{d}{dt} \frac{P_m(t)}{Sgn} - \frac{P_m(t)}{N} \end{bmatrix} \begin{bmatrix} E[J] \\ G[J] \end{bmatrix}
\]

(1)

\[
\frac{d}{dt} \begin{bmatrix} \frac{Se_1}{Sf_{gr,i}} \\ \frac{Se_1}{Sf_{gr,i}} \end{bmatrix} = \begin{bmatrix} L \frac{P_m(t)}{Sgn} - \frac{P_m(t)}{N} \end{bmatrix} \begin{bmatrix} Se_1 \frac{Se_1}{Sf_{gr,i}} \\ Se_1 \frac{Se_1}{Sf_{gr,i}} \end{bmatrix} + \begin{bmatrix} N \frac{Se_1}{Sf_{gr,i}} \end{bmatrix} \begin{bmatrix} Se_1 \frac{Se_1}{Sf_{gr,i}} \\ Se_1 \frac{Se_1}{Sf_{gr,i}} \end{bmatrix}
\]

(2)

To reduce the systems (1) to (3), which are composed by differential and algebraic equations, we can reformulate the systems and a final system of differential equations can be obtained:

\[
\frac{d}{dt} \begin{bmatrix} P_m(t) \\ XK_1(t) \end{bmatrix} = \begin{bmatrix} A1 \frac{P_m(t)}{Sgn} - \frac{P_m(t)}{N} \end{bmatrix} \begin{bmatrix} E[J] \\ G[J] \end{bmatrix} + \begin{bmatrix} A2 \frac{P_m(t)}{Sgn} - \frac{P_m(t)}{N} \end{bmatrix} \begin{bmatrix} E[J] \\ G[J] \end{bmatrix} + \begin{bmatrix} B1 \frac{P_m(t)}{Sgn} - \frac{P_m(t)}{N} \end{bmatrix} \begin{bmatrix} E[J] \\ G[J] \end{bmatrix} + \begin{bmatrix} B2 \frac{P_m(t)}{Sgn} - \frac{P_m(t)}{N} \end{bmatrix} \begin{bmatrix} E[J] \\ G[J] \end{bmatrix}
\]

(3)

The equations (4) can be generated automatically simply by operating and deriving the different matrices as follows:

\[
\begin{aligned}
[A1] &= \begin{bmatrix} A1 + C \end{bmatrix} \begin{bmatrix} \frac{P_m(t)}{Sgn} - \frac{P_m(t)}{N} \\ \frac{d}{dt} \frac{P_m(t)}{Sgn} - \frac{P_m(t)}{N} \end{bmatrix} + \begin{bmatrix} \frac{d}{dt} \frac{P_m(t)}{Sgn} - \frac{P_m(t)}{N} \end{bmatrix} \begin{bmatrix} E[J] \\ G[J] \end{bmatrix} + \begin{bmatrix} \frac{d}{dt} \frac{P_m(t)}{Sgn} - \frac{P_m(t)}{N} \end{bmatrix} \begin{bmatrix} E[J] \\ G[J] \end{bmatrix} + \begin{bmatrix} \frac{d}{dt} \frac{P_m(t)}{Sgn} - \frac{P_m(t)}{N} \end{bmatrix} \begin{bmatrix} E[J] \\ G[J] \end{bmatrix} \\
\begin{bmatrix} B1 \end{bmatrix} &= \begin{bmatrix} B1 + C \end{bmatrix} \begin{bmatrix} \frac{P_m(t)}{Sgn} - \frac{P_m(t)}{N} \\ \frac{d}{dt} \frac{P_m(t)}{Sgn} - \frac{P_m(t)}{N} \end{bmatrix} + \begin{bmatrix} \frac{d}{dt} \frac{P_m(t)}{Sgn} - \frac{P_m(t)}{N} \end{bmatrix} \begin{bmatrix} E[J] \\ G[J] \end{bmatrix} + \begin{bmatrix} \frac{d}{dt} \frac{P_m(t)}{Sgn} - \frac{P_m(t)}{N} \end{bmatrix} \begin{bmatrix} E[J] \\ G[J] \end{bmatrix} + \begin{bmatrix} \frac{d}{dt} \frac{P_m(t)}{Sgn} - \frac{P_m(t)}{N} \end{bmatrix} \begin{bmatrix} E[J] \\ G[J] \end{bmatrix} \\
\begin{bmatrix} B2 \end{bmatrix} &= \begin{bmatrix} B2 + D \end{bmatrix} \begin{bmatrix} \frac{P_m(t)}{Sgn} - \frac{P_m(t)}{N} \\ \frac{d}{dt} \frac{P_m(t)}{Sgn} - \frac{P_m(t)}{N} \end{bmatrix} + \begin{bmatrix} \frac{d}{dt} \frac{P_m(t)}{Sgn} - \frac{P_m(t)}{N} \end{bmatrix} \begin{bmatrix} E[J] \\ G[J] \end{bmatrix} + \begin{bmatrix} \frac{d}{dt} \frac{P_m(t)}{Sgn} - \frac{P_m(t)}{N} \end{bmatrix} \begin{bmatrix} E[J] \\ G[J] \end{bmatrix} + \begin{bmatrix} \frac{d}{dt} \frac{P_m(t)}{Sgn} - \frac{P_m(t)}{N} \end{bmatrix} \begin{bmatrix} E[J] \\ G[J] \end{bmatrix}
\end{aligned}
\]

(5)

(6)

To obtain the equations defining a model totally automatically that are user-transparent Maple © must be used. This should be installed in the computer to carry out symbolic operations such as matrix manipulation, deriving and simplifying expressions.

\[
\begin{aligned}
\text{equations.txt}
\end{aligned}
\]

\[\text{Figure 5: File with equations obtained from a model composed by two inertances with a rigid union.}\]

As soon as the calculation of the ODE/DAE expressions has been concluded, these can be viewed in a form that is user-readable (fig. 5) and they can be numerically simulated.

When a pre-calculation of the DAE and ODE system equations has been made, they can then be simulated independently in order to reach conclusions and undertake time studies.

7 Calling the variables

To define the value associated with the different elements, it has been seen that those values can be numerical or symbolic expressions. In the latter case, the parameters can be constant, conditioned variables inserted by the user or the dependent and independent variables associated with the different ports.

In order to be able to call a dependent or independent variable, either when writing the expression associated with a specific parameter or when writing a certain condition, these variables must take the form shown below.

Should the variable correspond to an 'Inertance' type port (named 'I m'), that variable must be the speed 'V' of that port (in translational mechanics) and its integral, and 'X' the movement (also in translational mechanics), which means it will be called by placing the letter 'V' or 'X' before
the name of the port \((I_n)\); in addition the character reserved \(_\) will need to be placed before and after.
\[
_ + 'V' \text{ or 'X' + name_port_Inertance + '_'}
\]
Thus, \('_VI_n_\)' would be used to indicate the speed or the independent variable associated with the inertance \('I_n'\) and \('_XI_n_\)' to indicate its movement or the integral of the previous independent variable.

If dealing with 'Compliance' type ports (named \('C_n'\)), the variable to be taken into account is its movement \('X'\) (in translational mechanics), its integral having no physical sense. Therefore, in this type of port, the letter \('X'\) should be placed before the name of the element in question \('C_n'\) and the character \(_\)' placed before and after.
\[
_ + 'X' + name_port_Compliance + '
\]
Thus, we will get \('_XC_n_\)' to indicate the movement made by the spring \('C_n'\) or the independent variable associated with that element.

8 Programming: scripts and dlls

Sometimes, when it is wished to perform a simulation with greater realism and therefore greater complexity, it is not sufficient to insert constant parameters or variables that are governed by a particular expression. What must be done is to program a series of conditions that will make these variables vary in one way or another. While on some occasions it is sufficient to write some simple conditions, on others it is not and functions belonging to more complex external libraries need to be called on.

To this end, two modules have been designed through which conditions can be inserted in one way or another. Should it be wished to insert conditions directly, each of them must begin with the reserved word \('if'\) and immediately after in brackets the requirement wished to be met must be written. Then, in brace brackets the numerical value must be placed or the expression linked to the condition. Finally, in order to indicate that writing the condition has concluded, a semi-colon must be put in place. Should there be several requirements in a single condition, each of these must be in brackets and separated by the reserved word \('and'\).

Thus, in order to program a variable damper so that depending on the difference of speed between its ends (inertances ‘I1’ and ‘I2’), the damper is softer or harder, it would suffice to write it as shown in figure 6.

```
if ((abs(_VI1_-_VI2_)>0) and (abs(_VI1_-_VI2_)<=5))
{  750 }
if ((abs(_VI1_-_VI2_)>5) and (abs(_VI1_-_VI2_)<=10))
{  1000 }
if (abs(_VI1_-_VI2_)>10)
{  1500 }
```

Figure 6: Pseudo-code of a variable parameter.

Calling a function from an external *.dll-type library will be done when the code is too complex to do it using simple conditions and must be compiled as a dynamic library (DLL).

To make the call the reserved word 'DLL' must first appear to indicate that an external library needs to be loaded, and then the name of the *.dll dynamic library that it is wished to load and the name of the function to be called. Finally, the different variables must be indicated in the appropriate order, whose numerical values are required to be passed to the function in question, it not being necessary to do it with the time variable \('t'\) since this is an internal variable. The different names and variables mentioned above must be separated by the reserved character \('$'\).

```
DLL$library$function$parameter1$..$ parameterN$
```

Therefore, if it is wished to define the value of the damper in the previous example by calling the 'hardness' function corresponding to the library 'characteristics.dll', by passing on to it as parameters the speed of the inertances situated at the ends ‘I1’ and ‘I2’ (‘_VI1_’ and ‘_VI2_’), it will need to be written in the following form:

```
DLL$characteristics$hardness$_VI1_$_VI2_$
```

9 Creating and handling subsets

When it is required to repeatedly create models containing several similar structures, as for example, a hydraulic circuit [13] or a mechanism comprising several bars [15], this task can be simplified by saving these structures individually and then inserting them where they are needed, as if they were new elements.

To create a subset, all that needs to be done is to design the model in question and leave a series of incomplete nodes through which the remaining elements of the end model will be connected at a future time.
As can be seen, the speed with which a complex model can be prepared from previously saved and configured models makes this a very useful tool for generating large models. On the other hand, if it is compared with its original model, its simplicity makes it much easier to understand. Finally, given the importance of the issue, particular emphasis has been placed on the fact that a subset can be inserted into another as many times as required, with no limits of levels.

10 Obtaining the results

When a simulation has been successfully completed, the results can be shown in graphic form using a dialogue box that allows choosing the variables to be displayed, either individually or as a set, and lets certain areas be zoomed in on.

As we have commented throughout, the systems generated can be of type ODE or DAE. While the former can be solved with a large quantity of algorithms, the latter requires specific numerical methods to solve it, for which reason Dassl [16] has been chosen for its robustness and rapid convergence.

11 Conclusion

The problems involved in any model made by a Bond-Graph are directly related to causality and are greater the more complex the calculation. Many of the options put forward in other works attempt to simplify the calculation of causality and oblige the user to carry out changes or simplifications to the original model. This means that since it is the modeller that makes the decisions, in many cases the results vary or the simulation is simply not carried out to completion.

On the other hand, the difficulty of numerically solving a system of equations depends on the type of system (ODE or DAE), and on the number of equations, that is to say, the number of variables and on the integration pass that is conditioned by the appearance of certain elements.

Finally, every calculation that is made symbolically instead of numerically allows a clearer interpretation to be made together with a global view of each and every parameter in the model.
However, it is essential to have appropriate software for solving the causality of a BG model, for simplifying the resulting system of equations, working symbolically and finally carrying out the simulation. In Bondin © the algorithms proposed in this paper have been developed in a condensed way that allows the software to meet all of these conditions.

References

