
Theoretical Validation of Object-Oriented Lack-of-Cohesion Metrics

JEHAD AL DALLAL
Department of Information Science

Kuwait University
P.O. Box 5969, Safat 13060

KUWAIT
jehad@cfw.kuniv.edu

Abstract: - Class cohesion refers to the degree of relatedness of class attributes and methods. Software
developers use class cohesion measure to assess the quality of their products and to guide the restructuring of
poorly designed classes. Several class cohesion metrics are proposed in the literature, and a few of them are
theoretically validated against the class cohesion necessary properties. Metrics that violate class cohesion
properties are not well defined, and their utility as indictors of the relatedness of class members is
questionable. The purpose of this paper is to theoretically validate six lack-of-cohesion based metrics. Results
show that most of the metrics considered satisfy the majority of the class cohesion necessary properties.

Key-Words: - object-oriented class, software quality, class cohesion metric, class cohesion.

1 Introduction

A popular goal of software engineering is to
develop the techniques and the tools needed to
develop high-quality applications that are more
stable and maintainable. In order to assess and
improve the quality of an application during the
development process, developers and managers use
several metrics. These metrics estimate the quality
of different software attributes, such as cohesion,
coupling, and complexity.

The cohesion of a module refers to the
relatedness of the module components. A module
that has high cohesion performs one basic function
and cannot be split into separate modules easily.
Highly cohesive modules are more understandable,
modifiable, and maintainable [1].

Since the last decade, object-oriented
programming languages, such as C++ and Java,
have become widely used in both the software
industry and research fields. In an object-oriented
paradigm, classes are the basic modules. The
members of a class are its attributes and methods.
Therefore, class cohesion refers to the relatedness of
the class members.

Researchers have introduced several metrics to
indicate class cohesion. In order to increase the
likelihood that a cohesion metric is well defined and
serves as a good indicator for the relatedness of the
class members, researchers must validate the metric
theoretically and empirically. Briand et al. [2]
propose four properties that must be satisfied by all
class cohesion metrics. If a metric does not satisfy
any of these properties, the usefulness of the metric
is questionable and it is ill-defined [2]. These

properties provide a supportive underlying theory
for the metrics. Empirical validation is necessary to
show the usefulness of the metrics. Despite its
importance, few researchers focus on the theoretical
validation of metrics. In this paper, we theoretically
study the validity of six lack-of-cohesion based
metrics using the properties introduced by Briand et
al. Our results show that none of the metrics satisfy
all the properties. However, it is shown that most of
the metrics satisfy the majority of the properties.

This paper is organized as follows. Section 2
provides an overview of the class cohesion metrics
and necessary properties. In Section 3, the
satisfaction of six lack-of-cohesion metrics to the
necessary properties is supported or refuted. Finally,
Section 4 includes conclusions and a discussion of
future work.

2 Related Work
This section overviews the considered lack of
cohesion metrics and other class cohesion metrics.
In addition, it includes a summary of the class
cohesion necessary properties that all class cohesion
metrics must satisfy.

2.1 Overview of class cohesion metrics
Researchers have proposed several class cohesion
metrics in the literature. These metrics are based on
the use or sharing of the class attributes. For
example, LCOM1 metric counts the number of
method pairs that do not share instance variables [3].
Chidamber and Kemerer [4] propose another version
for LCOM metric (LCOM2), which calculates the
difference between the number of method pairs that

Proceedings of the 8th WSEAS Int. Conference on SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 72 ISBN: 978-960-474-052-9

do and do not share instance variables. Li and Henry
[5] use an undirected graph that represents each
method as a node and the sharing of at least an
instance variable as an edge.

The lack-of-cohesion in methods, LCOM3, is
defined as the number of connected components in
the graph. The model used in LCOM3 metric is
extended in [6] by adding an edge between a pair of
methods if one of them invokes the other. Here, we
refer to the metric that uses the extended model as
LCOM4. Hitz and Montazeri [6] introduce a
connectivity metric to apply when the graph has one
component. In addition, Henderson-Sellers [7]
proposes a lack-of-cohesion in methods metric,
LCOM5, that considers the number of methods
referencing each attribute.

Bieman and Kang [8] describe two class
cohesion metrics, TCC and LCC, to measure the
relative number of directly connected pairs of
methods and relative number of directly or indirectly
connected pairs of methods, respectively. These two
metrics consider two methods to be connected if
they share at least one instance variable. Badri [9]
introduces two class cohesion metrics, DCD and DCI,
that are similar to TCC and LCC, respectively, but
differ by considering two methods connected when
one of them invokes the other. Wang et al. [10]
introduce a DMC class cohesion metric based on a
dependence matrix that represents the dependence
degree among the instance variables and methods in
a class. Fernandez and Pena [11] propose class
cohesion metrics that consider the cardinality of
intersection between each pair of methods. In the
metric presented by Bonja and Kidanmariam [12],
the degree of similarity between methods is used as
a basis to measure the class cohesion. The similarity
between a pair of methods is defined as the ratio of
the number of shared attributes to the number of
distinct attributes referenced by both methods. The
cohesion is defined as the ratio of the summation of
the similarities between all pairs of methods to the
total number of possible pairs of methods. Chen et
al. [1] use dependence analysis to explore the
attribute-attribute, attribute-method, and method-
method interactions. The cohesion is measured as
the relative number of interactions. Ratio of
Cohesive Interactions (RCI) is a metric that
considers the data-to-data (DD) and data-to-
subroutine (DS) interactions in Ada object-systems
[13]. The RCI metric is defined as the ratio of the
number of cohesive interactions of a module to the
total number of possible cohesive interactions.

Bansiya et al. [14] propose a design-based class
cohesion metric called Cohesion Among Methods in
a Class (CAMC). In this metric, only the method-

method interactions are considered. The CAMC
metric uses a parameter occurrence matrix that has a
row for each method and a column for each data
type that appears at least once as the type of a
parameter in at least one method in the class. The
value in row i and column j in the matrix equals 1
when the ith method has a parameter of jth data type.
Otherwise, the value equals 0. The CAMC metric is
defined as the ratio of the total number of 1s in the
matrix to the total size of the matrix.

Counsell et al. [15] propose a design-based class
cohesion metric called Normalized Hamming
Distance (NHD). In this metric, only the method-
method interactions are considered. The metric uses
the same parameter occurrence matrix used by
CAMC metric. NHD calculates the average of the
parameter agreement between each pair of methods.
The parameter agreement between a pair of methods
is defined as the number of places in which the
parameter occurrence vectors of the two methods are
equal.

2.2 Class cohesion metric necessary
properties
Briand et al. [2] define four properties for cohesion
metrics. The first property, Property 1, called
nonnegativity and normalization, is that the cohesion
measure belongs to a specific interval [0, Max].
Normalization allows for easy comparison between
the cohesion of different classes. The second
property, Property 2, called null value and maximum
value, holds that the cohesion of a class equals 0 if
the class has no cohesive interactions and the
cohesion is equal to Max if all possible interactions
within the class are present. The third property,
Property 3, called monotonicity, holds that adding
cohesive interactions to the module cannot decrease
its cohesion. The fourth property, Property 4, called
cohesive modules, holds that merging two unrelated
modules into one module does not increase the
module's cohesion. Therefore, given two classes, c1
and c2, the cohesion of the merged class c' must
satisfy the following condition: cohesion(c')≤max
{cohesion(c1), cohesion(c2)}. Briand et al. [2]
disapproved that LCOM1, LCOM2, LCOM4, and
LCOM5 satisfy Property 1 and LCOM2 satisfies
Property 3. They neither supported nor refuted the
other properties.

3 Theoretical Validation

This section studies the theoretical
validation of five lack-of-cohesion metrics. The
definition of each metric is overviewed and the
satisfaction of the metric to the six class cohesion

Proceedings of the 8th WSEAS Int. Conference on SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 73 ISBN: 978-960-474-052-9

necessary properties is approved or disapproved.

3.1 LCOM1 [3]
Definition: LCOM1=P, where P is the number of
pairs of methods that do not share common
attributes.
Property 1 and Property 2: The minimum value
for LCOM1 is 0 when each pair of methods shares at
least one common attribute (i.e., the model has the
maximal number of cohesion interactions). The
maximum value for LCOM1 depends on the number
of methods in a class. That is, k(k-1)/2, where k is
the number of methods, when none of the methods
share common attributes (i.e., the model does not
have cohesion interactions). Therefore, LCOM1
satisfies Property 2, but it does not satisfy Property
1.
Property 3: Adding a cohesive interaction to the
model implies decreasing the number of unrelated
pairs of methods, hence decreasing LCOM1 and
increasing the cohesion. Therefore, LCOM1 satisfies
Property 3.
Property 4: Unrelated classes are classes that have
no common attributes and methods. Given that PC
and QC are the number of pairs of methods with and
without shared attributes in a class C, then for
classes A, B, and M, where A and B are unrelated
classes and M is their merged class version,
QM=QA+QB. The LCOM1 of the merged class is
calculated as follows:

)(1)(1

)]
2

)1(()
2

)1([(
2

)1)((

][
2

)1)((
2

)1)(()(1

BLCOMALCOMkmPPkm

mmPkkPmkmk

QQmkmk

QmkmkPMLCOM

BA

BA

BA

MM

++=++=

−
−+

−
−−

−++
=

+−
−++

=

−
−++

==

where k and m are the number of methods in classes
A and B, respectively. Hence, the cohesion of the
merged class is less than the cohesion of each of the
split classes, and therefore, LCOM1 metric satisfies
Property 4.

3.2 LCOM2 [4]
Definition:

)]1(14[5.012
2)(2

−−=−=
−=−−=−=

kkLCOMNPLCOM
NPPPNPPQPLCOM

Property 1 and Property 2: The minimum value
for LCOM2 is 0 when Pc≤Qc. Therefore, when the
model has the maximum number of interactions,
LCOM2 becomes 0 because, in this case, the
number of pairs that do not share common attributes
is less than those that share common attributes (i.e.,

0<k(k-1)/2). However, the maximum value for
LCOM2 depends on the number of methods in a
class. That is, k(k-1)/2, where k is the number of
methods, when none of the methods share common
attributes (i.e., the model does not have cohesion
interactions). Therefore, LCOM2 satisfies Property 2
and it does not satisfy Property 1.
Property 3: Adding a cohesive interaction to the
model implies increasing Q and decreasing P. If in
the original model, Pc≤Qc, the cohesion of the
original and the modified models equal to 0.
Otherwise, LCOM2 of the model decreases.
Therefore, LCOM2 satisfies Property 3.
Property 4: When two unrelated classes are merged,

)(2)(2
)()(

)()()(2

BLCOMALCOMkm
QPQPkm

QQPPkmQPMLCOM

BBAA

BABAMM

++=
−+−+=

+−++=−=

Hence, the cohesion of the merged class is
less than the cohesion of each of the split classes,
and therefore, LCOM2 metric satisfies Property 4.

3.3 LCOM3 [5]
Definition: LCOM3 is defined as the number of
connected components in the graph.
Property 1 and Property 2: The minimum value
for LCOM3 is 1 when there is a direct or indirect
cohesive interaction between each method and
another. The maximum value for LCOM3 depends
on the number of methods in a class. That is, k,
where k is the number of methods, when the model
has no interactions. As a result, the value of LCOM3
ranges in the interval [1,k], and therefore, the metric
does not satisfy Property 1. In addition, the metric
does not satisfy Property 2 because the value of
LCOM3 is not equal to 0 when the model has the
maximum possible interactions.
Property 3: When adding a cohesive interaction to
the model, the number of connected components
either decreases by 1 when the interaction connects
two disjoint components or remains the same when
the interaction does not connect two disjoint
components. Therefore, LCOM3 satisfies Property
3.
Property 4: Two unrelated classes are graphically
represented by two disjoint graphs. Therefore, when
two unrelated classes A and B are merged into class
M, the total number of disjoint components
increases by 1 (i.e., LCOM3(M)=LCOM3(A)+
LCOM3(B)+1). Hence, LCOM3 metric satisfies
Property 4.

3.4 LCOM4 [6]

The only difference between LCOM4 and
LCOM3 is in the definition of the cohesive

Proceedings of the 8th WSEAS Int. Conference on SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 74 ISBN: 978-960-474-052-9

interactions. The above discussion about the validity
of LCOM3 is independent from the definition of the
cohesive interactions, and therefore, both metrics
have the same properties. However, when the graph
is connected, the following connectivity metric is
used.

3.5 Connectivity [6]
Definition: When LCOM4=1, then,

nodes. ofnumber theis and edges ofnumber theis where

 ,
)2)(1(

)1(*2

ke
kk

ketyconnectivi
−−
−−

=

Property 1 and Property 2: Connectivity metric is
defined only for the cases where LCOM4 is equal to
1. When LCOM4 equals 1, the graph that represents
the class is connected, and the number of edges in
the graph is not less than k-1. The minimum value
for connectivity metric is equal to 0 when the model
to which the metric can be applied has the minimum
possible number of interactions. The maximum
value for connectivity is equal to 1 when the model
has the maximum possible number of interactions
(i.e., e=k(k-1)/2). Therefore, the connectivity metric
satisfies Property 1 when it is applied on the models
for which it is defined. However, a combination of
LCOM4 and Connectivity does not satisfy Property
1. Property 2 is not applicable for the connectivity
metric because the metric is undefined when the
model of the class has no interactions. The
combination of LCOM4 and Connectivity satisfies
Property 2 because Connectivity solves the problem
of the maximum value.
Property 3: Adding a cohesive interaction to the
class implies adding an edge to the models that
represents the class. As a result, the connectivity
value increases, and therefore, the metric satisfies
Property 3. Hence, the combination of LCOM4 and
Connectivity satisfies Property 3.
Property 4: When two unrelated classes are
merged, the model of the resulting class will have
the number of edges equal to the summation of the
number of edges in the models of both classes (i.e.,
eM=eA+eB). To proof the satisfaction of connectivity
metric to Property 4, we introduce the following
model that facilitates the proof:

)()(
)()(

)(
)(

)]()()[()()]()([

)()()()(
)(
)(

)(
)(

BDAD
BNAN

AD
AN

BNANADANADBD

BNADANBD
BD
BN

AD
AN

+
+

≥⇒

+≥+⇒

≥⇒≥

Given the following conditions:
Condition 1: N(M)≤N(A)+N(B)
Condition 2: D(M)≥D(A)+D(B)

)(
)(

)()(
)()(

)(
)(

MD
MN

BDAD
BNAN

AD
AN

≥
+
+

≥

This means that max{cohesion(A),cohesion(B)}≥
cohesion(M). Therefore, if a cohesion metric
satisfies Conditions 1 and 2, it satisfies Property 4.
The connectivity metric is proved to satisfy the
cohesion modules properties as follows:

)()(2)()(
2))1((2))1((2

)1(2)(2
)1(22))1((2)(

BNANBNAN
meke

mkee
mkemkeMN

BA

BA

MM

+<−+=
−−−+−−=

−+−+=
−+−=−+−=

)()()2)(1()2)(1(
)2()1(

)1()2)(1()2)(1(
)2)(1()(

BDADmmkk
mkmk

kmmmkk
mkmkMD

+=−−+−−>
−++−

+−+−−+−−=
−+−+=

Therefore, the metric satisfies Conditions 1 and
2, and, therefore, it satisfies Property 4. Hence, the
combination of LCOM4 and Connectivity satisfies
Property 4.

3.6 LCOM5 [7]
Definition:

1

1

5 1 1

−

−
=

∑∑
= =

k

clk
LCOM

l

i

k

j
ji

, where k is the number

of methods, l is the number of attributes, and cji is
the binary value at row j and column i in the binary
matrix that represents which attribute is used in
which method.
Property 1 and Property 2: The minimum value
for LCOM5 is equal to 0 when each pair of methods
share at least one common attribute (i.e., the model
has the maximum number of cohesion interactions).
The maximum value for LCOM5 depends on the
number of methods in a class. That is, k/(k-1), where
k is the number of methods, when none of the
methods share common attributes (i.e., the model
does not have cohesion interactions). Therefore,
LCOM5 satisfies Property 2, and it does not satisfy
Property 1.
Property 3: The following proof shows that
LCOM5 satisfies Property 3.

)(5
)1(

1
1

1

1

)1(1

)'(5

1 1

1 1

cLCOM
klk

clk

k

clk
cLCOM

l

i

k

j
ji

l

i

k

j
ji

<
−

−
−

−
=

−

+−
=

∑∑

∑∑

= =

= =

Proceedings of the 8th WSEAS Int. Conference on SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 75 ISBN: 978-960-474-052-9

Property 4: In some cases, LCOM5 does not satisfy
Property 4. For example, given two classes A and B
such that each class has two methods and two
attributes, and none of the methods use any attribute,
LCOM5(A)=LCOM5(B)=2. When both classes are
merged into class M, LCOM5(M)=(4-0)/(4-1)=1.33.
Therefore, in this case, LCOM5(M)<
min{LCOM5(A),LCOM5(B)}, which violates
Property 4.

4 Conclusions and Future Work
This paper shows how to approve or disapprove the
satisfaction of the lack-of-cohesion metrics to the
class cohesion necessary properties. Table 1
summarizes the results. The results show that none
of the lack-of-cohesion metrics satisfy Property 1,
whereas the majority of the metrics satisfy
Properties 2 and 4, and all of them satisfy Property
3. The dissatisfaction of the metric to some or all of
the properties does not indicate that the metric is not
a cohesion indicator. However, it raises questions
about its usability as a cohesion indicator. Briand et
al. show empirically that LCOM1, LCOM2, and
LCOM4 are cohesion indicators, whereas,
connectivity, LCOM4+connectivity, and LCOM5
are not [16,17].

Table 1: Summary of the theoretical validation

results

In the future, we plan to theoretically validate

the other existing class cohesion metrics and
empirically explore the relationships between the
theoretical and empirical validation results.

Acknowledgment
The author would like to acknowledge the support of
this work by Kuwait University Research Grant
WI04/07.

References
[1] Z. Chen, Y. Zhou, and B. Xu, A novel approach

to measuring class cohesion based on
dependence analysis, Proceedings of the
International Conference on Software
Maintenance, 2002, pp. 377-384.

[2] L. C. Briand, J. Daly, and J. Wuest, A unified
framework for cohesion measurement in object-
oriented systems, Empirical Software
Engineering - An International Journal, Vol. 3,
No. 1, 1998, pp. 65-117.

[3] S.R. Chidamber and C.F. Kemerer, Towards a
Metrics Suite for Object-Oriented Design,
Object-Oriented Programming Systems,
Languages and Applications (OOPSLA),
Special Issue of SIGPLAN Notices, Vol. 26,
No. 10, 1991, pp. 197-211.

[4] S.R. Chidamber and C.F. Kemerer, A Metrics
suite for object Oriented Design, IEEE
Transactions on Software Engineering, Vol. 20,
No. 6, 1994, pp. 476-493.

[5] W. Li and S.M. Henry, Maintenance metrics for
the object oriented paradigm. In Proceedings of
1st International Software Metrics Symposium,
Baltimore, MD, 1993, pp. 52-60.

[6] M. Hitz and B. Montazeri, Measuring coupling
and cohesion in object oriented systems,
Proceedings of the International Symposium on
Applied Corporate Computing, 1995, pp. 25-27.

[7] B. Henderson-Sellers, Software Metrics, Prentice
Hall, Hemel Hempstaed, U.K., 1996.

[8] J. M. Bieman and B. Kang, Cohesion and reuse
in an object-oriented system, Proceedings of the
1995 Symposium on Software reusability,
Seattle, Washington, United States, pp. 259-
262, 1995.

[9] L. Badri and M. Badri, A Proposal of a new class
cohesion criterion: an empirical study, Journal
of Object Technology, Vol. 3, No. 4, 2004.

[10] J. Wang, Y. Zhou, L. Wen, Y. Chen, H. Lu, and
B. Xu, DMC: a more precise cohesion measure
for classes. Information and Software
Technology, Vol. 47, No. 3, 2005, pp. 167-180.

[11] L. Fernández, and R. Peña, A sensitive metric
of class cohesion, International Journal of
Information Theories and Applications, Vol.
13, No. 1, 2006, pp. 82-91.

[12] C. Bonja and E. Kidanmariam, Metrics for class

cohesion and similarity between methods,
Proceedings of the 44th Annual ACM Southeast
Regional Conference, Melbourne, Florida,
2006, pp. 91-95.

[13] L. C. Briand , S. Morasca , and V. R. Basili,
Defining and validating measures for object-
based high-level design, IEEE Transactions on
Software Engineering, Vol. 25, No. 5, 1999, pp.
722-743.

[14] J. Bansiya, L. Etzkorn, C. Davis, and W. Li, A
class cohesion metric for object-oriented
designs, Journal of Object-Oriented Program,

Metric P1 P2 P3 P4
LCOM1 No Yes Yes Yes
LCOM2 No Yes Yes Yes
LCOM3 No No Yes Yes
LCOM4 No No Yes Yes
Connectivity N.A. Yes Yes Yes
LCOM4+
connectivity

No Yes Yes Yes

LCOM5 No Yes Yes No

Proceedings of the 8th WSEAS Int. Conference on SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 76 ISBN: 978-960-474-052-9

Vol. 11, No. 8, pp. 47-52. 1999.
[15] S. Counsell , S. Swift , and J. Crampton, The

interpretation and utility of three cohesion
metrics for object-oriented design, ACM
Transactions on Software Engineering and
Methodology (TOSEM), Vol. 15, No. 2, 2006,
pp.123-149.

[16] L. Briand, J. Wust, and H. Lounis, Replicated

case studies for investigating quality factors in
object-oriented designs, Empirical Software
Engineering, 6(1), 2001, pp. 11-58.

[17] L. C. Briand, J. Wust, J. Daly, and V. Porter,
Exploring the relationship between design
measures and software quality in object-
oriented systems, Journal of System and
Software, 51(3), 2000, pp. 245-273.

Proceedings of the 8th WSEAS Int. Conference on SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 77 ISBN: 978-960-474-052-9

