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Abstract: - Class cohesion refers to the degree of relatedness of class attributes and methods. Software 
developers use class cohesion measure to assess the quality of their products and to guide the restructuring of 
poorly designed classes. Several class cohesion metrics are proposed in the literature, and a few of them are 
theoretically validated against the class cohesion necessary properties. Metrics that violate class cohesion 
properties are not well defined, and their utility as indictors of the relatedness of class members is 
questionable. The purpose of this paper is to theoretically validate six lack-of-cohesion based metrics. Results 
show that most of the metrics considered satisfy the majority of the class cohesion necessary properties. 
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1 Introduction 

A popular goal of software engineering is to 
develop the techniques and the tools needed to 
develop high-quality applications that are more 
stable and maintainable. In order to assess and 
improve the quality of an application during the 
development process, developers and managers use 
several metrics. These metrics estimate the quality 
of different software attributes, such as cohesion, 
coupling, and complexity.  

The cohesion of a module refers to the 
relatedness of the module components. A module 
that has high cohesion performs one basic function 
and cannot be split into separate modules easily. 
Highly cohesive modules are more understandable, 
modifiable, and maintainable [1].  

Since the last decade, object-oriented 
programming languages, such as C++ and Java, 
have become widely used in both the software 
industry and research fields. In an object-oriented 
paradigm, classes are the basic modules. The 
members of a class are its attributes and methods. 
Therefore, class cohesion refers to the relatedness of 
the class members.  

Researchers have introduced several metrics to 
indicate class cohesion. In order to increase the 
likelihood that a cohesion metric is well defined and 
serves as a good indicator for the relatedness of the 
class members, researchers must validate the metric 
theoretically and empirically. Briand et al. [2] 
propose four properties that must be satisfied by all 
class cohesion metrics. If a metric does not satisfy 
any of these properties, the usefulness of the metric 
is questionable and it is ill-defined [2]. These 

properties provide a supportive underlying theory 
for the metrics. Empirical validation is necessary to 
show the usefulness of the metrics. Despite its 
importance, few researchers focus on the theoretical 
validation of metrics. In this paper, we theoretically 
study the validity of six lack-of-cohesion based 
metrics using the properties introduced by Briand et 
al. Our results show that none of the metrics satisfy 
all the properties. However, it is shown that most of 
the metrics satisfy the majority of the properties. 

This paper is organized as follows. Section 2 
provides an overview of the class cohesion metrics 
and necessary properties. In Section 3, the 
satisfaction of six lack-of-cohesion metrics to the 
necessary properties is supported or refuted. Finally, 
Section 4 includes conclusions and a discussion of 
future work. 

 
2 Related Work 
This section overviews the considered lack of 
cohesion metrics and other class cohesion metrics. 
In addition, it includes a summary of the class 
cohesion necessary properties that all class cohesion 
metrics must satisfy. 
 
2.1 Overview of class cohesion metrics 
Researchers have proposed several class cohesion 
metrics in the literature. These metrics are based on 
the use or sharing of the class attributes. For 
example, LCOM1 metric counts the number of 
method pairs that do not share instance variables [3]. 
Chidamber and Kemerer [4] propose another version 
for LCOM metric (LCOM2), which calculates the 
difference between the number of method pairs that 
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do and do not share instance variables. Li and Henry 
[5] use an undirected graph that represents each 
method as a node and the sharing of at least an 
instance variable as an edge.  

The lack-of-cohesion in methods, LCOM3, is 
defined as the number of connected components in 
the graph. The model used in LCOM3 metric is 
extended in [6] by adding an edge between a pair of 
methods if one of them invokes the other. Here, we 
refer to the metric that uses the extended model as 
LCOM4. Hitz and Montazeri [6] introduce a 
connectivity metric to apply when the graph has one 
component. In addition, Henderson-Sellers [7] 
proposes a lack-of-cohesion in methods metric, 
LCOM5, that considers the number of methods 
referencing each attribute.  

Bieman and Kang [8] describe two class 
cohesion metrics, TCC and LCC, to measure the 
relative number of directly connected pairs of 
methods and relative number of directly or indirectly 
connected pairs of methods, respectively. These two 
metrics consider two methods to be connected if 
they share at least one instance variable. Badri [9] 
introduces two class cohesion metrics, DCD and DCI, 
that are similar to TCC and LCC, respectively, but 
differ by considering two methods connected when 
one of them invokes the other. Wang et al. [10] 
introduce a DMC class cohesion metric based on a 
dependence matrix that represents the dependence 
degree among the instance variables and methods in 
a class. Fernandez and Pena [11] propose class 
cohesion metrics that consider the cardinality of 
intersection between each pair of methods. In the 
metric presented by Bonja and Kidanmariam [12], 
the degree of similarity between methods is used as 
a basis to measure the class cohesion. The similarity 
between a pair of methods is defined as the ratio of 
the number of shared attributes to the number of 
distinct attributes referenced by both methods. The 
cohesion is defined as the ratio of the summation of 
the similarities between all pairs of methods to the 
total number of possible pairs of methods. Chen et 
al. [1] use dependence analysis to explore the 
attribute-attribute, attribute-method, and method-
method interactions. The cohesion is measured as 
the relative number of interactions. Ratio of 
Cohesive Interactions (RCI) is a metric that 
considers the data-to-data (DD) and data-to-
subroutine (DS) interactions in Ada object-systems 
[13]. The RCI metric is defined as the ratio of the 
number of cohesive interactions of a module to the 
total number of possible cohesive interactions.  

Bansiya et al. [14] propose a design-based class 
cohesion metric called Cohesion Among Methods in 
a Class (CAMC). In this metric, only the method-

method interactions are considered. The CAMC 
metric uses a parameter occurrence matrix that has a 
row for each method and a column for each data 
type that appears at least once as the type of a 
parameter in at least one method in the class. The 
value in row i and column j in the matrix equals 1 
when the ith method has a parameter of jth data type. 
Otherwise, the value equals 0. The CAMC metric is 
defined as the ratio of the total number of 1s in the 
matrix to the total size of the matrix.  

Counsell et al. [15] propose a design-based class 
cohesion metric called Normalized Hamming 
Distance (NHD). In this metric, only the method-
method interactions are considered. The metric uses 
the same parameter occurrence matrix used by 
CAMC metric. NHD calculates the average of the 
parameter agreement between each pair of methods. 
The parameter agreement between a pair of methods 
is defined as the number of places in which the 
parameter occurrence vectors of the two methods are 
equal. 
 
2.2 Class cohesion metric necessary 
properties 
Briand et al. [2] define four properties for cohesion 
metrics. The first property, Property 1, called 
nonnegativity and normalization, is that the cohesion 
measure belongs to a specific interval [0, Max]. 
Normalization allows for easy comparison between 
the cohesion of different classes. The second 
property, Property 2, called null value and maximum 
value, holds that the cohesion of a class equals 0 if 
the class has no cohesive interactions and the 
cohesion is equal to Max if all possible interactions 
within the class are present. The third property, 
Property 3, called monotonicity, holds that adding 
cohesive interactions to the module cannot decrease 
its cohesion. The fourth property, Property 4, called 
cohesive modules, holds that merging two unrelated 
modules into one module does not increase the 
module's cohesion. Therefore, given two classes, c1 
and c2, the cohesion of the merged class c' must 
satisfy the following condition: cohesion(c')≤max 
{cohesion(c1), cohesion(c2)}. Briand et al. [2] 
disapproved that LCOM1, LCOM2, LCOM4, and 
LCOM5 satisfy Property 1 and LCOM2 satisfies 
Property 3. They neither supported nor refuted the 
other properties. 
 
3 Theoretical Validation 

This section studies the theoretical 
validation of five lack-of-cohesion metrics. The 
definition of each metric is overviewed and the 
satisfaction of the metric to the six class cohesion 
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necessary properties is approved or disapproved. 
  
3.1 LCOM1 [3] 
Definition: LCOM1=P, where P is the number of 
pairs of methods that do not share common 
attributes. 
Property 1 and Property 2: The minimum value 
for LCOM1 is 0 when each pair of methods shares at 
least one common attribute (i.e., the model has the 
maximal number of cohesion interactions). The 
maximum value for LCOM1 depends on the number 
of methods in a class. That is, k(k-1)/2, where k is 
the number of methods, when none of the methods 
share common attributes (i.e., the model does not 
have cohesion interactions). Therefore, LCOM1 
satisfies Property 2, but it does not satisfy Property 
1. 
Property 3: Adding a cohesive interaction to the 
model implies decreasing the number of unrelated 
pairs of methods, hence decreasing LCOM1 and 
increasing the cohesion. Therefore, LCOM1 satisfies 
Property 3. 
Property 4: Unrelated classes are classes that have 
no common attributes and methods. Given that PC 
and QC are the number of pairs of methods with and 
without shared attributes in a class C, then for 
classes A, B, and M, where A and B are unrelated 
classes and M is their merged class version, 
QM=QA+QB. The LCOM1 of the merged class is 
calculated as follows: 
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where k and m are the number of methods in classes 
A and B, respectively. Hence, the cohesion of the 
merged class is less than the cohesion of each of the 
split classes, and therefore, LCOM1 metric satisfies 
Property 4. 
 
3.2 LCOM2 [4] 
Definition: 
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Property 1 and Property 2: The minimum value 
for LCOM2 is 0 when Pc≤Qc. Therefore, when the 
model has the maximum number of interactions, 
LCOM2 becomes 0 because, in this case, the 
number of pairs that do not share common attributes 
is less than those that share common attributes (i.e., 

0<k(k-1)/2). However, the maximum value for 
LCOM2 depends on the number of methods in a 
class. That is, k(k-1)/2, where k is the number of 
methods, when none of the methods share common 
attributes (i.e., the model does not have cohesion 
interactions). Therefore, LCOM2 satisfies Property 2 
and it does not satisfy Property 1. 
Property 3: Adding a cohesive interaction to the 
model implies increasing Q and decreasing P. If in 
the original model, Pc≤Qc, the cohesion of the 
original and the modified models equal to 0. 
Otherwise, LCOM2 of the model decreases. 
Therefore, LCOM2 satisfies Property 3. 
Property 4: When two unrelated classes are merged, 
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Hence, the cohesion of the merged class is 
less than the cohesion of each of the split classes, 
and therefore, LCOM2 metric satisfies Property 4. 
 
3.3 LCOM3 [5] 
Definition: LCOM3 is defined as the number of 
connected components in the graph. 
Property 1 and Property 2: The minimum value 
for LCOM3 is 1 when there is a direct or indirect 
cohesive interaction between each method and 
another. The maximum value for LCOM3 depends 
on the number of methods in a class. That is, k, 
where k is the number of methods, when the model 
has no interactions. As a result, the value of LCOM3 
ranges in the interval [1,k], and therefore, the metric 
does not satisfy Property 1. In addition, the metric 
does not satisfy Property 2 because the value of 
LCOM3 is not equal to 0 when the model has the 
maximum possible interactions. 
Property 3: When adding a cohesive interaction to 
the model, the number of connected components 
either decreases by 1 when the interaction connects 
two disjoint components or remains the same when 
the interaction does not connect two disjoint 
components. Therefore, LCOM3 satisfies Property 
3. 
Property 4: Two unrelated classes are graphically 
represented by two disjoint graphs. Therefore, when 
two unrelated classes A and B are merged into class 
M, the total number of disjoint components 
increases by 1 (i.e., LCOM3(M)=LCOM3(A)+ 
LCOM3(B)+1). Hence, LCOM3 metric satisfies 
Property 4. 
 
3.4 LCOM4 [6] 

The only difference between LCOM4 and 
LCOM3 is in the definition of the cohesive 
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interactions. The above discussion about the validity 
of LCOM3 is independent from the definition of the 
cohesive interactions, and therefore, both metrics 
have the same properties. However, when the graph 
is connected, the following connectivity metric is 
used. 
 
3.5 Connectivity [6] 
Definition: When LCOM4=1, then, 

nodes. ofnumber   theis  and edges ofnumber   theis  where
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Property 1 and Property 2: Connectivity metric is 
defined only for the cases where LCOM4 is equal to 
1. When LCOM4 equals 1, the graph that represents 
the class is connected, and the number of edges in 
the graph is not less than k-1. The minimum value 
for connectivity metric is equal to 0 when the model 
to which the metric can be applied has the minimum 
possible number of interactions. The maximum 
value for connectivity is equal to 1 when the model 
has the maximum possible number of interactions 
(i.e., e=k(k-1)/2). Therefore, the connectivity metric 
satisfies Property 1 when it is applied on the models 
for which it is defined. However, a combination of 
LCOM4 and Connectivity does not satisfy Property 
1. Property 2 is not applicable for the connectivity 
metric because the metric is undefined when the 
model of the class has no interactions. The 
combination of LCOM4 and Connectivity satisfies 
Property 2 because Connectivity solves the problem 
of the maximum value.  
Property 3: Adding a cohesive interaction to the 
class implies adding an edge to the models that 
represents the class. As a result, the connectivity 
value increases, and therefore, the metric satisfies 
Property 3. Hence, the combination of LCOM4 and 
Connectivity satisfies Property 3. 
Property 4: When two unrelated classes are 
merged, the model of the resulting class will have 
the number of edges equal to the summation of the 
number of edges in the models of both classes (i.e., 
eM=eA+eB). To proof the satisfaction of connectivity 
metric to Property 4, we introduce the following 
model that facilitates the proof:  
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Given the following conditions: 
Condition 1: N(M)≤N(A)+N(B) 
Condition 2: D(M)≥D(A)+D(B) 
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This means that max{cohesion(A),cohesion(B)}≥ 
cohesion(M). Therefore, if a cohesion metric 
satisfies Conditions 1 and 2, it satisfies Property 4. 
The connectivity metric is proved to satisfy the 
cohesion modules properties as follows: 
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Therefore, the metric satisfies Conditions 1 and 
2, and, therefore, it satisfies Property 4. Hence, the 
combination of LCOM4 and Connectivity satisfies 
Property 4. 
 
3.6 LCOM5 [7] 
Definition:  
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of methods, l is the number of attributes, and cji is 
the binary value at row j and column i in the binary 
matrix that represents which attribute is used in 
which method.  
Property 1 and Property 2: The minimum value 
for LCOM5 is equal to 0 when each pair of methods 
share at least one common attribute (i.e., the model 
has the maximum number of cohesion interactions). 
The maximum value for LCOM5 depends on the 
number of methods in a class. That is, k/(k-1), where 
k is the number of methods, when none of the 
methods share common attributes (i.e., the model 
does not have cohesion interactions). Therefore, 
LCOM5 satisfies Property 2, and it does not satisfy 
Property 1. 
Property 3: The following proof shows that 
LCOM5 satisfies Property 3. 
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Property 4: In some cases, LCOM5 does not satisfy 
Property 4. For example, given two classes A and B 
such that each class has two methods and two 
attributes, and none of the methods use any attribute, 
LCOM5(A)=LCOM5(B)=2. When both classes are 
merged into class M, LCOM5(M)=(4-0)/(4-1)=1.33. 
Therefore, in this case, LCOM5(M)< 
min{LCOM5(A),LCOM5(B)}, which violates 
Property 4. 
 
4 Conclusions and Future Work  
This paper shows how to approve or disapprove the 
satisfaction of the lack-of-cohesion metrics to the 
class cohesion necessary properties. Table 1 
summarizes the results. The results show that none 
of the lack-of-cohesion metrics satisfy Property 1, 
whereas the majority of the metrics satisfy 
Properties 2 and 4, and all of them satisfy Property 
3. The dissatisfaction of the metric to some or all of 
the properties does not indicate that the metric is not 
a cohesion indicator. However, it raises questions 
about its usability as a cohesion indicator. Briand et 
al. show empirically that LCOM1, LCOM2, and 
LCOM4 are cohesion indicators, whereas, 
connectivity, LCOM4+connectivity, and LCOM5 
are not [16,17]. 

 
Table 1: Summary of the theoretical validation 

results 

 
In the future, we plan to theoretically validate 

the other existing class cohesion metrics and 
empirically explore the relationships between the 
theoretical and empirical validation results. 
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