
An Approach to Derive the Use Case Diagrams from an Event Table

Mohammad I. Muhairat and Rafa E. Al-Qutaish

Department of Software Engineering

Al-Zaytoonah University of Jordan

Airport Street, P.O. Box: 130, Amman 11733

JORDAN

mohmuhaba14@yahoo.com, rafa@ieee.org

Abstract:- Building the use-case diagram is a very important task since it represents a transition between the

requirements and design phases. However, building such diagram is a time consuming process and needs a

complete understanding of the requirements. In this paper, we introduce an approach to derive use case
diagrams from an event table. This new approach will facilitate and speed the generation process of the use

case diagrams. However, this approach will completely depends on the availability of a comprehensive event

table which to be built from the available requirements.

Keywords:- Software Requirements, Software Design, Event Table, Use Case Diagram.

1 Introduction
Nowadays, there are many different approaches in

the software engineering literature to identify the

use cases, for examples:
1. Listing all users and define there needs [1], [2],

[3], [4], [5];

2. Defining all system functions and adding new

functions that user may be need [1], [2], [3], [4],

[5];

3. List all graphical user interfaces [2],[6];

4. Defining all users' goals of system [1], [2], [7],

[8], [9].

In industry, many practitioners are using the
third approach to get an initial list of use cases.

Furthermore, the event decomposition technique

[1], [2], [5] is the most used one for defining a use
case model. This technique focusing on the events a

system must respond to and looking at how a

system responds.
An event is an occurrence at specific time and

place, can be described, and should be remembered

by the system [2], [11] [16].

Building the use-case diagram is a very

important task since it represents a transition

between the requirements and design phases.
However, building such diagram is a time

consuming process and needs a complete

understanding of the requirements. In this paper,
we introduce an approach to derive the use case

diagrams from an event table. This new approach

will facilitate and speed the generation process of
the use case diagrams. However, this approach will

completely depends on the availability of a

comprehensive event table which to be built from

the available requirements.

The rest of this paper is organized as follows:
Section 2 presents a general overview on the

related concepts, that is, on the event table and use

case concepts. In Section 3, the approach of
deriving the use case diagram from the event table

has been explained. Section 4 gives an example of

the implementation of the proposed approach.

Finally, Section 5 concludes the paper and

introduces the potential future works.

2 Related Concepts
2.1 Event Table
Since 1980's, the event analysis technique [10] [11]

[12] has been the preferred one for the

practitioners. The results of event analysis are
documented in an event table. In the structured

approach, event analysis recognizes a basic set of

processes. Whereas, in the object-oriented analysis,
each event discourse an essential use case [13].

Furthermore, an event table can be created from the

external events to support the use case diagrams

[14]. In addition, the event table has been used by

Gargantini and Heitmeyer [15] to generate a suite

test sequences.
In the event table, there are three types of

events, that is:

1. External Event (EE): an event that occurs

outside of the system, usually initiated by

external actor or user; for example: student

wants to search for a book item.

Proceedings of the 8th WSEAS Int. Conference on SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 33 ISBN: 978-960-474-052-9

2. Temporal Internal Event (TIE): an event that
happens when the system reaches a specific

point of time; for example: time to print book

items report.
3. Conditional Internal Event (CIE): an event

occurs when something happens inside the

system and the system must initiate some

process to response for this event; for example:

student reordered new books when the

reordered point is reached.
Business modeling help analyst to understand

the business process. As result of that modeling,

business events are identified and documented in an
event table. Event table is a list of actions that lists

events in rows and the information about each

event in columns. Analyst can use event table to
define use case model. However, analyst has to

make some decisions when building a use case

model.

The first one is to combine business events into

one use case. For example, the business events of

adding, deleting, updating customer information,

analyst can combined them in one use case-

Maintain Customer Information. Also, analyst

makes decisions to split one business event into
multiple use cases. For example, the business event

customer withdraws his cash, analyst can split it

two use cases Withdraw Cash and Identify

Customer and can identify the relationship between

them, for example: Withdraw Cash <<include>>

Identify Customer.

From the above example (student wants to

search for a book item) and for an EE, we can split

this event into three main parts:

 Student- Source

 EE Search- Action

 Book item-affected object

In addition, the TIE example (time to print book
items report) can be divided into three main parts

as the following:

 Time or "System"- Source

 TIE Print- Action

 Book item- Affected object

Finally, we can split the CIE (student reordered

new books when the reordered point is reached)

into the following three main parts:

 Student - Source

 CIE Reordered- Action "if the reordered

 point is reached"

 Book item- Affected object

As a result of this splitting, analyst defined the

core elements "columns" for the proposed event

table as in Table 1.

Table 1: Event Table.

Event Source Action Object Destination

Where:

Event: an event which causes the system to do
something.

Source: the source of an event (an actor for an EE

and the system for a TIE and CIE).

Action: the system functionality which we need.

Object: The object affected by this action.

Destination: An actor that receive the result of an

event execution
For the purpose of building a complete use case

model, we can extend this table and make some

modification to contain other elements, see Table 2.

Table 2: Extended Event Table.

Event
General

Source

Special

Source
Action Object

Includes

"Action"

Extends

"Action"

Specializes

"Action"
Destination

Where:

General Source or Special Source: The type of an

event source. We used these columns to
define a Generalization / Specialization

relationship between sources.

Includes: We used this column to determine the

existence of includes relationship between

actions.
Extends: We used this column to determine the

existence of extends relationship between

actions.

Proceedings of the 8th WSEAS Int. Conference on SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 34 ISBN: 978-960-474-052-9

Specializes: We used this column to determine the
existence of specializes relationship between

actions.

2.2 Use Case Diagram
Use case diagram captures the system or subsystem

behaviour. It represents the interaction between the

actors and pieces of functionality called use cases.

An actor is an idealization of a role played by an

external person, process, or thing interacting with

the system, subsystem, or class [7], [18]. Actors

participate with one or more use cases by

exchanging messages.

Actors may be defined in generalization
hierarchies, in which an abstract actor description is

shared and augmented by one or more specific

actor descriptions. An actor may be a human, a
computer system, or some executable process. An

actor is drawn as a small stick person with the

name below it. A use case is a coherent unit of
externally visible functionality provided by a

classifier (called the subject) and expressed by

sequences of messages exchanged by the subject

and one or more actors of the system unit [17],

[18]. A use case can participate in several

relationships; in addition to association with actors
(see Table 3).

Recently, Snoeck [16] has proposed a new form

of event table which is called object-event table to
be a useful technique for modelling interaction

between domain object types.

Table 3: Use Case Relationships Types.

Relationship Function Notation

Association
To indicate the communication

between actors and uses cases.

Extend
To indicate the insertion of additional

behavior into a base use case.

<< extend>>

Include
To describes a behavior that is inserted

explicitly into a base use case.

<<include>>

Use case or actor

generalization

To indicate the communication

between a general use case (actor) and

a more specific use case (actor) that

inherits and adds features to it.

3 Deriving the Use Case Diagram
This process consists of six steps, to build and

check the correctness of the use case diagram.

1. Identify the actors for each event or action from

the sources and destinations.

2. Identify the relationships between actors, if

exists. There is only one type of relationship

between actors, that is, a generalization /
specialization relationship.

3. Identify the use cases. The analyst can derive

the use case from the action which proceeded by

an actor.
4. Identify the relationships between use cases, if

exists. As we mentioned above, there is three

type of relationships between use cases

(includes, extends, and specializes).

5. Integrate all use cases and actors with all

relationships types in one use case diagram.
6. Test the use case diagram.

From a given event table we can map the use
cases and the actors, as in Figure 1.

Event Source Action Object Destination

Figure 1: Mapping the Use Cases and Actors from an Event Table.

Use Case

 Actor Actor

Proceedings of the 8th WSEAS Int. Conference on SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 35 ISBN: 978-960-474-052-9

Student

Search for a

book item

However, this mapping could be implemented
using the two types of events, that is, external event

(EE), and internal events (TIE, CIE). Figures 2 and
3 illustrate examples of both types, respectively.

Event Source Action Object Destination

Student wants to

search for a book item
Student

Search for a

book item
Book item Student

Figure 2: An Example of Mapping a Use Case and Actor from an EE.

Figure 3: An Example of Mapping a Use Case and Actor from a TIE and CIE.

5 An Example
To demonstrate the feasibility of our approach, this

approach has been applied for a case study. This

section will implement the process of deriving a

use case model from an event table for car rental

web site, see Table 4 for its event table.

Table 4: The Event Table of the Car Rental Web Page.

Event General

Source

Special

Source

Action Object Includes

"Action"

Extends

"Action"

Specializes

"Action"

Destination

Customer browses

the car models

index

Customer

Member

Non

Member

Browse the

car models

index

Car model
View

results
-

Look for a

car model
Customer

Customer searches

for a car model
Customer

Member

Non

Member

searches

for a car

model

Car model
View

results
-

Look for a

car model
Customer

Customer views

the results
Customer

Member

Non

Member

view

results
Car model - - Customer

member log on to

the web site
Member -

Log on to

the web site
Web page - - Member

member view his

details

Member

-

View

member

details

Member

-

member log on to

the web site
- Member

member log off

from the web site
Member -

Log off from

the web site
Web page -

member log on to

the web site
- Member

Member makes a

reservation
Member -

Make

reservation
Reservation -

member log on to

the web site
- Member

Member views a

reservation
Member -

view

reservation
Reservation -

member log on to

the web site
- Member

Event Source Action Object Destination

Time to print a

book items report
System

print a book

items report
book items

Library

Employee

Print a book

items report

Library Employee

Proceedings of the 8th WSEAS Int. Conference on SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 36 ISBN: 978-960-474-052-9

The following are the steps which will be used
to build the use case diagram from the given event

table (Table 4) for our example:

1. From the sources and destinations fields, we can
define three actors: customer, member and non

member.

2. From the general and special sources fields, we

can define a generalization / specialization

relationship between actors.

3. From the actions field, we can derive all the use
cases, as the following:

- Browse a car models index,

- Searches for a car models,

- View results,
- Logs on the web page,

- View member details, and

- Logs off the web page.
4. From the "includes action", extends action, and

specialize action fields, we can define all the

relationship types between the use cases to be

includes, extends and specialize. In addition, a

new use case can be defined from specializes

action field.
5. Now, we will integrate the all elements to build

the use case diagram, as in Figure 4.

Figure 4: The Integrated Use Case Model.

6. Finally, the following steps could be used to test

the use case diagram and to test the use cases
against functional requirements:

a. Check if all events are covered by actions

"use cases ";

b. Check if each use case represents a

functional requirement;
c. Check if all actors are well defined;

d. Check if the relationships between the actors

are defined;

<<includes>> <<includes>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

Look for a

car model

Search for a

car model

Browse the

car models index

View

Results

Log on

View

member details

Make

reservation

View

reservation

Log off

Customer

Non Member Member

Proceedings of the 8th WSEAS Int. Conference on SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 37 ISBN: 978-960-474-052-9

e. Check if the relationships between the use
cases are defined; and

f. Check the relationship between the different

actors and use cases.

6 Conclusions and Future Work
Constructing the use-case diagram is a very

important and essential task to go ahead to the

design process. However, the use case diagram
represents a transition stage between the

requirements and design phases. Furthermore,

building such diagram is a time consuming task and
needs a complete understanding of the user

requirements. In this paper, we have introduced an

approach to derive the use case diagram from an
event table. This new approach will facilitate and

speed up the generation process of the use case

diagrams. However, this approach is completely

depending on the availability of a comprehensive

event table which should be built during earlier

tasks from the available user requirements.

It can be clearly noted from the above sections

that this approach gives an ideal and reasonable

methodology to build the intended use case
diagram from any comprehensive event table. In

addition, this approach will save the time for the

building process of the use case diagram.
As a future work, this approach could be

automated by developing a CASE tool to take the

event table as an input and produce the intended

use case diagram as an output.

References
[1] J. W. Satzinger, R. B. Jackson and S. D. Burd,

Object-Oriented Analysis and Design with the

Unified Process, 4th ed., Thomson Course

Technology, 2005.
[2] C. Larman, Applying UML and patterns: An

Introduction to Object Oriented Analysis and

Design and Iterative Development, 3
rd
 ed.,

Prentice Hall, USA, 2005.

[3] S. Bennett, S. McRobb and R. Farmer, Object-

Oriented Systems Analysis and Design Using

UML, McGraw Hill Education, USA, 2005.

[4] S. R. Schach, An Introduction to Object-

Oriented System Analysis and Design with

UML and Unified Process, McGraw-Hill,

USA, 2003.

[5] P. R. Reed, Developing Applications with Java

and UML, Addison Wesley, Boston, MA,
USA, 2001.

[6] A. Cockburn, Writing Effective Use Cases,
Addison-Wesley, Boston, MA, USA, 2001.

[7] Y. Liang, From Use Cases to Classes: a Way

of Building Object Model with UML, Journal
of Information and Software Technology, Vol.

45, 2003, pp. 83-93.

[8] L. Chung and S. Supakkul, Representing

NFRs and FRs: A Goal-Oriented and Use Case

Driven Approach, in Proceedings of the 2nd

International Conference on Software
Engineering Research, Management and

Applications (SERA'04), Los Angeles, CA,

USA, pp. 29–41, 2005
[9] J. Lee and N. Xue, Analyzing user

requirements by use cases: A goal-driven

approach, IEEE Software, Vol. 16, No. 4, pp.
92–100, 1999.

[10] S. M. McMenamin and J. F. Palmer, Essential

Systems Analysis, Yourdon Press, NY, USA,

1985.

[11] M. Page-Jones, Fundamentals of Object-

Oriented Design in UML, Addision-Wesley,

Boston, MA, USA, 1988.

[12] Yourdon, E., Modern Structured Analysis,

Yourdon Press, Englewood Hills, NJ, USA,
1989.

[13] R. Stumpf and L. Teague, "Teachings Object-

Oriented System Analysis and design with

UML", in Proceedings of the Information

Systems Education (ISECON'05), Columbus,

OH, USA, 2005.

[14] A. Purhonen, Quality Driven Multimedia DSP

Software Architecture Development,

Julkaisija-Utgivare Publisher, Oulu, Finland,

2002.
[15] A. Gargantini and C. Heitmeyer, "Using

Model Checking to Generate Tests from

Requirements Specifications", in Proceedings
of the European Software Engineering

Conference (ESEC'99), 1999, pp. 146-162.

[16] M. Snoeck, G. Dedene, "Core Modelling

Concepts in Object-Oriented conceptual

Modeling", in Proceedings of the Technology

of Object-Oriented Languages and Systems

Conference, 2001, pp.170-179.

[17] W. Boggs and M. Boggs, Mastering UML with

Rational Rose, SYBEX Inc., 2002.
[18] J. Rumbaugh, I. Jacobson and G. Booch, The

Unified Modeling Language Reference

Manual, 2
nd
 ed., Addison-Wesley, Boston,

MA, USA, 2004.

Proceedings of the 8th WSEAS Int. Conference on SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 38 ISBN: 978-960-474-052-9

