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ABSTRACT 
Control valve stiction is the most commonly found valve 
problem in the process industry. Though many methods 
have been developed in detecting stiction, quantification 
of the actual amount of stiction presents in a loop is still 
an open research area. In this paper, Neural-network 
techniques are investigated in the development of a 
quantification algorithm for control valve stiction. It is 
shown that in the presence of a well-tuned controller, 
satisfactory performance of the proposed Neural-network 
based quantification algorithm can be achieved. 
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1.  Introduction 
 
Control valves constitute an important element in 
chemical process control systems.  Through a control 
valve, control actions are implemented on the process. 
Due to their continuous motions, control valves tend to 
undergo wear and aging. In general, they contain static 
and dynamic nonlinearities including saturation, backlash, 
stiction, deadband and hysteresis [1-2]. 
Among the many types of nonlinearities in control 

valves, stiction is the most commonly encountered in the 
process industry [3]. In general, stiction is a phenomena 
that describes the valve’s stem (or shaft) sticking when 
small changes attempted. Stiction causes fluctuation of 
process variables, which lowers productivity. The 
variability of process variables makes it difficult to keep 
operating conditions close to their constraints, and hence 
causes excessive or unnecessary energy consumption.  It 
is therefore desirable to understand and quantify the 
dynamics behavior of stiction so that necessary actions 
can be implemented to eliminate or hinders its deleterious 
effect before it propagates.  
Detection of stiction nonlinearity in a loop has been 

extensively studied in the literatures, however 
quantification of the actual amount of stiction presents is 
still an open research area [4]. Srinivasan [5] uses a 
Hammerstein model identification approach along with 
one parameter stiction model (stickband plus deadband,S 
estimation) to detect and quantify valve stiction. However 

this method does not capture the true stiction behavior [4]. 
On the other hand, Choudhury [6] proposed three 
methods for quantifying stiction utilizing valve positioner 
data (mv), controlled output (pv) and valve input signal 
(op). Problems such as the unavailability of mv and 
process loop dynamics limit the performances of the 
proposed methods. An extended version of [6] that 
includes the loop dynamics is proposed in [4] and [7] 
using two parameter stiction estimation. Both these 
methods used Hammerstein model to simultaneously 
predict process model and quantify stiction in control 
valve.  

In this paper, a similar algorithm used in [4] is 
adopted, and extended to investigate the probability of 
using Neural-network techniques in quantifying the 
control valve stiction. The outline of this paper is as 
follows: Section II describes stiction in general. In 
Section III, six Neural-Network algorithms considered in 
this paper are presented. Section IV illustrates the 
proposed quantification algorithm. Finally, the 
conclusions are drawn. 
 
2.  Control valve Stiction 
 
Fig. 1 shows the general structure of a pneumatic control 
valve. Stiction happens when the smooth movement of 
the valve stem is hindered by excessive static friction at 
the packing area. The sudden slip of the stem after the 
controller output sufficiently overcomes the static friction 
caused undesirable effect to the control loop. 

 
Fig. 1 Structure of pneumatic control valve adapted from [8]. 

 
Fig. 2 illustrates the input-output behavior for control 
valve with stiction. The dashed line represents the ideal 
control valve without any friction.  
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Fig. 2 Typical input-output behavior of a sticky valve adapted from [8]. 
 
Stiction consists primarily of deadband, stickband, slip 

jump and the moving phase [9].  For control valve under 
stiction resting at point (a), the valve position remains 
unchanged even when the controller output increases due 
to the deadband caused by the static friction. Only when 
the controller output exceeds the maximum static 
frictional force, fS, the valve starts to response (point(b)).  
A slip jump of magnitude J is incurred when the valve 
starts to move at point (b) when the frictional force fS 
converts to kinetic force fD. From (c) to (d), the valve 
position varies linearly. The same scenario happens when 
the valve stops at point (d), and when the controller 
output changes direction.  
Stiction in control valves can either be modeled via 

physics-based or data driven [4]. Due to the complex 
nature of the physics-based approach, data-driven 
modeling technique is highly favorable. In this paper, the 
widely acknowledged two parameter stiction model 
developed by Choudhury et al. [3] is used to model and 
describe the stiction nonlinearity. The two parameters 
involved in this model are S (stickband+deadband) and J 
(slip-jump) – see Fig. 2. The model needs only the input 
signal or the controller output (op) and the specifications 
of S and J. For more details on the two parameter stiction 
model, readers are referred to Choudhury et al. [3]. 
 
 
3.  Neural Network 
 
An artificial neural network (ANN) or commonly just 
neural network (NN) is an interconnected group of 
artificial neurons that uses a mathematical model or 
computational model for information processing based on 
a connectionist approach to computation. In most cases an 
ANN is an adaptive system that changes its structure 
based on external or internal information that flows 
through the network. In this paper, six types of NN for 
quantifying the control valve stiction are investigated.   
 
3.1 Feedforward-backpropagation Neural Network 
Feedforward backpropagation neural networks (FF 
networks) are the most popular and most widely used 
models in many practical applications [10]. They are 
known by many different names, such as "multi-layer 

perceptrons." The following diagram illustrates a FF 
networks network with three layers: 
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Fig. 3 Graphical representation of a BP network architecture. 

 
Backpropagation (BP) network was created by 
generalizing the Widrow-Hoff learning rule to multiple-
layer networks and nonlinear but differentiable transfer 
functions [11]. BP network with biases, a sigmoid 
(‘tansig’ or ‘logsig’) transfer functions at the hidden 
layers, and a linear transfer function at the output layer is 
capable of approximating any functions. BP networks 
architecture is slightly more complex than a single layer 
network. In addition to a single (hidden) layer consisting 
nodes with sigmoid transfer function, another layer called 
the output layer is required. The output layer is usually 
kept linear to produce output values in the similar range 
as the target values. However, the sigmoid transfer 
functions (either ‘logsig’ or ‘tansig’) are often used if the 
outputs need to be constrained to the range of [0,1] or [-
1,1]. The minimum architecture of BP networks is 
illustrated as layer diagram in Fig. 3. The (R x 1) inputs p 
are fed to Layer 1 (hidden layer) consisting of S1 ‘tansig’ 
nodes. The resulting outputs a2 with ‘linear’ transfer 
function retain the same size (S2 x 1) as the net inputs n2 
to Layer 2 (output layer). With this architecture, the BP 
networks are capable of approximating any linear and 
nonlinear functions given adequate number of hidden 
nodes. 
 
3.2 Cascade-forward Backpropagation Network 
Feedforward networks have one-way connections from 
input to output layers. They are most commonly used for 
prediction, pattern recognition, and nonlinear function 
fitting. Supported feedforward networks include 
feedforward backpropagation and cascade-forward 
backpropagation. In CF network, each subsequent layer 
has weights coming from the input as well as from all 
previous layers. 

Like FF networks, CF networks uses BP algorithm for 
updating of weights but the main symptoms of the 
network is that each layer neurons related to all previous 
layer neurons. In [12], several NN topologies were 
evaluated and it was found that the cascade forward NN 
with BP training provides the best performance in terms 
of convergence time, optimum network structure and 
recognition performance. The training of multi-layer 
perceptron (MLP) networks normally involves BP 
training as it provides high degrees of robustness and 
generalization [13]. 
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3.3 Recurrent Neural Network 
In Feedforward NN, the neurons in one layer receive 
inputs from the previous layer. Neurons in one layer 
deliver its output to the next layer; the connections are 
completely unidirectional; whereas in Recurrent NN, 
some connections are present from a layer to the previous 
layers. The next value of output is regressed on previous 
values of input signal (see Fig.4). 
 
3.3.1. NARX Network 
The nonlinear autoregressive network with exogenous 
inputs (NARX) is a recurrent dynamic network, with 
feedback connections enclosing several layers of the 
network.  

 
Fig. 4. Recurrent NARX NN structure. 

 
The NARX model is based on the linear ARX model, 
which is commonly used in time-series modeling.  The 
defining equation for the NARX model is shown in (1), 
where the next value of the dependent output signal y(t) is 
regressed on previous values of the output signal and 
previous values of an independent (exogenous) input 
signal. 
 

))(,),2(),1(),(,),2(),1(()( uy ntututuntytytyfty −−−−−−= KK

      (1) 

 
(a) 

 
(b) 

Fig. 5. NARX network architecture. 
 
Standard NARX architecture is as shown in Fig. 5(a). It 
enables the output to be fed back to the input of the 
feedforward neural network. This is considered a 
feedforward BP network with feedback from output to 

input. In series parallel architecture(NARXSP), Fig. 5(b), 
the true output which is available during the training of 
the network is used instead of feeding back the estimated 
output. The advantage is that the input to the feedforward 
network is more accurate. Besides, the resulting network 
has a purely feedforward architecture, and static BP can 
be used for training.  
 
3.3.2. Simple Recurrent Network (SRN) 
Simple Recurrent Network (SRN) is also known as Elman 
network. In Elman network, the input vector is similarly 
propagated through a weight layer but also combined with 
the previous state activation through an additional 
recurrent weight layer. A two-layer Elman network is 
shown as in Fig.6. 

 
Fig. 6. Elman network structure. 

 
The output of the network is determined by the state and a 
set of output weights, W, 
 

))(()( tnetfty kk =  

∑ +=
m

j
kkjjk wtytnet θ)()(                                          (2) 

 
Elman network has activation feedback which 

embodies short-term memory. A state layer is updated 
through the external input of the network as well as the 
activation from the previous forward propagation. The 
feedback is modified by a set of weights as to enable 
automatic adaption through learning (e.g. BP). Elman 
network differs from conventional two-layer networks in 
that the first layer has a recurrent connection. The delay in 
this connection stores values from the previous time step, 
which can be used in the current time step. Because the 
network can store information for future reference, it is 
able to learn temporal patterns as well as spatial patterns. 
The Elman network can be trained to respond to, and to 
generate, both kinds of patterns.  
  
3.3.3. Layer-recurrent Network (LRN) 
An earlier simplified version of this network was 
introduced by Elman. In the LRN, there is a feedback 
loop, with a single delay, around each layer of the 
network except for the last layer. The original Elman 
network had only two layers. The original Elman network 
was trained using an approximation to the BP algorithm. 
Fig. 7 illustrates a two-layer LRN.  
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Fig. 7. Layer-recurrent neural network structure. 

 
LRN generalizes the Elman network to have an arbitrary 
number of layers and to have arbitrary transfer functions 
in each layer. LRN is trained using exact versions of the 
gradient-based algorithms used in BP. 
 
4.  Quantification algorithm 
 
4.1 Case study description 
Case study used in [4] is used for simulating the proposed 
method as in Fig. 8: 

Fig. 8. Simulink block diagram used for generating stiction data adapted 
from [4]. 

 
The process model is: 
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The controller applied is as the following: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=
s

KsC
i

c τ
11)(  

(4) 
 
Three different sets of data are generated using Kc=0.05, 
Kc=0.10 and Kc=0.15. The integral parameter, iτ  is fixed 
at 1. The two parameter stiction model described in [3] is 
used, and the values of stiction parameters S and J are 
fixed at 3 and 1 respectively. 
 
4.2 Process model prediction 
In this section, the six types of NN are used to predict the 
process model and the prediction results are compared. In 
this analysis, we consider the case of stiction undershoot 
(S>J) is used with Kc=0.05. In this case, mv and pv data of 
S=3 and J=1 are generated.  The model structures for 

each of the NN types are initially analyzed and the 
optimized architecture is selected.  

Figures 9 -14 show the results for the six stiction 
models. All NN are able to predict the process output 
satisfactorily However, elman and layer recurrent NN 
failed to continously track the actual process output when 
it travels to the top and bottom peaks. There is also a 
slight deviation at the top peaks of both NN when the 
signal is at steady state mode. The remaining four NN 
figures show comparable visual results. Therefore, 
statistical analysis is used to choose the best architecture. 
RMSE and CDC for all six types of NN are tabulated in 
Table 1. 

From the table, RMSE for feedforward 
backpropagation, cascade forward backpropagation, 
NARX and NARXSP NN shows different values but 
close to each other. This is expected because of the close 
visual results of the four NNs. However, CDC values 
show greater deviation and are considered in the 
screening process. From the analysis, it is clear that 
NARXSP has the lowest RMSE value (0.044) and highest 
CDC value (44.1077). As a result, NARXSP is concluded 
as the best process model to b used in the estimation 
algorithm. 
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Fig. 9. Actual and predicted process output using layer NN. 
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Fig. 10 Actual and predicted process output using elman NN. 
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Fig. 11. Actual and predicted process output using feedforward BP NN. 
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Fig. 12. Actual and predicted process output using cascade forward BP 

NN. 
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Fig. 13 Actual and predicted process output using NARX NN. 
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Fig. 14. Actual and predicted process output using NARXSP NN. 

 
Table 1. Statistical analysis for NN 

 

Neural 
Network 
Model 

RMSE CDC 

Elman 0.1078 18.0602% 
LRN 0.1078 18.0602% 
FF 0.0454 22.0736% 
CF 0.0466 30.1003% 

NARX 0.0499 30.7692% 
NARXSP 0.0440 44.1077% 

 
4.3 Quantification of stiction: S and J estimation 
Since the process model already being identified in the 
previous section, the next step is to estimate or quantify 
the actual amount of S (stickband+deadband) and J (slip-
jump) present in a sticky valve. Figure 15 shows the flow 
chart of the procedure. 

The controller output, op and process variable, pv are 
the problematic loop data. These data is typically 
available in the industrial plant. The next step is to guess 
initial value of S and J. In this case, S and J are assumed 
to be in the range of 0 to 10 (0<S1<10 , 0<J1<10). Then, 
control valve output, mv data is generated using Simulink 
block as in Figure 16, using two parameter stiction model 
of [3]. The mv and pv are the inputs to the NARXSP NN 
process model to predict the corresponding pvpred. RMSE1 
is calculated for the difference between pv and pvpred 
values. The next step is to choose S2 (ie S2<S1) with 
constant J and repeat the steps until RMSE2 calculation. If 
RMSE2 is greater than RMSE1, all values of S<S1 are 
discarded since they will give larger errors. Now, S value 
have been narrowed down to S1<S<10. The same 
procedures are repeated until minimum RMSE is 
calculated. The same procedure is then applied to estimate 
J using S with the lowest RMSE. The final value S and J 
are report as stiction. 
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Fig. 15. Flow chart for S and J estimation. 
 

 
 
 
 
 
 
 
 
 

Fig. 16. Simulink block for generating mv data. 
 

 
 
4.4 Numerical evaluations 
Three sets of data (for Kc=0.05, Kc=0.10, and Kc=0.15, 
respectively) are generated using Figure 8 where the 
stiction parameters are fixed at S=3 and J=1. The different 
Kc values are imperative to evaluate the robustness of the 
estimation algorithm against varying operating conditions. 
Random noise with zero mean is also added to further 
corrupt the data. The op from these data is the input to 
generate mv using Figure 16. The mv generated together 
with pv are the inputs to the NARXSP NN process model. 
Using the estimation algorithm described in Fig. 15, the 
RMSE for every case is tabulated in Table 2. For all three 
cases of Kc=0.05, Kc=0.10, and Kc=0.15, the estimation 
algorithm using NARXSP NN correctly and efficiently 
quantified the amount of stiction that exists in the system. 
In all three cases, S=3 and J=1 are detected which are the 
right value for all three cases.  
 
Table 2 (a). Statistical analysis for Kc=0.05. 
 

1st level 
Combination S5J1 S2J1 S1J1 

RMSE 0.0544 0.0479 0.0500 
2nd level 

Combination S2J1 S3J1 S4J1 
RMSE 0.0479 0.0409 0.0541 

3rd level 
Combination S3J1 S3J2  

RMSE 0.0409 0.0410  
 
Table 2 (b). Statistical analysis for Kc=0.10. 
 

1st level 
Combination S5J1 S2J1 S1J1 

RMSE 0.1089 0.0978 0.0937 
2nd level 

Combination S1J1 S3J1 S4J1 
RMSE 0.0937 0.0912 0.1002 

3rd level 
Combination S3J1 S3J2  

RMSE 0.0912 0.0921  
 
Table 2 (c). Statistical analysis for Kc=0.15. 
 

1st level 
Combination S5J1 S2J1 S1J1 

RMSE 0.6030 0.6019 0.5434 
2nd level 

Combination S1J1 S3J1 S4J1 
RMSE 0.5434 0.4888 0.6119 

3rd level 
Combination S3J1 S3J2  

RMSE 0.4888 0.6053  

YES NO 

Use op to generate 
mvn  

Choose Sn and Jn 
values 

Start 

Import op,pv 

Model mvn and pv using 
NARXSP process model 

Calculate RMSEn 

Choose S<Sn 

Use op to generate 
mv  

Model mv and pv using 
NARXSP process model 

Calculate RMSE 

RMSE < RMSEn? 

Compute RMSE 
of all Sm<S 

Sactual=min 
RMSE(Sm) 

Compute RMSE 
of all Sm>S 

Sactual=min 
RMSE(Sm) 
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Fig. 17. Actual and predicted process output for Kc=0.05. 
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Fig. 18. Actual and predicted process output for Kc=0.10. 
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Fig. 19. Actual and predicted process output for Kc=0.15. 

 
 
5.  Conclusion 
 
In this paper, a Neural-network based stiction 
quantification algorithm has been developed using routine 
operating data. Results show that the method performs 

satisfactorily in quantifying the two parameter stiction 
model. 
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