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Abstract: 
In an earlier paper, we derived explicit Fourier series expressions for systematic computation of grade of 
membership in the overlap and non-overlap regions of triangular fuzzy sets; and by implication, computation of 
union and intersection of the fuzzy sets.  In this paper, we hereby extend the methodology to cover cases of the 
cosine, exponential and Gaussian fuzzy sets by presenting explicit Fourier series representation for encoding 
fuzziness in the overlap and non-overlap domains of membership functions of cosine and Gaussian fuzzy sets. The 
paper further present the development of a corresponding embedded “Fuzzy controller”, which incorporates the 
formal mathematical representation, to measure temperature and pressure and produce output that can serve as 
input to other sub-systems or systems. In particular, it is established that the technique can indeed be incorporated 
in engineering systems for dynamic determination of grade of membership of adjoining Fuzzy sets and thus 
provides a basis for the design and implementation of embedded Fuzzy controller for mission-critical applications.  
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1 Introduction 
Whereas most Fuzzy logic applications are intended 
for control and analysis purposes, some other 
applications have been in the area of system state 
prediction.  According to Zadeh [1], the key elements 
in human thinking are not numbers, but labels of 
Fuzzy sets, that is classes of objects in which the 
transition from membership to non-membership is 
gradual rather than abrupt.   In various applications, 
Fuzzy sets may stem either from experts or from 
input-output numeric data.  For instance, the work of 
Mamdani and Assilian [2] used knowledge from an 
expert in the form of rules from Fuzzy antecedents to 
Fuzzy consequents, whereas the work of Tagaki and 
Sugeno [3] employed input-output data to identify a 
Fuzzy model for a system whose antecedents are 
conventional Fuzzy sets and the consequents are 
linear input-output relations. In practise, Mamdani 
([4],[5]) inference is used for control systems and 
when a system aims to emulate the intuitive human 
expert thought process. A computationally cheaper 
alternative is the Sugeno [6] inference.  Fuzzy logic 
has found ample applications for control and analysis 

purposes, as for example recorded in the work of 
Bellman and Zadeh [7], Berenji and Khedar [8]. 
Ruan and Fantoni [9] also reported industrial 
applications of Fuzzy logic. Olunloyo and 
Ajofoyinbo [10] applied hybrid Fuzzy-stochastic 
methodology for maintenance optimization. In this 
work, Fuzzy methods were used to enhance or 
improve the parameters of the stochastic process.  
Araujo, Sandri and Macau [11], Marinke and Araujo 
[12], and Moura, Rodrigues and Araujo [13] 
presented some other industrial applications of Fuzzy 
systems/logic most of which are related to thermal-
vacuum processes, in particular, in the qualification 
of space devices.   In current literature, researchers 
generally treat the overlap region as Intersection or 
Union of two or more Fuzzy sets and have invoked 
the Min and Max Operators, respectively, as needed.  
Badiru and Arif [14], for example, treated the Fuzzy 
overlap as an intersection of two adjoining sets viz: 
“Low” and “not Low” and invoked the Min Operator 
to generate output. Olunloyo, Ajofoyinbo and Badiru 
[15] in an earlier paper, also proposed another 
algorithm for the treatment of overlap of adjoining 
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Fuzzy sets based on partitioned grids.  In view of the 
importance of this Fuzzy overlap region, especially 
where there is need to monitor and ensure smooth 
transition between the adjoining Fuzzy sets in relation 
to the design of mission critical applications, 
Olunloyo and Ajofoyinbo [16] proposed an 
alternative approach for determination of 
membership function based on the Fourier series 
representation of the envelope of the Fuzzy patch. 
This methodology, in conjunction with the Min- and 
Max- Operators can provide a sound basis for the 
design and building of fault-tolerant mission critical 
engineering systems.  In the Literature, for example, 
as in the work of King and Mamdani [17], and 
Zimmermann [18], most control applications use 
triangular and trapezoidal profiles for membership 
functions. However, such triangular or trapezoidal 
assumptions, in most applications are generally based 
on approximation from the Gaussian Membership 
function. 
 
1.1 Membership Function 
Membership function essentially embodies all 
fuzziness for a particular Fuzzy set, and its 
description is the essence of a Fuzzy property or 
operation, Ross [19].  The determination of 
membership function can be categorized as either 
being manual or automatic. Watanabe [20] asserts 
that the statistical techniques for determining 
membership functions fall into two broad categories 
viz: use of frequencies and direct estimation. The two 
methods were analysed by Turksen [21] when he 
reviewed the various methods and researched into the 
acquisition of the various methods.  The automatic 
generation of membership function emphasise the 
use of modern soft computing techniques (in 
particular Genetic Algorithm and Neural Networks). 
Meredith, Karr and Krishna [22] applied Genetic 
Algorithm (GA) to the fine tuning of membership 
functions in a Fuzzy logic controller for a helicopter.  
Karr [23] applied GA to the design of Fuzzy logic 
controller for the Cart Pole problem.  Lee and Takagi 
[24] also tackled the Cart problem. They took a 
holistic approach by using GA to design the whole 
system (determine the optimal number of rules as 
well as the membership functions). Ross [25] 
reported on six popular methods for developing 
membership functions namely: Intuition, Inference, 
rank ordering, neural networks, genetic algorithm 
and inductive reason. The manual and automatic 
techniques for determining membership functions of 

Fuzzy sets are non-systematic and suffer from certain 
deficiencies.  On one hand, the existing automatic 
techniques are heuristic in nature, which implies that 
different values can be obtained for same input 
values presented at different times.  On the other 
hand, the manual techniques suffer from the 
deficiency that they rely on subjective interpretation 
of words and the peculiarities of the engaged human 
expert.   
 
1.2 Basic Properties of Fourier series 
By analyzing the nature of the overlap patches 
defined by the Intersection and Union of a typical 
grade of membership function for a linguistic 
variable, it is shown that the resultant signal does fall 
into the class of functions for which a Fourier series 
representation can be written. The problem then is to 
construct such a series and compute the 
corresponding coefficients.  Furthermore, in order to 
align the results with the properties of membership 
grade functions, some element of normalization and 
standardization is introduced.  To be more specific, 
starting with triangular Fuzzy sets, Olunloyo, 
Ajofoyinbo and Badiru [26] formulated explicit 
Fourier series representation for computing the grade 
of membership in the overlap and non-overlap 
regions.  We hereby extend that methodology by 
obtaining explicit Fourier series expressions for 
computing the Union and Intersection of the 
Gaussian, cosine and exponential Fuzzy sets. 
 
 
2 Problem Formulation 
The trigonometric series of the form 
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∞

=

++=
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where are coefficients and the period kk ba ,

w
p π2
= , are encountered in the treatment of many 

physical problems. Examples abound in the theory of 
sound, heat conduction, electromagnetic waves, 
electric circuits and mechanical vibrations 
(Sokolnikoff and Redheffer, [27]). This is the Fourier 
series.  One fundamental feature of the series is that it 
has period π2 .  The period is taken as ππ ≤≤− x  
or π20 ≤≤ x

()2 f

, and outside  this interval,  is 
determined by the periodicity condition 

)(xf

)xf (x =+ π .  In general, this periodicity 
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condition also applies for any interval 
.2π+≤≤ axa  Fundamental conditions for Fourier 

series representation are: 
a) Function must be periodic  
b) Function must have finite number of 

discontinuities 
c) Function must be bounded 
 
We note that the universe of discourse in a Fuzzy 
plane consists of one or more data points.  However, 
each of the data points in a given universe of 
discourse has some form of data distribution around 
it in the form of some shape, whether Gaussian, 
exponential, triangular or any other.  Since all data 
points in the universe of discourse would have same 
form of data distribution around every data point, we 
could therefore derive an explicit Fourier series 
expression for the envelope of the Fuzzy patch since 
we can be assured of the repetition of the distribution 
pattern around each data point.  Furthermore, in as 
much as the distribution around the data points has 
same shape, then appropriate normalisation can be 
introduced to transform the Union and Intersection of 
such Fuzzy sets into functions that are amenable to 
Fourier series representation. Although various 
functional profiles of membership functions could be 
used, the triangular and trapezoidal also serve as 
approximations of the others in the first instance.  In 
fact, the trapezoidal form can, further, be 
approximated by the triangular form since the end-
points of the tolerance interval in a trapezoidal 
distribution have the same grade of membership and 
could therefore be assigned a point value that 
represents the peak of the triangular profile.  It is 
important to note that, although triangular 
approximations of Gaussian and cosine Fuzzy 
membership functions may be acceptable globally, 
they nonetheless suffer from serious local errors. To 
emphasise this, we shall demonstrate the nature of 
the local errors which may have significant impact on 
the accuracy of the Fuzzy controllers that are derived 
from such approximations, and the performance of 
Fuzzy subsystems that are based on such 
approximations when deployed in mission-critical 
applications. The approximation error profile 
presented in Sections 2.1 and 2.2 are based on data 
obtained from natural gas company in Lagos, Nigeria 
(refer to Appendix A) 
 
 
 

2.1    Union of Gaussian and Cosine Fuzzy sets  
Whereas percentage error of membership ranges 
from -130.58% to 88.14% for triangular 
approximation of the Gaussian membership function, 
it ranges from -474.05% to 108.02% for the 
triangular approximation of cosine membership 
function as illustrated in Figs. 1 and 2 respectively 
below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2 Intersection of Gaussian and Cosine Fuzzy 

sets  
Similarly, while the percentage error of membership 
ranges from -569.58% to 4.89% for triangular 
approximation of the Intersection of adjoining 
Gaussian Fuzzy sets, it ranges from -663.091% to -
9.701% for the triangular approximation of the 
Intersection of adjoining cosine Fuzzy sets.  These 
observations are encoded within Figs. 3 and 4 below. 
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Fig. 1: Gaussian Vs Triangular Fuzzy sets 

                       Percentage Error of Membership 

Fig. 2: Cosine Vs Triangular Fuzzy sets 
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2.3 Other distributions 
We present some of the other distributions that are 
prevalent in engineering systems as follows: 

 
2.3.1.1 Union of Gaussian Fuzzy sets 
The Gaussian membership function is commonly 
used in engineering problem domain especially for 
engineering measurements, as it gives actual 
representation at every point.  
 

 
 
 
 
 
 
 
 
 
 
 

 
 

The corresponding normalized Union of the Gaussian 
Fuzzy sets is described by Fig. 5.  In particular, the 
Union of the Gaussian Fuzzy sets is described by the 
function )(xg , where 
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The membership function of union of Gaussian Fuzzy 
sets is computed as: 
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Recall from Abramowitz and Stegun (28) that: 
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From the foregoing we note as follows: 
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Fig. 3: Cosine Vs Triangular Fuzzy sets 
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Fig. 4: Gaussian Vs Triangular Fuzzy sets 
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We recall from equations (7) and  from 
equations (8) above and express equation (9) in terms 
of  and  as follows: 
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Similarly we recall from equations (7) and  
from equations (8) above and express equation (12) 
in terms of  and  as follows: 
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2.3.1.2 Intersection of Gaussian Fuzzy sets 

(Exponential Membership Function) 
 

 
 
 
 
 
 
 
 
  
 
 

 
 
We obtained the expression for computing 
membership function in the overlap region of 
Gaussian Fuzzy sets as: 
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From equation (5), we re-write equation (15) as 
follows: 
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From equation (16), we define  and as follow: 1J 2J
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Fig. 6: Intersection of Gaussian Fuzzy sets 
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By plugging-in  and  from equations (17) and 
(18), we can re-write equation (19) as: 

1J 2J

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=

3
2sin

3
4sin1

12
ππ

π
kJkJ

k
ak

  (20)

     
Similarly, by plugging-in  and  from equations 
(17) and (18), we obtain: 
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2.3.2 Cosine Membership Function 
 
2.3.2.1 Union of Cosine Fuzzy sets 

 
 
The corresponding normalized Union of the cosine 
Fuzzy sets is described by Fig. 7.  In particular, the 
Union of cosine Fuzzy sets is described by the 
function )(xg , where 
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The membership function of Union of cosine Fuzzy 
sets is computed as: 
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From equations (24) and (25), we define  and  
as follows: 
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We express equation (29) in terms of  and : 1R 2R
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Fig. 7: Union of Cosine Fuzzy sets  
and 
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Similarly, we express equation (31) in terms of  
and : 
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2.3.2.2 Intersection of Cosine Fuzzy sets 
(Exponential Membership Function) 
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Similarly, we compute the membership function of 
the Intersection of cosine Fuzzy sets as: 
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We define and  as follows: 1Q 2Q
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(Note: We used π2  as upper integral limit instead of 
point of intersection (π ) to enable us fully capture 
the curve) 
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Fig. 8: Intersection of Cosine Fuzzy sets 
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(Note: We used 0 as lower integral limit instead of 
point of intersection (π ) to enable us fully capture 
the curve) 
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Plugging-in equations (39) and (42) into equation 
(44), we obtain: 
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By plugging-in equations (39) and (42) into equation 
(46), we obtain: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛−⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−= 1

3
4cos

3
2cos2cos1 21 πππ

π
k

k
Qkk

k
Q

bk

 
The details of the implementation of this algorithm 
are shown in Appendix A for the specific cases of 
cosine, and Gaussian membership functions. 

 
 

3 Systems Design And  
        Implementation 
Based on the foregoing, we hereby document the 
development of an embedded “Fuzzy controller” to 
measure temperature and pressure and produce 
output that can represent input to other sub-systems 
or systems. The implemented device circuit 
incorporates a mid-range 40-Pin Enhanced Flash 
PIC16F877A Microcontrollers, MPX4115A 
piezoresistive pressure sensors, LM35D precision 
integrated-circuit temperature sensors and  a Lumex 
2x16 Alphanumeric Liquid Crystal Display (LCD) 
(HD44780 compliant).  The PIC16F877A 
Microcontrollers were encoded with derived Fourier 
computations using the Hi-Tech ANSI C Language.  
To test the proposed techniques and as a 
demonstration of the capability of our approach, we 
specifically applied the techniques to data obtained 
from a natural gas distribution company in Lagos 
Nigeria. Table 1 (Appendix A) presents parameter 
values obtained for Mole % of Methane in the 
composition of natural gas.  The corresponding 
results of sample output (mole % of methane) are 
presented in Tables 2 and 3 (Appendix A).  The full 

code for the Simulation (in MATLAB) and the code 
for hardware implementation (Hi-Tech ANSI C) are 
available. 
 
Itemised below are some of the details of systems 
design and the implementation of the embedded 
Fuzzy controllers. The electrical circuit is shown in 
Fig. 9, while the corresponding photo-image of the 
device is presented in Fig. 10.  
 
 
3.1  Circuit Description 
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Fig. 9: Electrical Circuit of the Device  

 

 
 
 Fig. 10: Image of the Device  
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Whereas the circuit in Fig. 9 consists of the following 
major hardware components: 
• Microchip 40-Pin Enhanced Flash PIC16F877A 

Microcontrollers  
• LM35D precision integrated-circuit temperature 

sensor  
• MPX4115A piezoresistive pressure sensor, and 
• LCM-S01602DSF/C Liquid Crystal Display 

(HD44780-compliant LCD), 
 
There are only four units of the PIC16F877A 
Microcontrollers deployed in the circuit. Each 
Microcontroller is configured with XT 4MHz 
Crystal. Moreover, the circuit incorporates the LCM-
S01602DSF/C Liquid Crystal Display (LCD) output 
unit capable of displaying 2 x 16 characters.  The 
four (4) Microcontrollers are moreover grouped into 
two functional sections viz: 
 
3.1.1 Section 1: Temperature  
This section consists of two (2) Microcontrollers. 
Microcontroller #1 executes the program code for 
temperature input from the LM35D Sensor, it also 
conditions and convert signals to digital form, and 
computes grade of membership of Guassian/cosine 
Fuzzy sets. Similarly, Microcontroller #2 executes 
the corresponding program code for temperature 
input from the LM35D Sensor, digitises the signals, 
and computes membership grades of triangular Fuzzy 
sets. 
 
3.1.2 Section 2: Pressure  
This section consists of two (2) additional 
Microcontrollers to handle the pressure readings 
from the MPX4115A Sensor. 
 
3.1.3 Switching Between Sections 1 and 2 
Switching between Section 1 and Section 2 is 
achieved with the Switch labelled IC SEL; while 
switching between the two Microcontrollers in each 
section is achieved with the switch labelled 
TEMP/PRES.   
 
4 Summary and Conclusion 
Fuzzy logic has become very relevant in machine, 
process or systems control, and particularly as a 
means of making machines more capable and 
responsive by resolving intermediate categories in 
between states hitherto classified on bivalent logic.  

In the past the use of Fuzzy set theory has been 
popularised for handling overlap domains in control 
engineering but this has been in the context of 
triangular membership functions. In actual practice 
such domains are hardly triangular and in fact for 
most engineering applications are usually Gaussian 
and sometimes cosine.  In this paper, we have 
derived Fourier series representation for computation 
of membership functions for such distributions.  
Furthermore, we have established its efficacy by 
applying it to a Natural Gas Distribution Network 
based on a Fuzzy controller device built on this 
principle. In particular, we presented the 
development of an embedded “Fuzzy controller” to 
measure temperature and pressure and produce an 
output that can represent input to additional sub-
systems or systems.  This device has clearly 
demonstrated that the proposed technique can indeed 
be incorporated in engineering systems for the 
dynamic computation of grade of membership in the 
overlap and non-overlap regions of Fuzzy sets and 
thus provides a basis for the design and 
implementation of embedded Fuzzy controller (in 
hardware) for mission critical applications. 
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