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Abstract: Computer network routing is a very important and interesting optimization problem. Many different
routing algorithms have been used over the years on the Internet, often with unexpected problems. Dynamic
systems, i.e. systems that change over time, can be optimized statically with a fixed solution that corresponds to
some average system state, or dynamically where the solution tries to follow the system change over time. It is a
normal expectation that dynamic optimization has to give better results than a static one. Dynamic optimization is
more complex, requires more computation, more advanced methods, but is superior to static optimization because
it can always be transformed to the static case simply by neglecting change of the system in time and selecting
a single state as a representative. However, that expectation that dynamic optimization gives better results than
static one applies only to the perfect dynamic optimization, which is impossible in practice. It takes some time to
collect information about the system current state, and optimization is always done with that obsolete information.
This situation is examined on computer network routing. By complete mathematical analysis of a simple network,
we show that dynamic routing gives better results than static, as expected, but that the margin is much smaller
then intuitively expected. Further analysis shows that that minor advantage can easily be lost if there is even a
small error in the dynamic routing tables, and actually dynamic routing can easily become worse than static. It
takes time to collect information about network traffic. By the time routing tables are calculated, they are already
obsolete; they are about some previous condition on the network, not the current one. Quantitative analysis shows
that delays in building routing tables can affect dynamic routing performance unexpectedly strongly. This leads to
the qualitative recommendation: ”Trying to optimize too hard will make things worse. Dynamic routing should not
try to adapt to traffic changes very fast.” This hypothesis is accepted today and implemented in routing algorithms.
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1 Introduction
Optimization is one of the most widely applicable
mathematical techniques. Almost any practical prob-
lem can be represented as a system where certain
function should be minimized (or maximized) under
certain conditions. The systems usually change over
time and one of the possible classifications of corre-
sponding optimizations is to static and dynamic cases.
Alternative terminology is fixed and adaptive.

It should be noticed that pure static and pure dy-
namic optimizations are practically never used. Pure
static (fixed) optimization would imply that one so-
lution is used forever. That is very rarely the case,
we usually adjust optimization solutions to system
changes but relatively rarely, for example once every
week or once every hour. On the other side, pure dy-
namic (adaptive) optimization would adjust to system
changes infinitely fast (in time zero) which is impos-

sible. In such optimizations we try automatically to
adjust to the system changes as fast as possible. That
is the main problem with adaptive optimization. For
many problems we can consider that attempt to adjust
”as fast as possible” is also ”good enough”. In this pa-
per we show that in some (many?) cases such assump-
tion can be dangerous and that our intuitive feeling of
what is ”good enough” can be very misleading.

This relation between fixed and adaptive opti-
mization is investigated on the computer network
routing problem.

2 Problems with Dynamic Routing

Highly dynamic optimal routing has been used in the
Internet [1], [2], [3]. Expectations that it will give
much better results were not completely fulfilled, be-
cause unexpected delays occurred often. Here and in
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[4], [5], [6], [7], [8], [9] is presented an attempt to give
some theoretical explanation for such behavior. To-
day, this problem is again interesting but in the context
of wireless ad hoc mobile networks [10], [11], some-
times using evolutionary computing [12].

Here, for the routing problem we also have ac-
cepted terminology to classify routing as static versus
dynamic or fixed versus adaptive. In practice, how-
ever there is not a clear-cut between the two: fixed
or static routing is not fixed forever and dynamic or
adaptive is not infinitely fast in its adjustment to the
situation on the network. As mentioned before, fixed
routing has to accommodate for occasional link fail-
ures at least, and adaptive routing needs some time to
collect and analyze the current traffic on the network.
In reality, routing adjustments are made, the question
is how often. In can be done on a daily basis, or ev-
ery hour, every minute or every few seconds. If it is
done every few minutes, it can be called fixed if com-
pared to adjustments every few seconds, or it can be
called adaptive if compared to adjustments every few
days. Often terms like ”semi-adaptive”, ”semi-fixed”,
”highly-dynamic” etc. are used.

There are problems with distributed optimal rout-
ing algorithms. Kleinrock was the first [13] to point
out that ”... uncontrolled alternate routing in a con-
gested network can lead to chaos. Indeed, the tele-
phone company tends to limit (and even prohibit
completely) alternate routing on unusually busy days
(Mother’s Day, for example).”

It takes significant time to calculate new routing
tables, both to accumulate data in any node, and to ex-
change data among nodes. By the time the calculation
is finished load may be sufficiently different to make
the tables obsolete, and the routing far from optimal.

By working on the knees of sharply rising delay
curves, highly dynamic optimal routing can expend
massive amounts of network resources for no bene-
fit. It will be shown that congestion can be avoided
in a useful range of cases by quasi-static bifurcated
routing with conservative load estimates, and that the
delay penalties for use of this, less then optimal, rout-
ing are small. There are cases where dynamic routing
can offer significant performance improvements, but
without full load information and without infinitesi-
mal route calculation time the game theoretic ”maxi-
mal loss” is not minimized.

A complete mathematical analysis of a simple
network will be done. It will show that dynamic rout-
ing offers an improvement over static routing that is
smaller than expected. That minor theoretical gain
can easily be lost, and situation can actually become
worse, if there is even a small error in the dynamic
routing tables. An interesting and somewhat surpris-
ing solution is offered. Congestions can be avoided if

optimization is not tried too hard. Dynamic routing is
good, but only if the tables can be recalculated very
quickly. Static routing is better then attempted, but
unsuccessful optimal dynamic routing.

3 Mathematical Model

A simple three node network and even simpler offered
load will be examined. Nodes are A, B and C, and all
traffic is from A to B. There are two possible differ-
ent routes: a direct path from A to B, and an indirect
path, of the length two, that goes through C. Let us
assume that all three lines are of the same capacity µ
bits per second. Our routing problem is then reduced
to making a decision about what fraction α of the to-
tal offered traffic will be sent along the indirect path
of the length two. The remaining fraction 1−α of the
total load will be send along the direct path. Let us
call α a branching coefficient. Let offered load be λ
bits per second and ρ will, as usually, denote utiliza-
tion λ/µ. We will also assume a Poison input stream
of messages, and an exponential service time on lines.

There are some limitations for the parameters that
we introduced [4], [9]. Parameter α is a fraction
(probability) so we certainly have 0 ≤ α ≤ 1. For this
particular case, there is an even stronger condition.
We may have to send some traffic along the longer
route, which is more expensive, has longer wait time
etc., only if the direct path is overloaded (whatever the
definition of the “overload” is). It is obvious, how-
ever, that it never pays off to send more traffic along
the indirect route than along the direct route. If the
lines were of different capacities, costs, reliabilities
etc., this would not have to be the case, but according
to our assumptions, we get the limitation that reason-
able interval for α is 0 ≤ α ≤ 0.5 (this will formally
follow from the requirement that utilization for each
line must be less than 1).

There may be some additional limitations for α.
If the total offered load λ is less than the line capacity
µ, then there are no problems. The network, however,
may withstand the total offered load of λ < 2µ or ρ <
2. The reason for this is that we have two alternative
paths, each of the capacity µ. It is obvious that when
the total load approaches 2µ, there is no more freedom
in selecting α. It has to be equal to 0.5, or one path
will become overloaded, introducing infinite delays.

The new set of limitations for α can be calculated
as follows. With the total load λ, line capacity µ, uti-
lization ρ, and the branching coefficient α, the utiliza-
tions of the direct path ρ1, and the utilization of the
indirect path ρ2 will be:

ρ1 = (1− α)ρ and ρ2 = αρ (1)
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In order to keep the network in a stable state (to
avoid infinite queues and delays), we have to avoid
overloading any of the two paths. By solving ρ1 < 1
and ρ2 < 1, we get an additional constraints α > 1−
1/ρ and α < 1/ρ. If we check the second constraint,
we see that it is completely included in the previous
constraint α < 0.5.

Then, the final set of constraints is:

µ > 0 (2)

0 ≤ ρ < 2 (3)

max
(

0, 1− 1
ρ

)
≤ α ≤ 0.5 (4)

The left constraint in the last expression is differ-
ent from zero for ρ > 1.

3.1 Optimal Waiting Time

The waiting time (including service time) for an
M/M/1 queuing system is:

WM/M/1(ρ) =
1

µ(1− ρ)
(5)

WM/M/1 is a function of λ and µ, but they are
connected through ρ, and µ can be considered con-
stant.

By using Kleinrock’s Independence Assumption,
the total waiting time for our network is:

W (α, ρ) = (1−α)WM/M/1(ρ1) + 2αWM/M/1(ρ2)
(6)

By substituting Equations (1) and (5), we get

W (α, ρ) =
1− α

µ[1− (1− α)ρ]
+

2α

µ[1− αρ]
(7)

or

W (α, ρ) =
3ρα2 + (1− 3ρ)α + 1

µ[1− αρ][1− (1− α)ρ]
(8)

Our goal is to optimize the waiting time so we need a
derivative. Parameter under our control is α. Differ-
entiation gives:

dW (α, ρ)
dα

=
ρ2α2 − 2ρ(2ρ− 3)α + 2ρ(ρ− 2) + 1

µ(1− αρ)2[1− (1− α)ρ]2
(9)

The optimal (minimal) waiting time, when
branching probability α is selected optimally

Wopt =
(21− 18

√
2)ρ + 32

√
2− 45

µρ[(6
√

2− 7)ρ− 12
√

2 + 14]
(10)

4 Changing Offered Load

Previous chapter assumes that we know that the of-
fered load is λ exactly, and that it does not change in
time. This case is not really interesting. In reality, of-
fered load is always changing in time, and that is what
makes difference between static and dynamic routing,
but also gives possibility for an error when calculating
dynamic routing tables.

4.1 Uniformly Changing Offered Load

Let us consider more general and more realistic case,
when the offered load changes in time between the
lower limit l and the upper limit h, where 0.3 ≤ l <
h < 2 must be satisfied. To make calculations easier
(or possible) we will assume that the load changes uni-
formly. That means that the value for the offered load
spends equal amount of time inside any subinterval of
the same size, included between l and h. Such dis-
tribution corresponds, for example, to constant-speed
load shift from l to h, back and forth. This assump-
tion that load changes uniformly between l and h is
somewhat artificial, but not very far from what really
happens in the network.

4.2 Optimal Dynamic Routing

We will now calculate the waiting time for optimal dy-
namic routing. We select our optimal branching prob-
ability α infinitely fast, and at any moment it follows
precisely the changing load λ. The total waiting time
will be expected value with regard to the distribution
g(ρ) of the changing load:

Wopt dyn =
∫ h

l
Wopt(ρ) g(ρ) dρ (11)

By substituting Equation (10) and g(ρ) for uni-
form distribution, we get

Wopt dyn =
1

h− l

∫ h

l

(9
√

2− 12)ρ− 17
√

2 + 24
µ(3

√
2− 4)ρ(2− ρ)

dρ

(12)
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By solving this integral, we get the best we can
hope for in the case of uniformly changing load. Op-
timal dynamic routing gives waiting time:

Wopt dyn =
(24− 17

√
2) ln

(
h
l

)
+
√

2 ln
(

2−l
2−h

)
2µ (3

√
2− 4)(h− l)

(13)

4.3 Optimal Static Routing

Let us now examine static routing where the branch-
ing probability α will always have the same, fixed
value. To find the optimal value for that fixed branch-
ing probability α, we do again differentiation and in-
tegration, but in the reverse order. Previously, we dif-
ferentiated W to find optimal α for a particular ρ and
then, using that optimal α, integrated over all possible
values for ρ (with regard to distribution for ρ). Now,
we will integrate over all possible values for ρ (as-
suming that α is fixed) to find average W and then
differentiate that expression with respect to α to find
the optimal fixed value for α, which minimizes W .

Average waiting time for a fixed α will be:

Wavg =
∫ h

l
W (ρ) g(ρ) dρ (14)

or, after we substitute Equation (7) and g(ρ) for
uniform distribution

Wavg =
1

h− l

∫ h

l

[
1− α

µ[1− (1− α)ρ]
+

2α

µ(1− αρ)

]
dρ

(15)

By solving this, we get

Wavg =
1

µ(h− l)
ln

(1− αl)2[1− (1− α)l]
(1− αh)2[1− (1− α)h]

(16)

Now, we differentiate this expression with regard
to α:

dWavg

dα
= (17)

3αl − 2l + α2hl − 4αhl + 2hl + 1 + 3αh− 2h

µ (1− h + αh) (−1 + αh) (1− l + αl) (−1 + αl)

we get an expression for the optimal waiting time
for static routing:

Wopt stat =
ln
(

l3[R+h(4l−5)−3l]2[R+h(2l−1)−3l]
h3[R+h(4l−3)−5l]2[R+h(2l−3)−l]

)
µ(h− l)

(18)
This case represents pure static routing if the

boundaries l and h are fixed and never change. In
practice, we use a quasi-static routing where the
boundaries l and h do change over time, but much
slower than the offered load ρ. We adjust l and h, and
corresponding αopt stat, but we do it once every hour
or so. For shorter periods of time routing is static,
while dynamic routing chases changing offered load
continuously.

4.4 Comparison

Now, we will compare optimal dynamic routing and
optimal static routing. Formula that is used to calcu-
late improvement is

Improvement =

(
Wopt stat

Wopt dyn
− 1

)
∗ 100% (19)

The following Table 1 shows improvement in per-
cents (reduction of delays) when optimal static rout-
ing is replaced by optimal dynamic routing, for differ-
ent intervals [l, h], where offered load ρ is uniformly
changing.

l,h 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9
0.3 0.6 1.3 1.8 2.2 2.5 2.7 2.8 2.9
0.5 0.2 0.6 1.0 1.3 1.7 2.0 2.3
0.7 0.1 0.4 0.7 1.1 1.5 2.0
0.9 0.1 0.3 0.6 1.0 1.6
1.1 0.1 0.3 0.7 1.3
1.3 0.1 0.4 1.1
1.5 0.1 0.7
1.7 0.4

Table 1: Dynamic vs. Static routing, improvement in
percents

Rows in the table give corresponding improvement
for particular l, columns for h. Since l < h, only
the upper right triangle of the table is used, diago-
nal excluded. First impression is surprisingly small
improvement that dynamic routing introduces. It al-
lows us to make claim that too zealous optimization is
harmful. Even without any errors in calculating rout-
ing tables, best improvement we can hope for, the up-
per limit, is given in Table 1. Average improvement is
about 1%, maximal improvement is less than 3%. It is
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not surprising that maximal improvement is achieved
when interval [l, h] is wide. Traffic then varies a lot,
and if we can follow that wide variations, improve-
ment will be more significant.

When we look at this modest improvement, we
should keep in mind that we are dealing with a very
simple model with only three nodes and one source.
In a larger network, it is possible that improvement
would be better, but chances for an error in the dy-
namic routing tables would also be better. The com-
bined effect would probably be the same.

The conclusion is that optimal dynamic routing
gives modest improvement over optimal static rout-
ing. That small improvement can easily be annihi-
lated, and actually dynamic routing can give larger de-
lays than static, if there are any errors in the dynamic
routing tables. Such errors always exist, because it
takes significant time to calculate new routing tables,
both to accumulate data in any node, and to exchange
data among nodes. By the time the calculation is fin-
ished, load may be sufficiently different to make the
tables obsolete, and the routing far from optimal.

5 Imprecise Adaptive Routing

Now, we show how that small advantage can be lost
and why dynamic routing can become worse than
static, even for relatively minor errors in traffic esti-
mate.

The goal in this section is to quantitatively exam-
ine how imprecise (obsolete) traffic information used
for calculating dynamic routing affects delays in the
network and when dynamic routing becomes imprac-
tical because optimal static routing becomes better.

We need a simple, but not far from the reality,
mathematical model to represent obsolete traffic in-
formation. We have already made assumption that
offered load for the network changes uniformly be-
tween l i h. We can add another assumption that uni-
form change is by constant speed from l to h and back
and so forth. Time delay in collecting traffic informa-
tion can then be represented by fixed underestimate of
the traffic (or, for the other direction, by fixed over-
estimate). That practically means that underestimated
value ρ − d should be substituted for ρ in the expres-
sion for optimal value for branching coefficient α.

αopt d =
2ρ− 2d− 3−

√
2ρ +

√
2d + 2

√
2

ρ− d
(20)

5.1 Optimal Imprecise Dynamic Routing

This imprecise αopt d we substitute into expression
for waiting time

Wopt d =
1 + 3 Aρ

d−ρ −
A

d−ρ + 3 A2ρ
(d−ρ)2

µ
(
1− ρ− Aρ

d−ρ

) (
1 + Aρ

d−ρ

) (21)

where

A = (2−
√

2)(ρ− d) + 2
√

2− 3 (22)

Now, we can calculate, as before, optimal wait-
ing time for the network when offered load uniformly
changes from l to h:

Wopt dyn d =
1

h− l

∫ h

l
Woptd(ρ)dρ (23)

Calculating this integral gives a complicated ex-
pression that can be written in parts:

Wopt dyn d =
1

µ
√

a1 ∗ a2(h− l)2(3− 2
√

2)2
∗ (24)

∗
{
√

a1 ∗ a2

[
(17− 12

√
2) ln

(
b(l) +

√
2d

b(h) +
√

2d

)
+

(34− 24
√

2) ln

(
2b(l) +

√
2d

2b(h) +
√

2d

)]
+

+4
√

a1(a3 − a6)(29d
√

2− 41d + 41
√

2− 58)+

+2
√

a2(a5 − a4)(29d
√

2− 41d + 82
√

2− 116)
}

where

a1 = (2
√

2− 3)(d2 + 4) + 2(6
√

2− 8) (25)

a2 = (2
√

2− 3)(d2 + 4) + (6
√

2− 8) (26)

a3 = arctan

(
(
√

2− 1)(d− 2l + 2)
√

a2

)
(27)

a4 = arctan

(
(1−

√
2)(d− 2l + 2)
√

a1

)
(28)
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a5 = arctan

(
(1−

√
2)(d− 2h + 2)
√

a1

)
(29)

a6 = arctan

(
(
√

2− 1)(d− 2h + 2)
√

a2

)
(30)

b(t) = t2 − (2 + d)t + d (31)

This formula for d = 0 reduces to formula for
waiting time for optimal dynamic routing, Equation
(13), that we had before.

5.2 Static and Imprecise Dynamic Routing

Now, we can compare imprecise dynamic routing with
optimal static routing. As before, we will calculate
improvement in percents (reduced delays) when op-
timal static routing is replaced by imprecise dynamic
routing. Improvement is calculated for different in-
tervals [l, h] where offered load uniformly changes.
When d becomes large enough, improvement will be-
come negative, i.e. static routing will become superior
to this sufficiently imprecise dynamic routing.

For d = 0.15 almost all elements are negative,
which means that is better not to try dynamic routing
with that size of error in traffic information. Static
routing is better and error is only 7.5% of the total
capacity.

l,h 0.7 0.9 1.1 1.3 1.5 1.7 1.9
0.5 -2.4 -1.3 -0.5 0.1 0.6 0.9 -0.2
0.7 -1.1 -0.6 -0.2 0.2 0.5 -0.6
0.9 -0.7 -0.4 -0.1 0.1 -1.0
1.1 -0.6 -0.4 -0.2 -1.5
1.3 -0.6 -0.6 -2.0
1.5 -1.0 -2.8
1.7 -4.2

Table 2: Improvements in percents for d = 0.15

6 Conclusion
Previous tables give an interesting and somewhat sur-
prising solution. Congestions can be avoided if we do
not try to optimize too hard. Dynamic routing is good,
but only if we can recalculate tables very fast. Static
routing is better than attempted, but unsuccessful op-
timal dynamic routing.
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