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Abstract:  Control Network Programming (CNP) is a programming paradigm that is especially convenient for 
representing problems with a natural graph-like description. This description is often of nondeterministic nature. The 
report continues the discussion from [1] on how a CN program is interpreted and executed. The basic algorithm of the 
interpreter is presented. It is followed by a discussion of the so called system options – these are powerful means for 
user control of the execution process.  
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1   Introduction 
CNP [1-3] started as an attempt to enhance the 
possibilities and flexibility of controlling the inference 
process in rule-based systems by equipping the rule base 
with a structure, i.e., arranging the rules into a “control 
network”. It developed into a universal programming 
paradigm that is especially effective for solving 
problems with natural graph-like representation [3]. The 
problem in hand may be nondeterministic and its 
specification   purely descriptive. 

The structure and syntax of a CN program were 
introduced in [2], and typical representative problems 
considered in [3]. CN programs and their behavior were 
more formally defined in [1], and the basics of their 
execution introduced.  

The discussion in [1] focuses on the main concept 
of CN program execution only.  There are additional, 
more advanced features that were left completely 
untouched. First of all, these are the powerful means for 
controlling the search provided by the so called control 
nodes and system options. Specifying a group of these 
features – the system options for static control - and 
illustrating their usage comprise the main subject of this 
report. It is assumed that the report will be read in 
conjunction with [1-3]. For consistency, the CNP 
development environment Spider, respectively the 
Spider CN programming language, are used. 
 
2 Algorithm of the interpreter 

The interpretation of a CN program was discussed 
in detail in [1].  

The actual formal algorithm of the CN program 
interpreter is specified in Figures 1 and 2 with its UML 
activity diagrams. “Process CN” is the main activity. It 
invokes activity “Process Node”.  A short explanation of 
some of the notations and data structures used follows. 

The set out(v) includes all arrows outgoing from 
vertex v. RET_stack is a stack where states immediately 
following subnet calls are stored while remains is the set 
of the arrows outgoing from the current state and not 
attempted yet. arr_done is a stack of primitives from the 
current arrow label that have been executed already. 

arr_to_do is the 
remaining sequence 
of primitives 
associated with the 
current arrow arr. 
Operation push(a, 
stack) pushes element 
a onto stack stack. 
Operation pull(a, 

stack) stores the top 
of the stack into a, 
and removes the top 
of the stack. 

Operation dequeue(a, queue) stores the element at the 
front of the queue queue into a, and removes this 
element from the front of the queue. 

Returning backwards into a subnet poses a specific 
problem. To develop a solution around this difficulty, we 
need to impose on the CN the following two constrains: 
An invocation CALL(N’:v’) may only be the last 
component in an arrow’s label, and the subnets’ state 

Figure 1 Activity diagram of 
"Process CN" 
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sets are non-intersecting (i.e., all subnets have unique 
states). 

These restrictions do not decrease the generality of 
our considerations. Indeed, if the original CN contains 
an arrow in which an invocation is not the last 
component, then such an arrow can always be replaced 
by an equivalent sequence of arrows. For instance, the 

arrow ''' 3,2,2,1,1 vv pCALLpCALLp ⎯⎯⎯⎯⎯⎯ →⎯ can be replaced by  
 21' 2,21,1 vvv CALLpCALLp ⎯⎯⎯ →⎯⎯⎯⎯ →⎯ ''3 vp⎯→⎯ . 

In regard to the state names, we can always use the 
coproduct (disjoint union) of the original state sets.. 

As a matter of fact, the above two restrictions do 
not affect programming in Spider. As explained in [1], 
the original Spider program is compiled into an 
intermediate program in the underlying programming 
language that embodies information on both the original 
CN program and the algorithm of its interpretation. This 
“compiler” also acts as a “pre-processor” automatically 
converting the original CN into a CN that satisfies the 
above restrictions. 

Due to the first restriction, it is 
possible to store onto stack 
RET_stack the state immediately 
following a subnet call (see Figure 2). 
The second restriction is needed 
because the subnets are not modeled 
by procedures calling each other as 
that won’t allow for returning 
backwards into a subnet – instead, all 
subnets are “projected” into a single 
plane. 

Completion of a CN or a subnet 
means that all possible paths have 
been attempted. Therefore, 
completing the CN corresponds to an 
unsuccessful search. This is the 
meaning of the normal exit nodes in 
the activity diagrams in Figures 1 and 
2. There is another possible way to 
exit a CN or a subnet – when a 
FINISH state has been reached by the 
search process. This is the situation 
when the search was successful. In 
technical terms, this situation is not a 
normal exit from the CN. Such an 
event can be better described using 
terms like HALT, ESCAPE, ABORT 
or BREAK. The issue of multi-exit 
control flow has attracted lots of 
attention in certain periods of the 
programming languages development 
(see, e.g., [4, Chapter 11; 5, Chapter 

8]). As argued there, a typical situation when a break 
will be advantageous is a search loop. In CNP, all the 
computation is essentially a search. Therefore, it is 
understandable that we found it natural and effective to 
abort the computation completely when the control 
reaches a FINISH state. UML does not provide means 
for depicting multi-exit control. Therefore, we have used 
the traditional activity end symbol to depict an 
unsuccessful completion of the algorithm and adopted a 

special new symbol ( ) to denote the successful halt of 
the process. 
 
3 On the extended backtracking 
The computation process is essentially a process of 
searching the CN with the purpose of finding a solution 
path from the default initial node of the main subnet to a 
FINISH state. The method used in Spider extends the 
well-known backtracking algorithm, adding also some 
unusual features.  

Firstly, our setting is not traversal in a graph but 
rather traversal in a CN which is a set of graphs. The 
control may have to enter a subnet backwards through a 

Figure 2 Activity diagram of "Process node" 
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RETURN node, and in some cases to pass backwards the 
whole subnet (see [1] for examples). Entering a subnet 
backwards is not a trivial problem. A subnet plays the 
role of a procedure/function. Normally, when a 
procedure/function in a programming language is 
completed, the memory allocated for it is freed and all 
related information is lost. Therefore, we had to set aside 
the natural idea to implement a subnet through a 
procedure, and find a different approach.  

Secondly, we decided against storing (in a return 
stack) of all the information related to a state in the CN. 
This information must normally include not only the 
position in the CN itself, but also all the data. Therefore, 
we have introduced forward and backward execution of 
a primitive – the latter one conducted during backward 
execution in order to restore the state of the data. This 
approach can be seen in the code of the IncPr primitive 
in [1]. Theoretically, in general, it is not always possible 
to find the inverse behavior of a primitive because the 
inverse of a function is in general a relation. In practice, 
however, we came to the recognition of the following 
intuitive rule: a programmer never uses a primitive that 
has no inverse action in a place where such an inverse 
action would be actually necessary. In our experience 
with CNP we have never observed an exclusion from 
this rule. 

 
4 Control features in Spider 
Solving certain problems requires that the standard 
interpretation algorithm be modified in one way or 
another. System options supported in Spider provide 
possible ways of doing so and are a powerful means for 
controlling the search in the CN. 

Some of the system options are used in conjunction 
with the so called control states which are a second 
group of search control features. These are special types 
of nodes in the CN: ORDER, SELECT and RANGE.  

Spider offers ten system options. According to their 
main purpose, the system options can be classified in 
three groups: 

• For setting the solution scope – system option 
SOLUTIONS. 

• For static control of search parameters – system 
options BACKTRACKING, ONEVISIT, LOOPS 
and RECURSION. 

• For dynamic search control (controlling the 
order of selecting the outgoing arrows of the 
active state) – system options ARROWCOST, 
MAXPATHCOST, NUMBEROFARROWS, 
RANGEORDER, and PROXIMITY. 

This presentation focuses on the system options of 
the first two groups only. These system options are 
summarized in the following table: 
 

Option Default 
value Other values 

SOLUTIONS 1 ALL, ASK, unsigned 
integer 

BACKTRACKING YES NO 
ONEVISIT NO YES 
LOOPS ANY Unsigned integer 
RECURSION ANY Unsigned integer 

 
The static control options allow for the elimination of 

certain algorithmic issues (e.g., avoiding unwanted 
loops) or for improving the search efficiency.  

The dynamic control options are used, in 
conjunction with control states, for implementation of 
heuristics. Dynamic control involves changing the values 
of system options during the computation process. 

At each point of the execution, every one of the ten 
system options has a value (stored, together with certain 
additional system information, in a variable – record 
called SpiderOptions). The values can change. At a 
given point, the set of the ten system option values 
determines the exact behavior of the interpreter.  

The possible values 
of the system options 
under consideration are 
listed in the table. To set 
an option’s value, the 
following syntax is used: 
[option name = value]. 
The value of a system 
option is set immediately 
before the segment of the 
CN which the setting is to 
affect. Such a segment 
(the option scope) may 
be the entire CN, a 
subnet, a state (the scope 
is the set of outgoing 
arrows for that state), or 
an arrow.  For some 
options certain scopes 

make no sense and cannot 
be used. A setting with its 
scope being the entire CN 
is declared at the very beginning of the CN (right after 
“(*&N” [2]). A setting with any of the other scopes is 
declared immediately after the name of the 
corresponding fragment (e.g., “SUB Map; 
[LOOPS=0]”). In the case an option setting has not been 
specified for a given fragment, the option’s value from 
the segment immediately including the given segment 
will be valid. Each option also has a default value (see 
the table) – that is the value of the option if no explicit 
setting is specified. The “basic” interpreter algorithm of 

Figure 3 An example: CN 

Figure 4 An example: 
execution 
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Figures 1 and 2 corresponds actually to the default 
option values. 
 
5 System option SOLUTIONS 
The value of the option determines the number of 
solutions that the interpreter will seek. Setting 
[SOLUTIONS = 1] instructs the system to halt after 
finding the first solution. If the value of the option is 
ALL the interpreter interprets state FINISH as “no 
success” and continues the computation, until the CN is 
completely traversed. Setting ASK will make the 
program print a message asking the user whether to 
continue with the search. The option may be used for the 
entire CN, a subnet (only if the subnet contains a 
FINISH state), a state (only if the state contains an 
outgoing arrow with target state FINISH). 

In 
Figure 3, 
[SOLUTION

S = ALL] is 
specified for 
the entire 
CN, and 

then redefined as 
[SOLUTIONS = 
3] for subnet S. 
The execution is 
illustrated in 
Figure 4. We 
assume that all 

the primitives will be executed successfully. After 
executing primitives p(1) and p(2) the control reaches  
state FINISH of MAIN. The first solution has been found 
but the computation does not halt, p(1) and p(2) are 
executed backwards, and the control reaches state 0 
again. The second arrow outgoing from state 0 is 
attempted now by executing the subnet call CALL S. The 
value of SOLUTIONS for subnet S is 3. The first 
outgoing arrow is taken, primitive p(3) is executed and 
state RETURN is entered. As subnet S was successfully 
completed, the control moves to state 1 in MAIN. The 
value of SOLUTIONS changes back to ALL. After 
executing primitive p(2) FINISH is reached once again, 
which means the second solution was found. The 
computation continues, and the control goes back to 1 
through p(2). Subnet S is entered backwards through 
RETURN. The value of SOLUTIONS restores to 3. 
Computation continues as illustrated in Figure 4. Three 
solutions will be found. 

Note that if state FINISH in subnet S is replaced by 
RETURN then the only FINISH state will be in MAIN 

where the value of option SOLUTIONS is ALL, and 
therefore all four potential solutions will be found. 

 
6 System option BACKTRACKING 
This system option is used when the programmer wants 
to “switch off” the backtracking. In that case, if all the 
outgoing arrows of a state have been attempted, the 
control does not move back through the arrow along 
which the state was entered - instead, the computation 
halts unsuccessfully. The scope of this option can be the 
entire CN, a subnet, or a state. 

The execution of the CN from Figure 5 is shown in 
Figure 6. Assume that primitive p(1) is successfully 
executed but then the execution of p(3) is unsuccessful. 
The control returns to state 1 after which the arrow with 
primitive p(4) is attempted. The single outgoing arrow 
from state 2 is tried. Assume that primitive p(6) is not 
successful. The control returns to state 2. There are no 
more arrows outgoing from state 2. Because the value of 
option BACKTRACKING is NO, return from state 2 one 
step back to state 1 is not allowed. Therefore, the 
computation stops. If [BACKTARCKING = NO] was not 
used then many more arrows from states 1 and 0 will be 
attempted; however that would not change the final 
result (provided the additionally executed primitives did 
not change the result of p(6)). The usage of the system 
option BACKTRACKING improved the efficiency of the 
computation! 

For the 
same reason, 
switching off 
backtracking 
was used in 
the CNP 
solution to 
the animal 
identification 
problem in 
Figure 2 of [3]. BACKTRACKING=NO can be also 
employed for realization of irrevocable hill-climbing [7, 
Ch.11] in conjunction with the usage of control states 
ORDER and RANGE [8].  
 
7 System option ONEVISIT 
This option defines whether or not a specific node can be 
entered more than once (within a particular recursive 
level). This setting will assist in avoiding infinite loops 
as well as unnecessarily traversing fruitless branches of 
the CN. The possible scopes for this option are the same 
as for option BACKTRACKING. 

Figure 5 Another example: CN 

Figure 6 Another example: 
execution 

 Figure 7 The map traversal problem 
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The example we will use is based on a modified 
version of a problem from [6, p.64]. We will refer to it as 
the map traversal problem. We are required to find an 
acyclic path from an initial city to a target city using a 
highway map such as the one shown in Figure 7. 

Our approach will be to convert the map into a CN, 
and leave the built-in Spider search algorithm find a 
solution. The CN will consist of two subnets (Figure 8). 
Subnet Map represents the map a state corresponding to 
each city. The programmer only has to take care of 
forming the solution path – this will be achieved by 
using a stack where only the city names are stored. 
Primitive Add(city) simply pushes its parameter onto the 
stack. A local variable, First of the main subnet is used 
to store the name of the initial city. The value of the 
global variable Final is the name of the target city. The 
values of both First and Final are initialized by primitive 
Init. Other solutions are also possible. 

The value of the system option ONEVISIT is set to 
YES for the subnet Map only. There are two reasons for 
doing that. Firstly, this eliminates the creation of loops in 
a path (e.g., A B C A). Secondly, the usage of the 
option will cut out branches that are not promising. For 
instance, if First = A and Final = E, the control will visit 
the nodes of Map in the following order: A B D F 

(back to) D (back to) B C A(second visit - loop) 
(back to) C B(second visit - loop) (back to) 

C D(second visit – not promising) (back to) C E 
(success). Indeed, state D is not promising, the control 
has been there already and no solution has been found 
after exploring the CN from this state. 
 
8 System option LOOPS 

A loop is a repeating entering into a given node of the 
current path. Value 0 for option LOOPS does not allow 
entering a node for a second time, value 1 will not allow 
entering a node for a third time, and so on. Value ANY 
means no restrictions exist. Clearly, LOOPS=0 forbids 
the existence of recurring nodes in the current path, and 
therefore in the solution path as well. 

System option LOOPS is similar to ONEVISIT - the 
difference is that LOOPS considers how many times a 
node exist in the current path while ONEVISIT counts 
how many times a node is entered in the process of 
computation. For the example of Figure 8, the transition 
C D is not allowed because D was already entered 
earlier, although D was unsuccessful and was not left in 
the current path. Therefore, if we replace 
[ONEVISIT=YES] with [LOOPS=0], loops will be 
eliminated but the second visit to node D will not be 
barred and therefore the computation will be less 
efficient. Also, LOOPS=n for a positive integer n will 
allow loops with a length less than a certain number 
which may be needed in some situations, e.g. when we 
allow some repetition in words but don’t want to allow 
infinite words. 

Let us consider an example for the usage of option 
LOOPS. Assume that we would like to find all possible 
paths in the map traversal problem. The CN of the 
solution is given in Figure 9. In comparison with the 

single path solution of Figure 8, [SOLUTIONS=ALL] is 
included before the main subnet and its scope is the 
whole CN, and [ONEVISIT=YES] is replaced by 
[LOOPS=0]. These two changes will make the solution 
of Figure 8 work. We have made one more adjustment, 
adding primitives NotFinal before each Add primitive. 

Figure 9 CN for map traversal problem (all solutions) 

  Figure 8 CN for the map traversing problem (one solution) 
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This will improve the efficiency of the computation 
barring any exploration after the final city (e.g., E). 

Another 
modification of the 
map traversal 
problem is solved in 
Figure 10: find all 
paths of maximal 
length 2. This will 
be achieved 

employing 
[LOOPS=2].  A 

fundamentally 
different approach 
is applied here. The 
map is not 

embodied 
into the CN, 
but is given 
as a global 
variable - 
matrix, Map 
showing the 

distances 
between the 
cities. First 
and Final are 
also global 
variables, as 
is the current 
city, City. 

Primitive 
Connection(

NextCity) 
checks in the 
matrix Map 

if a connection exists from City to NextCity and if 
NextCity is already a component of the current path – if 
it is then the transition is not possible. (We can not 
eliminate the loops using LOOPS=0 because a loop in 
the map and a loop in the CN are completely different 
concepts.)  In this solution, [LOOPS = 2] has action 
scope state 1 of the CN. This means that the current path 
in the computation cannot include state 1 more than 
three times. For our example the only solution path 
found will be A C E; the other potential path 
A B C E will be ignored as its length exceeds 2. 
 
9 System option RECURSION 
This system option restricts the maximum number 
(depth) of subnet calls during computation. Possible 
scopes are the entire CN or a given subnet. Value n of 
RECURSION means that a subnet cannot be entered 
more than n+1 times. 

As an illustration, Figure 12 presents a recursive 
solution to the problem from the previous section. 
Subnet FindPath is directly recursive. It has a formal 
parameter S – the current city. Variable NewS stores the 
name of the new current city whose value is formed by 
primitive NextCity. Primitive Add modifies the stack for 
the current path. All solutions of length not exceeding 3 
nodes will be found. 

 
10 Conclusion  
The “basic” CNP interpretation algorithm was presented, 
and then extended with a description of the effect that 
the “static” system options have on the search in the CN. 
The usage of these options was illustrated using practical 
examples. Another group of system options which 
control the selection of an outgoing arrow to attempt will 
be described elsewhere. In conjunction with control 
states, these system options allow the realization of 
various heuristic strategies [8,9].  
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Figure 10 CN for the map 
traversal problem (all solutions of 
limited length, iterative solution 

Figure 12 CN for the map traversal 
problem (all solutions of limited length, 

recursive solution) 
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