

Control Network Programming: Static Search Control with System Options

KOSTADIN KRATCHANOV1, TZANKO GOLEMANOV2, EMILIA GOLEMANOVA2
1 Department of Computer Engineering

Yasar University, Izmir, TURKEY
kostadin.kratchanov@yasar.edu.tr

2 Department of Computing
Rousse University, Rousse, BULGARIA

(TGolemanov, EGolemanova)@ecs.ru.acad.bg

Abstract: Control Network Programming (CNP) is a programming paradigm that is especially convenient for
representing problems with a natural graph-like description. This description is often of nondeterministic nature. The
report continues the discussion from [1] on how a CN program is interpreted and executed. The basic algorithm of the
interpreter is presented. It is followed by a discussion of the so called system options – these are powerful means for
user control of the execution process.

Key-Words: Control network programming, CNP, control networks, system options, interpreter, search control,
computation control, programming languages, AI programming, nondeterministic programming, non-procedural
programming, Spider, search.

1 Introduction
CNP [1-3] started as an attempt to enhance the
possibilities and flexibility of controlling the inference
process in rule-based systems by equipping the rule base
with a structure, i.e., arranging the rules into a “control
network”. It developed into a universal programming
paradigm that is especially effective for solving
problems with natural graph-like representation [3]. The
problem in hand may be nondeterministic and its
specification purely descriptive.

The structure and syntax of a CN program were
introduced in [2], and typical representative problems
considered in [3]. CN programs and their behavior were
more formally defined in [1], and the basics of their
execution introduced.

The discussion in [1] focuses on the main concept
of CN program execution only. There are additional,
more advanced features that were left completely
untouched. First of all, these are the powerful means for
controlling the search provided by the so called control
nodes and system options. Specifying a group of these
features – the system options for static control - and
illustrating their usage comprise the main subject of this
report. It is assumed that the report will be read in
conjunction with [1-3]. For consistency, the CNP
development environment Spider, respectively the
Spider CN programming language, are used.

2 Algorithm of the interpreter

The interpretation of a CN program was discussed
in detail in [1].

The actual formal algorithm of the CN program
interpreter is specified in Figures 1 and 2 with its UML
activity diagrams. “Process CN” is the main activity. It
invokes activity “Process Node”. A short explanation of
some of the notations and data structures used follows.

The set out(v) includes all arrows outgoing from
vertex v. RET_stack is a stack where states immediately
following subnet calls are stored while remains is the set
of the arrows outgoing from the current state and not
attempted yet. arr_done is a stack of primitives from the
current arrow label that have been executed already.

arr_to_do is the
remaining sequence
of primitives
associated with the
current arrow arr.
Operation push(a,
stack) pushes element
a onto stack stack.
Operation pull(a,

stack) stores the top
of the stack into a,
and removes the top
of the stack.

Operation dequeue(a, queue) stores the element at the
front of the queue queue into a, and removes this
element from the front of the queue.

Returning backwards into a subnet poses a specific
problem. To develop a solution around this difficulty, we
need to impose on the CN the following two constrains:
An invocation CALL(N’:v’) may only be the last
component in an arrow’s label, and the subnets’ state

Figure 1 Activity diagram of
"Process CN"

Proceedings of the 8th WSEAS Int. Conf. on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING & DATA BASES (AIKED '09)

ISSN: 1790-5109 423 ISBN: 978-960-474-051-2

sets are non-intersecting (i.e., all subnets have unique
states).

These restrictions do not decrease the generality of
our considerations. Indeed, if the original CN contains
an arrow in which an invocation is not the last
component, then such an arrow can always be replaced
by an equivalent sequence of arrows. For instance, the

arrow ''' 3,2,2,1,1 vv pCALLpCALLp ⎯⎯⎯⎯⎯⎯ →⎯ can be replaced by
 21' 2,21,1 vvv CALLpCALLp ⎯⎯⎯ →⎯⎯⎯⎯ →⎯ ''3 vp⎯→⎯ .

In regard to the state names, we can always use the
coproduct (disjoint union) of the original state sets..

As a matter of fact, the above two restrictions do
not affect programming in Spider. As explained in [1],
the original Spider program is compiled into an
intermediate program in the underlying programming
language that embodies information on both the original
CN program and the algorithm of its interpretation. This
“compiler” also acts as a “pre-processor” automatically
converting the original CN into a CN that satisfies the
above restrictions.

Due to the first restriction, it is
possible to store onto stack
RET_stack the state immediately
following a subnet call (see Figure 2).
The second restriction is needed
because the subnets are not modeled
by procedures calling each other as
that won’t allow for returning
backwards into a subnet – instead, all
subnets are “projected” into a single
plane.

Completion of a CN or a subnet
means that all possible paths have
been attempted. Therefore,
completing the CN corresponds to an
unsuccessful search. This is the
meaning of the normal exit nodes in
the activity diagrams in Figures 1 and
2. There is another possible way to
exit a CN or a subnet – when a
FINISH state has been reached by the
search process. This is the situation
when the search was successful. In
technical terms, this situation is not a
normal exit from the CN. Such an
event can be better described using
terms like HALT, ESCAPE, ABORT
or BREAK. The issue of multi-exit
control flow has attracted lots of
attention in certain periods of the
programming languages development
(see, e.g., [4, Chapter 11; 5, Chapter

8]). As argued there, a typical situation when a break
will be advantageous is a search loop. In CNP, all the
computation is essentially a search. Therefore, it is
understandable that we found it natural and effective to
abort the computation completely when the control
reaches a FINISH state. UML does not provide means
for depicting multi-exit control. Therefore, we have used
the traditional activity end symbol to depict an
unsuccessful completion of the algorithm and adopted a

special new symbol () to denote the successful halt of
the process.

3 On the extended backtracking
The computation process is essentially a process of
searching the CN with the purpose of finding a solution
path from the default initial node of the main subnet to a
FINISH state. The method used in Spider extends the
well-known backtracking algorithm, adding also some
unusual features.

Firstly, our setting is not traversal in a graph but
rather traversal in a CN which is a set of graphs. The
control may have to enter a subnet backwards through a

Figure 2 Activity diagram of "Process node"

Proceedings of the 8th WSEAS Int. Conf. on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING & DATA BASES (AIKED '09)

ISSN: 1790-5109 424 ISBN: 978-960-474-051-2

RETURN node, and in some cases to pass backwards the
whole subnet (see [1] for examples). Entering a subnet
backwards is not a trivial problem. A subnet plays the
role of a procedure/function. Normally, when a
procedure/function in a programming language is
completed, the memory allocated for it is freed and all
related information is lost. Therefore, we had to set aside
the natural idea to implement a subnet through a
procedure, and find a different approach.

Secondly, we decided against storing (in a return
stack) of all the information related to a state in the CN.
This information must normally include not only the
position in the CN itself, but also all the data. Therefore,
we have introduced forward and backward execution of
a primitive – the latter one conducted during backward
execution in order to restore the state of the data. This
approach can be seen in the code of the IncPr primitive
in [1]. Theoretically, in general, it is not always possible
to find the inverse behavior of a primitive because the
inverse of a function is in general a relation. In practice,
however, we came to the recognition of the following
intuitive rule: a programmer never uses a primitive that
has no inverse action in a place where such an inverse
action would be actually necessary. In our experience
with CNP we have never observed an exclusion from
this rule.

4 Control features in Spider
Solving certain problems requires that the standard
interpretation algorithm be modified in one way or
another. System options supported in Spider provide
possible ways of doing so and are a powerful means for
controlling the search in the CN.

Some of the system options are used in conjunction
with the so called control states which are a second
group of search control features. These are special types
of nodes in the CN: ORDER, SELECT and RANGE.

Spider offers ten system options. According to their
main purpose, the system options can be classified in
three groups:

• For setting the solution scope – system option
SOLUTIONS.

• For static control of search parameters – system
options BACKTRACKING, ONEVISIT, LOOPS
and RECURSION.

• For dynamic search control (controlling the
order of selecting the outgoing arrows of the
active state) – system options ARROWCOST,
MAXPATHCOST, NUMBEROFARROWS,
RANGEORDER, and PROXIMITY.

This presentation focuses on the system options of
the first two groups only. These system options are
summarized in the following table:

Option Default
value Other values

SOLUTIONS 1 ALL, ASK, unsigned
integer

BACKTRACKING YES NO
ONEVISIT NO YES
LOOPS ANY Unsigned integer
RECURSION ANY Unsigned integer

The static control options allow for the elimination of

certain algorithmic issues (e.g., avoiding unwanted
loops) or for improving the search efficiency.

The dynamic control options are used, in
conjunction with control states, for implementation of
heuristics. Dynamic control involves changing the values
of system options during the computation process.

At each point of the execution, every one of the ten
system options has a value (stored, together with certain
additional system information, in a variable – record
called SpiderOptions). The values can change. At a
given point, the set of the ten system option values
determines the exact behavior of the interpreter.

The possible values
of the system options
under consideration are
listed in the table. To set
an option’s value, the
following syntax is used:
[option name = value].
The value of a system
option is set immediately
before the segment of the
CN which the setting is to
affect. Such a segment
(the option scope) may
be the entire CN, a
subnet, a state (the scope
is the set of outgoing
arrows for that state), or
an arrow. For some
options certain scopes

make no sense and cannot
be used. A setting with its
scope being the entire CN
is declared at the very beginning of the CN (right after
“(*&N” [2]). A setting with any of the other scopes is
declared immediately after the name of the
corresponding fragment (e.g., “SUB Map;
[LOOPS=0]”). In the case an option setting has not been
specified for a given fragment, the option’s value from
the segment immediately including the given segment
will be valid. Each option also has a default value (see
the table) – that is the value of the option if no explicit
setting is specified. The “basic” interpreter algorithm of

Figure 3 An example: CN

Figure 4 An example:
execution

Proceedings of the 8th WSEAS Int. Conf. on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING & DATA BASES (AIKED '09)

ISSN: 1790-5109 425 ISBN: 978-960-474-051-2

Figures 1 and 2 corresponds actually to the default
option values.

5 System option SOLUTIONS
The value of the option determines the number of
solutions that the interpreter will seek. Setting
[SOLUTIONS = 1] instructs the system to halt after
finding the first solution. If the value of the option is
ALL the interpreter interprets state FINISH as “no
success” and continues the computation, until the CN is
completely traversed. Setting ASK will make the
program print a message asking the user whether to
continue with the search. The option may be used for the
entire CN, a subnet (only if the subnet contains a
FINISH state), a state (only if the state contains an
outgoing arrow with target state FINISH).

In
Figure 3,
[SOLUTION

S = ALL] is
specified for
the entire
CN, and

then redefined as
[SOLUTIONS =
3] for subnet S.
The execution is
illustrated in
Figure 4. We
assume that all

the primitives will be executed successfully. After
executing primitives p(1) and p(2) the control reaches
state FINISH of MAIN. The first solution has been found
but the computation does not halt, p(1) and p(2) are
executed backwards, and the control reaches state 0
again. The second arrow outgoing from state 0 is
attempted now by executing the subnet call CALL S. The
value of SOLUTIONS for subnet S is 3. The first
outgoing arrow is taken, primitive p(3) is executed and
state RETURN is entered. As subnet S was successfully
completed, the control moves to state 1 in MAIN. The
value of SOLUTIONS changes back to ALL. After
executing primitive p(2) FINISH is reached once again,
which means the second solution was found. The
computation continues, and the control goes back to 1
through p(2). Subnet S is entered backwards through
RETURN. The value of SOLUTIONS restores to 3.
Computation continues as illustrated in Figure 4. Three
solutions will be found.

Note that if state FINISH in subnet S is replaced by
RETURN then the only FINISH state will be in MAIN

where the value of option SOLUTIONS is ALL, and
therefore all four potential solutions will be found.

6 System option BACKTRACKING
This system option is used when the programmer wants
to “switch off” the backtracking. In that case, if all the
outgoing arrows of a state have been attempted, the
control does not move back through the arrow along
which the state was entered - instead, the computation
halts unsuccessfully. The scope of this option can be the
entire CN, a subnet, or a state.

The execution of the CN from Figure 5 is shown in
Figure 6. Assume that primitive p(1) is successfully
executed but then the execution of p(3) is unsuccessful.
The control returns to state 1 after which the arrow with
primitive p(4) is attempted. The single outgoing arrow
from state 2 is tried. Assume that primitive p(6) is not
successful. The control returns to state 2. There are no
more arrows outgoing from state 2. Because the value of
option BACKTRACKING is NO, return from state 2 one
step back to state 1 is not allowed. Therefore, the
computation stops. If [BACKTARCKING = NO] was not
used then many more arrows from states 1 and 0 will be
attempted; however that would not change the final
result (provided the additionally executed primitives did
not change the result of p(6)). The usage of the system
option BACKTRACKING improved the efficiency of the
computation!

For the
same reason,
switching off
backtracking
was used in
the CNP
solution to
the animal
identification
problem in
Figure 2 of [3]. BACKTRACKING=NO can be also
employed for realization of irrevocable hill-climbing [7,
Ch.11] in conjunction with the usage of control states
ORDER and RANGE [8].

7 System option ONEVISIT
This option defines whether or not a specific node can be
entered more than once (within a particular recursive
level). This setting will assist in avoiding infinite loops
as well as unnecessarily traversing fruitless branches of
the CN. The possible scopes for this option are the same
as for option BACKTRACKING.

Figure 5 Another example: CN

Figure 6 Another example:
execution

 Figure 7 The map traversal problem

Proceedings of the 8th WSEAS Int. Conf. on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING & DATA BASES (AIKED '09)

ISSN: 1790-5109 426 ISBN: 978-960-474-051-2

The example we will use is based on a modified
version of a problem from [6, p.64]. We will refer to it as
the map traversal problem. We are required to find an
acyclic path from an initial city to a target city using a
highway map such as the one shown in Figure 7.

Our approach will be to convert the map into a CN,
and leave the built-in Spider search algorithm find a
solution. The CN will consist of two subnets (Figure 8).
Subnet Map represents the map a state corresponding to
each city. The programmer only has to take care of
forming the solution path – this will be achieved by
using a stack where only the city names are stored.
Primitive Add(city) simply pushes its parameter onto the
stack. A local variable, First of the main subnet is used
to store the name of the initial city. The value of the
global variable Final is the name of the target city. The
values of both First and Final are initialized by primitive
Init. Other solutions are also possible.

The value of the system option ONEVISIT is set to
YES for the subnet Map only. There are two reasons for
doing that. Firstly, this eliminates the creation of loops in
a path (e.g., A B C A). Secondly, the usage of the
option will cut out branches that are not promising. For
instance, if First = A and Final = E, the control will visit
the nodes of Map in the following order: A B D F

(back to) D (back to) B C A(second visit - loop)
(back to) C B(second visit - loop) (back to)

C D(second visit – not promising) (back to) C E
(success). Indeed, state D is not promising, the control
has been there already and no solution has been found
after exploring the CN from this state.

8 System option LOOPS

A loop is a repeating entering into a given node of the
current path. Value 0 for option LOOPS does not allow
entering a node for a second time, value 1 will not allow
entering a node for a third time, and so on. Value ANY
means no restrictions exist. Clearly, LOOPS=0 forbids
the existence of recurring nodes in the current path, and
therefore in the solution path as well.

System option LOOPS is similar to ONEVISIT - the
difference is that LOOPS considers how many times a
node exist in the current path while ONEVISIT counts
how many times a node is entered in the process of
computation. For the example of Figure 8, the transition
C D is not allowed because D was already entered
earlier, although D was unsuccessful and was not left in
the current path. Therefore, if we replace
[ONEVISIT=YES] with [LOOPS=0], loops will be
eliminated but the second visit to node D will not be
barred and therefore the computation will be less
efficient. Also, LOOPS=n for a positive integer n will
allow loops with a length less than a certain number
which may be needed in some situations, e.g. when we
allow some repetition in words but don’t want to allow
infinite words.

Let us consider an example for the usage of option
LOOPS. Assume that we would like to find all possible
paths in the map traversal problem. The CN of the
solution is given in Figure 9. In comparison with the

single path solution of Figure 8, [SOLUTIONS=ALL] is
included before the main subnet and its scope is the
whole CN, and [ONEVISIT=YES] is replaced by
[LOOPS=0]. These two changes will make the solution
of Figure 8 work. We have made one more adjustment,
adding primitives NotFinal before each Add primitive.

Figure 9 CN for map traversal problem (all solutions)

 Figure 8 CN for the map traversing problem (one solution)

Proceedings of the 8th WSEAS Int. Conf. on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING & DATA BASES (AIKED '09)

ISSN: 1790-5109 427 ISBN: 978-960-474-051-2

This will improve the efficiency of the computation
barring any exploration after the final city (e.g., E).

Another
modification of the
map traversal
problem is solved in
Figure 10: find all
paths of maximal
length 2. This will
be achieved

employing
[LOOPS=2]. A

fundamentally
different approach
is applied here. The
map is not

embodied
into the CN,
but is given
as a global
variable -
matrix, Map
showing the

distances
between the
cities. First
and Final are
also global
variables, as
is the current
city, City.

Primitive
Connection(

NextCity)
checks in the
matrix Map

if a connection exists from City to NextCity and if
NextCity is already a component of the current path – if
it is then the transition is not possible. (We can not
eliminate the loops using LOOPS=0 because a loop in
the map and a loop in the CN are completely different
concepts.) In this solution, [LOOPS = 2] has action
scope state 1 of the CN. This means that the current path
in the computation cannot include state 1 more than
three times. For our example the only solution path
found will be A C E; the other potential path
A B C E will be ignored as its length exceeds 2.

9 System option RECURSION
This system option restricts the maximum number
(depth) of subnet calls during computation. Possible
scopes are the entire CN or a given subnet. Value n of
RECURSION means that a subnet cannot be entered
more than n+1 times.

As an illustration, Figure 12 presents a recursive
solution to the problem from the previous section.
Subnet FindPath is directly recursive. It has a formal
parameter S – the current city. Variable NewS stores the
name of the new current city whose value is formed by
primitive NextCity. Primitive Add modifies the stack for
the current path. All solutions of length not exceeding 3
nodes will be found.

10 Conclusion
The “basic” CNP interpretation algorithm was presented,
and then extended with a description of the effect that
the “static” system options have on the search in the CN.
The usage of these options was illustrated using practical
examples. Another group of system options which
control the selection of an outgoing arrow to attempt will
be described elsewhere. In conjunction with control
states, these system options allow the realization of
various heuristic strategies [8,9].

References:
[1] K.Kratchanov, E.Golemanova, T.Golemanov:

Control Network Programs and Their Execution.
This conference.

[2] K.Kratchanov, T.Golemanov, E.Golemanova:
“Control Network Programming”, In: Proc. 6th
IEEE/ACIS Conf. on Computer and Information
Science (ICIS 2007), July 2007, Melbourne,
Australia, 1012-1018

[3] K.Kratchanov, E.Golemanova, T.Golemanov:
“Control Network Programming Illustrated: Solving
Problems With Inherent Graph-Like Structure”, In:
Proc. 7th IEEE/ACIS Conf. on Computer and
Information Science (ICIS 2008), May 2008,
Portland, OR, USA, 453-459.

[4] A.Fisher, F.Grodzinsky: The Anatomy of
Programming Languages. Prentice-Hall, 1993.

[5] D.Watt: Programming Language Concepts and
Paradigms. Prentice-Hall, 1990.

[6] P.Winston: Artificial Intelligence, 3rd ed. Addison
Wesley, 1992.

[7] R.Shinghal: Formal Concepts in Artificial
Intelligence, Chapman & Hall, 1992.

[8] E.Golemanova, T.Golemanov, K.Kratchanov:
“Built-in Features of the SPIDER Language for
Implementing Heuristic Algorithms”, In: Proc.
CompSysTech 2000, Sofia, June 2000, II.9-1 – II.9-5
(in Bulgarian). Also published by ACM Press, 2091-
2095.

[9] K.Kratchanov, T.Golemanov, E.Golemanova,
I.Stanev: “Control Network Programming in Spider:
Built-In Search Control Tools”. In: New Trends in
Artificial Intelligence and Neural Networks
(T.Cificibasi, M.Karaman, V.Atalay – eds.) EMO
Scientific Books, Ankara, 1997, 105-109.

Figure 10 CN for the map
traversal problem (all solutions of
limited length, iterative solution

Figure 12 CN for the map traversal
problem (all solutions of limited length,

recursive solution)

Proceedings of the 8th WSEAS Int. Conf. on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING & DATA BASES (AIKED '09)

ISSN: 1790-5109 428 ISBN: 978-960-474-051-2

