
Towards Providing Low-Risk and Economically Feasible Network Data 
Transfer Services 

 
MUGUREL IONUT ANDREICA 

Computer Science and Engineering Department 
Politehnica University of Bucharest 

Splaiul Independentei 313, sector 6, Bucharest 
ROMANIA 

mugurel.andreica@cs.pub.ro    https://mail.cs.pub.ro/~mugurel.andreica 
 

VASILE DEAC, STELIAN TIPA 
Faculty of Management 

The Bucharest Academy of Economic Studies 
Piata Romana 6, sector 1, Bucharest 

ROMANIA 
deac_vasile@yahoo.com, stelian.tipa@intesasanpaolo.ro 

 
 

Abstract: - In the first part of this paper we present the first steps towards providing low-risk and economically feasible 
network data transfer services. We introduce three types of data transfer services and present general guidelines and 
algorithms for managing service prices, risks and schedules. In the second part of the paper we solve two packet 
scheduling cost optimization problems and present efficient algorithms for identifying maximum weight (k-level-) 
caterpillar subtrees in tree networks. 
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1   Introduction 
The need for efficient network data transfer services has 
increased rapidly during the past few years and it 
continues to have an increasing trend. This is in 
correlation with the increases in the world-wide volumes 
of data produced per year and in the overall Internet 
bandwidth and number of users. Many business domains 
make use of large data volumes which need to be 
accessed, processed and transferred. Recent video on 
demand and live streaming applications deliver 
multimedia streams of variable quality to consumers, 
thus requiring large transfer speeds (bandwidth). Banks 
and other financial institutions need to store and process 
large amounts of data, generated by the transactions of 
their customers. The transfer of the data must be 
performed reliably (no errors can be accepted) and 
quickly (in order to perform real-time data processing). 
Large distributed systems (e.g. Grids), run applications 
which consist of workflows, in which the output 
generated by a part of the application must be fed as 
input to another part of the application. Thus, data 
transfer scheduling techniques are required in order to 
obtain increased performance. In this paper we take the 
first steps towards providing low-risk and economically 
feasible network data transfer services. In Section 2 we 
discuss the types of services that could be provided by a 
data transfer service provider. In Section 3 we consider 

scheduling details, pricing policies and risk mitigation 
methods, such that the data transfer services present low 
economic risk and financial feasibility. In Section 4 we 
discuss two packet scheduling optimization problems. In 
Section 5 we present algorithms for identifying 
maximum weight (k-level-) caterpillars in trees. In 
Section 6 we discuss related work and we conclude. 
 
 
2   Types of Data Transfer Services 
The context in which dedicated data transfer services can 
be provided is that in which the entire network 
infrastructure is owned by the service provider. Thus, we 
define the network as a graph composed of n vertices 
and m edges. A vertex is either a user computer or the 
device through which the user connects to the network 
infrastructure of the provider (e.g. a cable modem or 
ADSL modem), a router, a switch, or any other network 
device. An edge between two vertices corresponds to a 
physical link between the two vertices and has an 
associated latency and bandwidth (if we have a full-
duplex link, then we need a latency and bandwidth value 
for each direction). We only consider point-to-point 
links and we ignore shared network media (e.g. Ethernet 
on a bus topology, or wireless) on purpose. Note that the 
provider does not need to map its entire network in this 
graph. In this case, a vertex may stand for a group of 

Recent Advances in Signals and Systems

ISSN: 1790-5109 204 ISBN: 978-960-474-114-4



network devices or for part of a network. However, the 
physical characteristics of the network links (graph 
edges) should be adjusted accordingly (e.g. an edge 
between two vertices i and j may now stand for multiple 
physical links between the network devices of the groups 
corresponding to the two vertices; in such a case, the 
bandwidth for each direction of the edge could be the 
sum of the bandwidths of the physical network links for 
that direction, but it’s difficult to say what the 
“combined” latency should be). We consider that all the 
traffic that exists in the network is the result of using 
some of the data transfer services which we describe 
next. The most common type of data transfer service, 
which is provided by most Internet Service Providers 
(ISPs) nowadays, is the following. They guarantee a 
maximum upload and download bandwidth to the users 
and make no guarantees for anything else. The user can 
choose a quality level – the larger the quality level, the 
larger the upload and download bandwidths are. The 
users are charged a flat fee F(j) (for quality level j) per 
month as long as a combination C of the total upload 
traffic U and download traffic D (during the current 
month) does not exceed an upper bound B (C may be 
U+D, or some other function chosen by the provider). 
Then, the users are charged an extra fee, usually directly 
proportional with the excess: E(j)·(C-B). This business 
model works well, but it is not useful in any of the 
situations presented in Section 1. This is because these 
are only best-effort services and provide no end-to-end 
guarantees. The following types of services focus on 
providing end-to-end guarantees. The best model for 
using such services is that in which the users (or user 
applications) submit data transfer requests to a central 
scheduler (like in [2, 3]). The first type of requests is 
given by fixed bandwidth-fixed duration requests. Such a 
request has the following parameters: (t1, t2, B, D, lmax, 
s, f), meaning that the data transfer requires a minimum 
amount of bandwidth B for a duration of time D, the 
earliest possible starting time of the transfer is t1, the 
latest possible finish time is t2, and the transfer takes 
place between nodes s and f. The scheduler must assign 
to the request a (directed) path from s to f in the graph 
and a time interval [ts, ts+D] in which the required 
amount of bandwidth is available on each edge on the 
path (in the direction from the source to the destination) 
and the sum of latencies of the edges on the path is at 
most lmax. Then, data is transferred on the assigned path 
and during the assigned time interval at (at most) the 
requested bandwidth. A second type of requests is given 
by fixed data-fixed duration requests. The parameters of 
such a request are: (t1, t2, TD, dataid, s, f, o), meaning 
that it needs to transfer TD bytes of data, the transfer 
takes place between nodes s and f, and the transfer must 
occur between time moments t1 and t2, but the transfer 
speed does not have to be constant (i.e. it can vary in 

time; all that matters is that the moment tf when the last 
byte of data arrives at the destination is ≤t2, and we do 
not start transferring the first byte of data before t1). The 
data is initially located at the source node s and is 
identified by an identifier dataid (e.g. file name, location 
and offset within the file). The data does not have to be 
transferred on a single path – this is up to the scheduler; 
but the transfer must be reliable (i.e. all the data must 
reach its destination). The o parameter is a boolean flag 
which indicates if the data must be received in order 
(o=true) or if it can be reordered at the destination 
(o=false) by adding extra information regarding its 
position in the flow to every transferred packet. Another 
type of requests is given by fixed bandwidth-variable 
duration requests. The parameters of such a request are: 
(t1, B, lmax, s, f), meaning that the scheduler needs to 
allocate to the request a (directed) path from s to f, 
starting at time moment t1 and for an indefinite duration. 
A bandwidth of at least B must be available on every 
edge of the path (in the corresponding direction, from s 
to f) and the sum of the latencies of the edges on the path 
must be at most lmax. So far, we only considered 
independent and unrelated requests. However, the two 
types of fixed duration requests can be extended as 
follows. The scheduler receives a group of M requests 
(r(1), …, r(M)) which are connected by precedence 
constraints. To be more precise, besides satisfying the 
constraints of each request, we are also given a directed 
acyclic graph (DAG) which has a vertex i for every 
request r(i). We have a directed edge from vertex i to 
vertex j if the data transfer corresponding to request r(j) 
must start only after the data transfer corresponding to 
request r(i) is complete. The group may contain both 
fixed bandwidth- and fixed data- fixed duration requests. 
 
 
3   Managing Schedules, Prices and Risks 
Economic feasibility is strongly related to the profits the 
data transfer service provider can obtain from its 
customers. Thus, the pricing policy plays an important 
role. Depending on the (expected) number of customers, 
the provider may choose a fixed pricing policy or may 
negotiate the price for every data transfer request (it may 
even present multiple alternatives with different prices to 
the customer). In the case of fixed bandwidth-fixed 
duration requests, the price should be proportional to B 
and D, and inversely proportional to the slack (t2-t1-D) 
and lmax. That is, the larger the requested bandwidth and 
duration are, the larger the price should be, and the 
smaller the upper bound on latency and the slack are, the 
larger the price should be. Prices may also depend on the 
time interval [t1,t2]. If it is difficult to find a time interval 
of length D where a path satisfying the Quality-of-
Service (QoS) constraints exists, then the price should be 
higher. Moreover, the price can be proportional to the 
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amount of already reserved bandwidth on the edges on 
the chosen path (the higher the bandwidth of the path is 
utilized, the higher the price). Fixed data-fixed duration 
requests should be charged proportional to the total 
transferred data (TD), and inversely proportional to the 
length of the time interval [t1,t2]. Moreover, if the data 
should be delivered in an ordered fashion, the price 
should be higher (as there are more constraints imposed 
on the provider). Fixed bandwidth-variable duration 
requests are slightly more complicated. Obviously, the 
price should be proportional to B, to the actual duration 
of using the service, and inversely proportional to lmax. 
A combination of fixed and variable costs could be used 
here. For instance, if the service is used for a duration of 
at most D, then the price could be CF; otherwise, if the 
usage duration is D’>D the price will be CF+CV·(D’-D) 
(CF and CV depend on the other parameters of the 
request). Note that not all of the requests may be 
satisfied, as the provider may not have sufficient 
resources to accommodate all the requests. When 
receiving a request, if it can be satisfied, the provider 
should choose the price also based on the risk that this 
request may force the rejection of future requests which 
might bring larger revenues (we consider that once 
accepted, a request cannot be cancelled or rejected later). 
Fixed bandwidth-variable duration requests present the 
highest risk, as resources might need to be reserved for a 
long time in order to make sure that the request is 
satisfied (if, however, the provider is over-provisioned 
compared to the actual customer demand, these requests 
may be the most desirable, as they might use the network 
resources for larger time intervals and, thus, they may be 
favoured in some sense). Fixed bandwidth-fixed duration 
requests present the second highest risk and fixed data-
fixed duration requests present the lowest risk (those 
with unordered data delivery are less risky than those 
with guaranteed ordered data delivery). However, 
handling a DAG of a group of requests presents 
significantly higher risks than handling independent 
requests. Thus, the provider should use a good risk 
model, as this will influence its pricing policy. A 
forecast and a simulation component should be included 
in the risk model. The forecast component should 
identify patterns of the parameters of the requests 
received so far and patterns of behaviour for the fixed 
bandwidth-variable duration requests (e.g. estimations of 
the actual durations). The forecast component should be 
used as follows. Given all the available information 
regarding the requests and a time interval [t1,t2], the 
forecast component should be able to generate a list of 
fake requests, which it estimates that might be received 
during the interval [t1,t2]. Then, when deciding the price 
of a newly received request, we use the simulation 
component to estimate the overall revenue if the request 
were accepted (ignoring its price) and the overall 

revenue if the request were rejected. The simulation is 
run for a carefully chosen duration (e.g. it simulates T 
seconds or minutes in the future) and uses as input the 
list of fake requests estimated by the forecast component 
for the interval [present time moment, present time 
moment+T], and the currently scheduled requests. The 
price of the request should be chosen such that the 
revenue in case of not accepting the request is not larger 
than the revenue in the case of accepting request (but 
ignoring its price) plus the price of the request. The 
forecast component may also be used differently. It 
could generate K≥1 lists of fake requests for a given time 
interval [t1,t2] and it could assign a probability of 
occurrence prob(i) to every list i (1≤i≤K). Then, the 
simulation is run for each of the K lists, a revenue R(K) 
is computed for every list and then an expected revenue 
ER=the sum of the values prob(i)·R(i) is computed and 
used (we assume that the sum of the values prob(i), 
1≤i≤K, is 1). Another important component is the 
module which performs the scheduling of the data 
transfer requests. The algorithms used are very important 
and may have a strong influence on the revenues of the 
provider, depending on how the requests are scheduled. 
We will present an algorithm for the case when only 
fixed bandwidth-fixed duration requests are considered. 
The algorithm is based on events (as opposed to time-
slot based algorithms). For each event, the time moment 
and the value by which the bandwidth is modified (a 
positive or negative value) are stored, i.e. a pair (t,dB). 
For each network link (and direction), a list of events is 
maintained. The time moment of an event in the event 
list of a network link is represented by the start or finish 
time of a data transfer. The algorithm starts by 
generating several candidate paths from s to f, which 
satisfy the sum of latencies constraints. Then, for each 
path, we verify if we can schedule the data transfer 
request on that path in order to satisfy all the other 
constraints. We consider a family of greedy algorithms 
for this case: First-Fit, Last-Fit, Best-Fit and Worst-Fit. 
All the events on all the (directed) network links along 
the candidate path are initially sorted. Also, for each 
(original) event (t,dB) on a link l, an event (t+D,0) on 
the same link is added, where D is the duration requested 
for the data transfer. These events are sorted together 
with the other events. Then, the sorted events are 
traversed. During the traversal we maintain for each 
network link l a deque DQ(l) and the current available 
bandwidth cb(l) of the link (cb(l) is initially the total 
bandwidth of the link). The deque maintains sorted 
(tm=time moment, ab=available bandwidth) pairs, 
similar to the deque presented for the Time Slot Groups 
data structure in [7]. Let’s assume that we reached an 
event (t,dB) on a link l. First, we consider every link l’ 
and: (1) while DQ(l’) contains at least 1 pair and the last 
pair lp from DQ(l’) has lp.ab≥cb(l’), we remove lp from 
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DQ(l’) ; (2) we insert the pair (t,cb(l’)) at the end of 
DQ(l’) ; (3) while the first pair fp of DQ(l’) has fp.tm≤t-
D, we remove fp from DQ(l’). Then, we increment cb(l) 
by dB. After all these, the first pair fp of DQ(l’) of each 
link l’ contains the minimum available bandwidth 
AB(l’)=fp.ab of that link on the interval [t-D,t]. If AB(l’) 
is greater than or equal to the required bandwidth B for 
every network link l’ on the candidate path and the 
interval [t-D,t] is included in [t1,t2] (given by the 
request), then a match is found and we perform the 
following actions. In the case of the First-Fit algorithm, 
we return the interval [t-D,t] as the solution (the request 
can be scheduled on the path). For the Last-Fit 
Algorithm we just store t into tfin. For the Best-Fit and 
Worst-Fit algorithms we compute MAB=min{AB(l’)|l’ is 
a link on the candidate path}. These two algorithms will 
maintain a bandwidth value MB, initially equal to +∞ for 
Best-Fit and -∞ for Worst-Fit. If MAB<MB for Best-Fit 
(MAB>MB for Worst-Fit) we set MB=MAB and tfin=t 
(note that MAB≥B, because otherwise we wouldn’t have 
performed these actions). Then, at the end, if anything 
was stored in tfin (in the case of the Last-Fit, Best-Fit 
and Worst-Fit algorithms), we return the interval [tfin-
D,tfin]; otherwise, no solution is found. If we schedule a 
request on a path between time moments ts and ts+D, we 
insert the events (ts,-B) and (ts+D,+B) in the event list 
of every link l on the path (for the correct direction). The 
sorting stage of the events can be performed by 
maintaining a balanced tree, which contains the next 
event to occur for each network link. At each step, the 
event occurring at the earliest time is extracted from the 
balanced tree (and replaced by the next event on its link). 
The algorithm stops as soon as the latest finish time of 
the request is passed by. The overall time complexity is 
O(E·(log(NL)+NL)), where E=the total number of events 
and NL=the total number of links on the candidate path. 
 
 
4   Efficient Packet Scheduling 
We consider a sequence of N packets which need to be 
sent in order. The size of packet i is x(i) bytes. We can 
transfer any sequence of consecutive packets at a time, 
with the following restrictions. Let’s assume that S is the 
total size of the packets in the sequence. There are K 
levels for the data transfer. For every level j we have two 
parameters: L(j) and C(j) (L(j+1)>L(j) and 
C(j+1)>C(j)). Their meaning is the following. If S≤L(1) 
then the transfer cost is C(1). If L(j-1)<S≤L(j) then the 
cost of the transfer is C(j) (2≤j≤K). We cannot transfer 
sequences of packets whose total size S exceeds L(K) 
during a single data transfer. We want to transfer all the 
N packets, in order, such that the total cost of the data 
transfers is minimized. We will compute Cmin(i)=the 
minimum total cost for sending the first i packets. We 
have Cmin(0)=0. We will first compute the prefix sums 

SP(i)=x(1)+…+x(i) (SP(0)=0 and SP(1≤i≤N)=SP(i-
1)+x(i)). We will maintain K data structures SD(j) 
(1≤j≤K). We traverse the N packets in order, from 1 to N. 
When we reach packet i, SD(1) will contain the indices 
of the packets q<i such that SP(i)-SP(q)≤L(1), and 
SD(2≤j≤K) will contain the indices of those packets q<i 
such that L(j-1)<SP(i)-SP(q)≤L(j). For every data 
structure SD(j) we will maintain the indices left(j) and 
right(j), meaning that the packets in the interval 
[left(j),right(j)] belong to SD(j). SD(j) will allow the 
addition of a new packet, the removal of an old packet 
and finding the minimum value Cmin(z) for 
left(j)≤z≤right(j) (by using some functions called insert, 
remove, and getMin). Initially (at i=0) we have left(*)=0 
and right(*)=-1, and all the data structures SD(*) are 
empty. Then, we will insert the virtual packet 0 in SD(1) 
(setting right(1)=0). Let’s assume that we reached a 
packet i (1≤i≤N). We will first update all the data 
structures SD(j), in increasing order of j (1≤j≤K). While 
SP(i)-SP(left(j))>L(j) (1≤j≤K-1), we remove the packet 
left(j) from SD(j) and we insert it into SD(j+1) (then we 
increase left(j) and right(j+1) by 1). While SP(i)-
SP(left(K))>L(K), we remove the packet left(K) from 
SD(K) (and then we increment left(K) by 1). Then, we 
compute Cmin(i)=min{C(j)+SD(j).getMin()|1≤j≤K}. If 
SD(j) (for any 1≤j≤K) contains no packet, then 
SD(j).getMin() returns the value +∞. After computing 
Cmin(i) we insert packet i into SD(1) (increasing right(1) 
by 1). We can implement the SD(*) data structures as 
heaps, in which case insertions and removals have an 
O(log(N)) time complexity and finding the minimum 
value takes O(1) time. The time complexity of the 
algorithm would be, in this case, O(N·K·log(N)). 
However, the data structures SD(j) can also be 
implemented as deques. If SD(j) is a deque, then the 
elements inside it are pairs (idx, Cmin(idx)) and are 
sorted both according to the index idx and the value 
Cmin(idx). When we insert a packet idx into SD(j), in 
fact we insert the pair (idx, Cmin(idx)) into the data 
structure. Before doing this, we remove from the end of 
SD(j) all the pairs (q,Cmin(q)) with Cmin(q)≥Cmin(idx); 
only after this will we add the pair (idx,Cmin(idx)) at the 
end of the deque SD(j). When we remove a packet idx 
from SD(j), we check if the first pair from SD(j) is (idx, 
Cmin(idx)); if yes, then we remove that pair from the 
beginning of the deque; otherwise, we perform no 
changes. In order to find the minimum element from 
SD(j), we consider the pair (idx, Cmin(idx)) from the 
beginning of SD(j) and return the value Cmin(idx) (or 
+∞ if SD(j) is empty). The time complexity of all the 
operations on a deque SD(j) is O(N), leading to an 
O(N·K) overall time complexity. 
     A second packet scheduling problem is the following. 
We want to transfer N equal-sized packets from a source 
to the same destination using some of the P available 
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disjoint paths (numbered from 1 to P). Every path i has 
three parameters: cf(i), cv(i), pmax(i). cf(i) is the fixed 
cost which needs to be paid in order to use the path i, 
and cv(i) is the cost which needs to be paid in order to 
send 1 packet on path i. Thus, in order to send k≥1 
packets on path i, we need to pay a cost equal to 
pcost(i,k)=cf(i)+k·cv(i); pcost(i,0)=0. Moreover, we 
cannot send more than pmax(i) packets on path i. We 
want to send all the N packets to the destination (in any 
order) by paying the minimum total sum. We will start 
by pointing out the following fact. Let’s assume that we 
paid the fixed costs for the paths q1, …, qM and let’s 
assume that we have cv(q1)≤cv(q2)≤…≤cv(qM). We will 
send as many packets as possible on the path q1 (because 
it has the lowest cost per packet), then as many as 
possible on the path q2, and so on. Thus, if we pay the 
fixed costs for M paths, then M-1 of them are used fully 
(we send the maximum possible number of packets on 
them) and the last one may be used only partially. Based 
on this observation, we can use the following pseudo-
polynomial dynamic programming algorithm. We first 
sort the paths such that cv(1)≤cv(2)≤…≤cv(P). We will 
compute Cmin(i,j)=the minimum total cost for sending j 
packets, using some of the first i paths, and each path is 
either fully used or not used at all. We have 
Cmin(0,0)=0 and Cmin(0,j>0)=+∞. For i≥1 we have 
Cmin(i,0≤j<pmax(i))=Cmin(i-1,j) and Cmin(i, 
pmax(i)≤j≤N)=min{Cmin(i-1,j), Cmin(i-1,j-pmax(i))+ 
pcost(i,pmax(i))}. During the second stage of the 
algorithm we traverse the paths from P down to 1 and 
we will compute Cmin2(i,j)=the minimum cost of 
sending j packets on a single path, considering only the 
paths i, i+1, …, P. Cmin2(P+1,0)=0 and 
Cmin2(P+1,j≥1)=+∞. Cmin2(i,0≤j≤min{N,pmax(i)})= 
min{Cmin2(i+1,j), pcost(i,j)}; Cmin2(i,pmax(i)<j≤N)= 
Cmin2(i+1,j). Then, in order to find the minimum total 
sum to be paid for sending all the N packets, we compute 
Smin=min{Cmin(i,N), min{Cmin(i,j) + Cmin2(i+1,N-j) | 
0≤i≤P, 0≤j≤N-1}}. This solution takes O(P·N+P·log(P)) 
time and O(P·N) space. We can reduce the space 
complexity to O(P+N) as follows. First, we notice that 
after computing Cmin(i,*) we do not require the values 
Cmin(i’<i,*). As soon as we compute all the values 
Cmin(i,*) we consider all the candidates 
Cmin(i,j)+Cmin2(i+1,N-j) for Smin. However, we need 
to compute Cmin2(i+1,N-j) differently. We can consider 
all the paths i+1, …, P and interpret them as half-lines; 
half-line i has the equation y(x)=cf(i)+x·cv(i). Then, we 
need to compute the lower envelope of these half-lines 
(or the upper-envelope if we consider –cf(i) and –cv(i) 
instead of cf(i) and cv(i) for every half-line; linear time 
algorithms for the upper envelope of half-lines exist). 
After computing the lower envelope, Cmin2(i+1,N-j) is 
equal to the smallest value of any half-line at x=N-j; 
these values can be computed in O(log(P)) time: we find 

the x-interval of the lower envelope which contains the 
value x=N-j, then we access the half-line q with the 
smallest value on that interval and then we compute 
pcost(q,x). This way, the time complexity increases to 
O(P·N·log(P)+P2). We can keep the time complexity 
down to O(P·N+P2) by traversing the values x=N-j in 
increasing (or decreasing) order. This way, the x-interval 
of the next value of x is either the interval of the current 
value of x, or the next interval on the lower envelope; 
thus, we can find the x-interval containing each value x 
in O(1) time, as we do not need to use binary search. A 
simpler O(P·N+P·log(P)) solution starts by sorting the 
paths s.t. cv(1)≥…≥cv(P). Then, we compute Cmin’(i,j) 
(in increasing order of i), such that: Cmin’(0,0)=0, 
Cmin’(0, 1≤j≤N)=+∞, Cmin’(1≤i≤P, 0≤j≤min{pmax(i), 
N})=min{Cmin’(i-1,j), pcost(i,j)} and Cmin’(1≤i≤P, 
pmax(i)<j≤N)=min{Cmin’(i-1,j), Cmin’(i-1,j-pmax(i)) + 
pcost(i, pmax(i))}. The answer is Cmin’(P,N). We can 
use O(N) space, like in the case of the Cmin(*,*) values. 
 
 
5   Largest Caterpillar in a Tree Network 
Tree topologies occur frequently in communication 
networks, particularly in the case of multicast 
communication. Some types of trees, which were used in 
[6] for devising an efficient multicast strategy, are the 
caterpillar graphs. These graphs consist of a central path 
of vertices, and each of the vertices on the central path 
may have any number of leaves as neighbors, plus the (at 
most) two neighbors on the central path. We will now 
introduce the more general class of k-level-caterpillars. 
First, we define the concept of k-level-leaf. A vertex i is 
a k-level-leaf (for k≥1) if every neighboring vertex j is a 
k’-level-leaf for some k’<k, except for possibly one 
neighbor. For k=1, a vertex i is a 1-level-leaf if it has 
degree 1. No vertex is a 0-level-leaf. A k-level-
caterpillar is a graph which consists of a central path of 
vertices such that every vertex on the central path has 
only k’-level-leaves as neighbors (with k’≤k), except for 
the (at most) 2 neighbors on the central path. Thus, the 
caterpillar graphs mentioned previously are 1-level-
caterpillars according to this new definition. A 0-level-
caterpillar is simply a path. We first provide two 
algorithms for deciding if a given graph with n vertices 
is a k-level-caterpillar. First, we verify if the given graph 
is a tree (it must consist of a single connected component 
and the total number of edges must be n-1). Then, the 
first algorithm works in k stages. In the first stage we 
mark all the leaves i with mark(i)=1 and the other 
vertices j are left unmarked (mark(j)=+∞). In the pth 
stage (2≤p≤k), we consider all the unmarked vertices of 
the tree. Let’s consider such a vertex i (with 
mark(i)=+∞). We count the number q of neighbors j of 
vertex i for which mark(j)≥p. If q≤1 then we set 
mark(i)=p. Since every stage takes O(n) time, the time 
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complexity of this algorithm is O(n·k). The second 
algorithm has O(n) time complexity and starts after 
checking that the given graph is a tree. We compute for 
every vertex i the value dmax(i)=the maximum distance 
from vertex i to some leaf of the tree. We can use, for 
instance, the algorithm presented in [5] for computing 
the center of a tree, which computes all the dmax(*) 
values in overall O(n) time. Then, for every vertex i we 
consider all of its neighbors j and set jmax=the neighbor 
j with the largest value dmax(j) among all of vertex i’s 
neighbors. We then set kmin(i)=1+max{1+dmax(j)|j is a 
neighbor of i and j≠jmax} (we consider max{empty 
set}=0). Vertex i is a kmin(i)-level-leaf. Afterwards, we 
consider all the vertices i with kmin(i)>k : every such 
vertex must have at most two neighbors j with kmin(j)>k 
(its potential 2 neighbors on the central path). 
     We now consider the following problem: given a tree 
T with n vertices (numbered from 1 to n), in which every 
vertex i has a weight wv(i) and every edge (u,v) has a 
weight we(u,v) (the weights may even be negative), we 
want to find a k-level caterpillar subtree of T whose sum 
of edge and vertex weights is maximum. We root the 
tree at any vertex r. Thus, r will be the tree’s root and it 
will introduce parent-son relationships between the tree 
vertices. We will traverse the tree vertices bottom-up 
(from the leaves towards the root). For every vertex i of 
the tree we will compute O1(i)=the maximum total 
weight of a k-level-caterpillar subtree whose central path 
of vertices starts at vertex i and contains only vertices in 
vertex i’s subtree, and O2(i)=the maximum total weight 
of a k-level-caterpillar subtree fully contained in vertex 
i’s subtree (and vertex i may belong to the k-level-
caterpillar or not). Besides these 2 sets of values, we will 
compute for every vertex i the values Wmax(i,j)=the 
maximum total weight of the edges and vertices of a 
subtree in which vertex i is a j’-level-leaf (j’≤j), and all 
the other vertices are j’’-level-leaves (for various j’’<j’) 
and are fully contained in vertex i’s subtree. We have 
Wmax(i,0)=-∞. For j≥1 we have Wmax(i,j)= 
max{Wmax(i,j-1), wv(i) plus the sum of the values 
max{0, we(i,s(i,q))+Wmax(s(i,q), j-1)} with 1≤q≤ns(i)} 
(ns(i)=the number of sons of vertex i; s(i,q)=the qth son 
of vertex i). Then, the values O1(i) and O2(i) are 
computed as follows. First, we compute the sum S(i), 
defined as follows: the sum of the values 
(max{we(i,s(i,j))+Wmax(s(i,j),k), 0}), for 1≤j≤ns(i). Then 
we have Omax=max{O1(s(i,j))+we(i,s(i,j))-max{ 
we(i,s(i,j))+Wmax(s(i,j),k), 0}|1≤j≤ns(i)} and jmax is the 
index j for which we obtain Omax. O1(i)=max{wv(i)+ 
S(i), wv(i)+S(i)+Omax}. Then we compute Omax2 
=max{O1(s(i,j)) + we(i,s(i,j)) - max{we(i,s(i,j)) + 
Wmax(s(i,j),k), 0}| 1≤j≤ns(i), j≠jmax}. We have O2(i) = 
max{O1(i), O1(i)+Omax2, max{O2(s(i,j))|1≤j≤ns(i)}}. 
O2(r) is the maximum total weight of a k-level-
caterpillar subtree. The time complexity is O(n·k). 

6   Related Work and Conclusions 
Efficient data transfer scheduling models and techniques 
were discussed and presented in [2, 3, 7]. Time-slot 
based scheduling data structures and algorithms were 
introduced and analyzed in [3, 7]. Multicast strategies 
based on caterpillar topologies were discussed in [6]. An 
economy-based method for scheduling data-intensive 
applications in Grids was given in [1]. Some risk 
assessment methodologies were presented in [4]. 
     In the first part of this paper we presented the first 
steps towards providing low-risk and economically 
feasible data transfer services. We introduced three new 
types of data transfer services and discussed methods of 
setting prices, alleviating risks and managing data 
transfer schedules. In the second part of the paper we 
discussed two packet scheduling optimization problems 
and presented algorithms for identifying maximum 
weight (k-level-) caterpillar subtrees in trees. 
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