
Towards Providing Low-Risk and Economically Feasible Network Data
Transfer Services

MUGUREL IONUT ANDREICA

Computer Science and Engineering Department
Politehnica University of Bucharest

Splaiul Independentei 313, sector 6, Bucharest
ROMANIA

mugurel.andreica@cs.pub.ro https://mail.cs.pub.ro/~mugurel.andreica

VASILE DEAC, STELIAN TIPA
Faculty of Management

The Bucharest Academy of Economic Studies
Piata Romana 6, sector 1, Bucharest

ROMANIA
deac_vasile@yahoo.com, stelian.tipa@intesasanpaolo.ro

Abstract: - In the first part of this paper we present the first steps towards providing low-risk and economically feasible
network data transfer services. We introduce three types of data transfer services and present general guidelines and
algorithms for managing service prices, risks and schedules. In the second part of the paper we solve two packet
scheduling cost optimization problems and present efficient algorithms for identifying maximum weight (k-level-)
caterpillar subtrees in tree networks.

Key-Words: - Data Transfer Services, QoS, Low-Risk, Economic Feasibility, Caterpillar Graphs, Packet Scheduling.

1 Introduction
The need for efficient network data transfer services has
increased rapidly during the past few years and it
continues to have an increasing trend. This is in
correlation with the increases in the world-wide volumes
of data produced per year and in the overall Internet
bandwidth and number of users. Many business domains
make use of large data volumes which need to be
accessed, processed and transferred. Recent video on
demand and live streaming applications deliver
multimedia streams of variable quality to consumers,
thus requiring large transfer speeds (bandwidth). Banks
and other financial institutions need to store and process
large amounts of data, generated by the transactions of
their customers. The transfer of the data must be
performed reliably (no errors can be accepted) and
quickly (in order to perform real-time data processing).
Large distributed systems (e.g. Grids), run applications
which consist of workflows, in which the output
generated by a part of the application must be fed as
input to another part of the application. Thus, data
transfer scheduling techniques are required in order to
obtain increased performance. In this paper we take the
first steps towards providing low-risk and economically
feasible network data transfer services. In Section 2 we
discuss the types of services that could be provided by a
data transfer service provider. In Section 3 we consider

scheduling details, pricing policies and risk mitigation
methods, such that the data transfer services present low
economic risk and financial feasibility. In Section 4 we
discuss two packet scheduling optimization problems. In
Section 5 we present algorithms for identifying
maximum weight (k-level-) caterpillars in trees. In
Section 6 we discuss related work and we conclude.

2 Types of Data Transfer Services
The context in which dedicated data transfer services can
be provided is that in which the entire network
infrastructure is owned by the service provider. Thus, we
define the network as a graph composed of n vertices
and m edges. A vertex is either a user computer or the
device through which the user connects to the network
infrastructure of the provider (e.g. a cable modem or
ADSL modem), a router, a switch, or any other network
device. An edge between two vertices corresponds to a
physical link between the two vertices and has an
associated latency and bandwidth (if we have a full-
duplex link, then we need a latency and bandwidth value
for each direction). We only consider point-to-point
links and we ignore shared network media (e.g. Ethernet
on a bus topology, or wireless) on purpose. Note that the
provider does not need to map its entire network in this
graph. In this case, a vertex may stand for a group of

Recent Advances in Signals and Systems

ISSN: 1790-5109 204 ISBN: 978-960-474-114-4

network devices or for part of a network. However, the
physical characteristics of the network links (graph
edges) should be adjusted accordingly (e.g. an edge
between two vertices i and j may now stand for multiple
physical links between the network devices of the groups
corresponding to the two vertices; in such a case, the
bandwidth for each direction of the edge could be the
sum of the bandwidths of the physical network links for
that direction, but it’s difficult to say what the
“combined” latency should be). We consider that all the
traffic that exists in the network is the result of using
some of the data transfer services which we describe
next. The most common type of data transfer service,
which is provided by most Internet Service Providers
(ISPs) nowadays, is the following. They guarantee a
maximum upload and download bandwidth to the users
and make no guarantees for anything else. The user can
choose a quality level – the larger the quality level, the
larger the upload and download bandwidths are. The
users are charged a flat fee F(j) (for quality level j) per
month as long as a combination C of the total upload
traffic U and download traffic D (during the current
month) does not exceed an upper bound B (C may be
U+D, or some other function chosen by the provider).
Then, the users are charged an extra fee, usually directly
proportional with the excess: E(j)·(C-B). This business
model works well, but it is not useful in any of the
situations presented in Section 1. This is because these
are only best-effort services and provide no end-to-end
guarantees. The following types of services focus on
providing end-to-end guarantees. The best model for
using such services is that in which the users (or user
applications) submit data transfer requests to a central
scheduler (like in [2, 3]). The first type of requests is
given by fixed bandwidth-fixed duration requests. Such a
request has the following parameters: (t1, t2, B, D, lmax,
s, f), meaning that the data transfer requires a minimum
amount of bandwidth B for a duration of time D, the
earliest possible starting time of the transfer is t1, the
latest possible finish time is t2, and the transfer takes
place between nodes s and f. The scheduler must assign
to the request a (directed) path from s to f in the graph
and a time interval [ts, ts+D] in which the required
amount of bandwidth is available on each edge on the
path (in the direction from the source to the destination)
and the sum of latencies of the edges on the path is at
most lmax. Then, data is transferred on the assigned path
and during the assigned time interval at (at most) the
requested bandwidth. A second type of requests is given
by fixed data-fixed duration requests. The parameters of
such a request are: (t1, t2, TD, dataid, s, f, o), meaning
that it needs to transfer TD bytes of data, the transfer
takes place between nodes s and f, and the transfer must
occur between time moments t1 and t2, but the transfer
speed does not have to be constant (i.e. it can vary in

time; all that matters is that the moment tf when the last
byte of data arrives at the destination is ≤t2, and we do
not start transferring the first byte of data before t1). The
data is initially located at the source node s and is
identified by an identifier dataid (e.g. file name, location
and offset within the file). The data does not have to be
transferred on a single path – this is up to the scheduler;
but the transfer must be reliable (i.e. all the data must
reach its destination). The o parameter is a boolean flag
which indicates if the data must be received in order
(o=true) or if it can be reordered at the destination
(o=false) by adding extra information regarding its
position in the flow to every transferred packet. Another
type of requests is given by fixed bandwidth-variable
duration requests. The parameters of such a request are:
(t1, B, lmax, s, f), meaning that the scheduler needs to
allocate to the request a (directed) path from s to f,
starting at time moment t1 and for an indefinite duration.
A bandwidth of at least B must be available on every
edge of the path (in the corresponding direction, from s
to f) and the sum of the latencies of the edges on the path
must be at most lmax. So far, we only considered
independent and unrelated requests. However, the two
types of fixed duration requests can be extended as
follows. The scheduler receives a group of M requests
(r(1), …, r(M)) which are connected by precedence
constraints. To be more precise, besides satisfying the
constraints of each request, we are also given a directed
acyclic graph (DAG) which has a vertex i for every
request r(i). We have a directed edge from vertex i to
vertex j if the data transfer corresponding to request r(j)
must start only after the data transfer corresponding to
request r(i) is complete. The group may contain both
fixed bandwidth- and fixed data- fixed duration requests.

3 Managing Schedules, Prices and Risks
Economic feasibility is strongly related to the profits the
data transfer service provider can obtain from its
customers. Thus, the pricing policy plays an important
role. Depending on the (expected) number of customers,
the provider may choose a fixed pricing policy or may
negotiate the price for every data transfer request (it may
even present multiple alternatives with different prices to
the customer). In the case of fixed bandwidth-fixed
duration requests, the price should be proportional to B
and D, and inversely proportional to the slack (t2-t1-D)
and lmax. That is, the larger the requested bandwidth and
duration are, the larger the price should be, and the
smaller the upper bound on latency and the slack are, the
larger the price should be. Prices may also depend on the
time interval [t1,t2]. If it is difficult to find a time interval
of length D where a path satisfying the Quality-of-
Service (QoS) constraints exists, then the price should be
higher. Moreover, the price can be proportional to the

Recent Advances in Signals and Systems

ISSN: 1790-5109 205 ISBN: 978-960-474-114-4

amount of already reserved bandwidth on the edges on
the chosen path (the higher the bandwidth of the path is
utilized, the higher the price). Fixed data-fixed duration
requests should be charged proportional to the total
transferred data (TD), and inversely proportional to the
length of the time interval [t1,t2]. Moreover, if the data
should be delivered in an ordered fashion, the price
should be higher (as there are more constraints imposed
on the provider). Fixed bandwidth-variable duration
requests are slightly more complicated. Obviously, the
price should be proportional to B, to the actual duration
of using the service, and inversely proportional to lmax.
A combination of fixed and variable costs could be used
here. For instance, if the service is used for a duration of
at most D, then the price could be CF; otherwise, if the
usage duration is D’>D the price will be CF+CV·(D’-D)
(CF and CV depend on the other parameters of the
request). Note that not all of the requests may be
satisfied, as the provider may not have sufficient
resources to accommodate all the requests. When
receiving a request, if it can be satisfied, the provider
should choose the price also based on the risk that this
request may force the rejection of future requests which
might bring larger revenues (we consider that once
accepted, a request cannot be cancelled or rejected later).
Fixed bandwidth-variable duration requests present the
highest risk, as resources might need to be reserved for a
long time in order to make sure that the request is
satisfied (if, however, the provider is over-provisioned
compared to the actual customer demand, these requests
may be the most desirable, as they might use the network
resources for larger time intervals and, thus, they may be
favoured in some sense). Fixed bandwidth-fixed duration
requests present the second highest risk and fixed data-
fixed duration requests present the lowest risk (those
with unordered data delivery are less risky than those
with guaranteed ordered data delivery). However,
handling a DAG of a group of requests presents
significantly higher risks than handling independent
requests. Thus, the provider should use a good risk
model, as this will influence its pricing policy. A
forecast and a simulation component should be included
in the risk model. The forecast component should
identify patterns of the parameters of the requests
received so far and patterns of behaviour for the fixed
bandwidth-variable duration requests (e.g. estimations of
the actual durations). The forecast component should be
used as follows. Given all the available information
regarding the requests and a time interval [t1,t2], the
forecast component should be able to generate a list of
fake requests, which it estimates that might be received
during the interval [t1,t2]. Then, when deciding the price
of a newly received request, we use the simulation
component to estimate the overall revenue if the request
were accepted (ignoring its price) and the overall

revenue if the request were rejected. The simulation is
run for a carefully chosen duration (e.g. it simulates T
seconds or minutes in the future) and uses as input the
list of fake requests estimated by the forecast component
for the interval [present time moment, present time
moment+T], and the currently scheduled requests. The
price of the request should be chosen such that the
revenue in case of not accepting the request is not larger
than the revenue in the case of accepting request (but
ignoring its price) plus the price of the request. The
forecast component may also be used differently. It
could generate K≥1 lists of fake requests for a given time
interval [t1,t2] and it could assign a probability of
occurrence prob(i) to every list i (1≤i≤K). Then, the
simulation is run for each of the K lists, a revenue R(K)
is computed for every list and then an expected revenue
ER=the sum of the values prob(i)·R(i) is computed and
used (we assume that the sum of the values prob(i),
1≤i≤K, is 1). Another important component is the
module which performs the scheduling of the data
transfer requests. The algorithms used are very important
and may have a strong influence on the revenues of the
provider, depending on how the requests are scheduled.
We will present an algorithm for the case when only
fixed bandwidth-fixed duration requests are considered.
The algorithm is based on events (as opposed to time-
slot based algorithms). For each event, the time moment
and the value by which the bandwidth is modified (a
positive or negative value) are stored, i.e. a pair (t,dB).
For each network link (and direction), a list of events is
maintained. The time moment of an event in the event
list of a network link is represented by the start or finish
time of a data transfer. The algorithm starts by
generating several candidate paths from s to f, which
satisfy the sum of latencies constraints. Then, for each
path, we verify if we can schedule the data transfer
request on that path in order to satisfy all the other
constraints. We consider a family of greedy algorithms
for this case: First-Fit, Last-Fit, Best-Fit and Worst-Fit.
All the events on all the (directed) network links along
the candidate path are initially sorted. Also, for each
(original) event (t,dB) on a link l, an event (t+D,0) on
the same link is added, where D is the duration requested
for the data transfer. These events are sorted together
with the other events. Then, the sorted events are
traversed. During the traversal we maintain for each
network link l a deque DQ(l) and the current available
bandwidth cb(l) of the link (cb(l) is initially the total
bandwidth of the link). The deque maintains sorted
(tm=time moment, ab=available bandwidth) pairs,
similar to the deque presented for the Time Slot Groups
data structure in [7]. Let’s assume that we reached an
event (t,dB) on a link l. First, we consider every link l’
and: (1) while DQ(l’) contains at least 1 pair and the last
pair lp from DQ(l’) has lp.ab≥cb(l’), we remove lp from

Recent Advances in Signals and Systems

ISSN: 1790-5109 206 ISBN: 978-960-474-114-4

DQ(l’) ; (2) we insert the pair (t,cb(l’)) at the end of
DQ(l’) ; (3) while the first pair fp of DQ(l’) has fp.tm≤t-
D, we remove fp from DQ(l’). Then, we increment cb(l)
by dB. After all these, the first pair fp of DQ(l’) of each
link l’ contains the minimum available bandwidth
AB(l’)=fp.ab of that link on the interval [t-D,t]. If AB(l’)
is greater than or equal to the required bandwidth B for
every network link l’ on the candidate path and the
interval [t-D,t] is included in [t1,t2] (given by the
request), then a match is found and we perform the
following actions. In the case of the First-Fit algorithm,
we return the interval [t-D,t] as the solution (the request
can be scheduled on the path). For the Last-Fit
Algorithm we just store t into tfin. For the Best-Fit and
Worst-Fit algorithms we compute MAB=min{AB(l’)|l’ is
a link on the candidate path}. These two algorithms will
maintain a bandwidth value MB, initially equal to +∞ for
Best-Fit and -∞ for Worst-Fit. If MAB<MB for Best-Fit
(MAB>MB for Worst-Fit) we set MB=MAB and tfin=t
(note that MAB≥B, because otherwise we wouldn’t have
performed these actions). Then, at the end, if anything
was stored in tfin (in the case of the Last-Fit, Best-Fit
and Worst-Fit algorithms), we return the interval [tfin-
D,tfin]; otherwise, no solution is found. If we schedule a
request on a path between time moments ts and ts+D, we
insert the events (ts,-B) and (ts+D,+B) in the event list
of every link l on the path (for the correct direction). The
sorting stage of the events can be performed by
maintaining a balanced tree, which contains the next
event to occur for each network link. At each step, the
event occurring at the earliest time is extracted from the
balanced tree (and replaced by the next event on its link).
The algorithm stops as soon as the latest finish time of
the request is passed by. The overall time complexity is
O(E·(log(NL)+NL)), where E=the total number of events
and NL=the total number of links on the candidate path.

4 Efficient Packet Scheduling
We consider a sequence of N packets which need to be
sent in order. The size of packet i is x(i) bytes. We can
transfer any sequence of consecutive packets at a time,
with the following restrictions. Let’s assume that S is the
total size of the packets in the sequence. There are K
levels for the data transfer. For every level j we have two
parameters: L(j) and C(j) (L(j+1)>L(j) and
C(j+1)>C(j)). Their meaning is the following. If S≤L(1)
then the transfer cost is C(1). If L(j-1)<S≤L(j) then the
cost of the transfer is C(j) (2≤j≤K). We cannot transfer
sequences of packets whose total size S exceeds L(K)
during a single data transfer. We want to transfer all the
N packets, in order, such that the total cost of the data
transfers is minimized. We will compute Cmin(i)=the
minimum total cost for sending the first i packets. We
have Cmin(0)=0. We will first compute the prefix sums

SP(i)=x(1)+…+x(i) (SP(0)=0 and SP(1≤i≤N)=SP(i-
1)+x(i)). We will maintain K data structures SD(j)
(1≤j≤K). We traverse the N packets in order, from 1 to N.
When we reach packet i, SD(1) will contain the indices
of the packets q<i such that SP(i)-SP(q)≤L(1), and
SD(2≤j≤K) will contain the indices of those packets q<i
such that L(j-1)<SP(i)-SP(q)≤L(j). For every data
structure SD(j) we will maintain the indices left(j) and
right(j), meaning that the packets in the interval
[left(j),right(j)] belong to SD(j). SD(j) will allow the
addition of a new packet, the removal of an old packet
and finding the minimum value Cmin(z) for
left(j)≤z≤right(j) (by using some functions called insert,
remove, and getMin). Initially (at i=0) we have left(*)=0
and right(*)=-1, and all the data structures SD(*) are
empty. Then, we will insert the virtual packet 0 in SD(1)
(setting right(1)=0). Let’s assume that we reached a
packet i (1≤i≤N). We will first update all the data
structures SD(j), in increasing order of j (1≤j≤K). While
SP(i)-SP(left(j))>L(j) (1≤j≤K-1), we remove the packet
left(j) from SD(j) and we insert it into SD(j+1) (then we
increase left(j) and right(j+1) by 1). While SP(i)-
SP(left(K))>L(K), we remove the packet left(K) from
SD(K) (and then we increment left(K) by 1). Then, we
compute Cmin(i)=min{C(j)+SD(j).getMin()|1≤j≤K}. If
SD(j) (for any 1≤j≤K) contains no packet, then
SD(j).getMin() returns the value +∞. After computing
Cmin(i) we insert packet i into SD(1) (increasing right(1)
by 1). We can implement the SD(*) data structures as
heaps, in which case insertions and removals have an
O(log(N)) time complexity and finding the minimum
value takes O(1) time. The time complexity of the
algorithm would be, in this case, O(N·K·log(N)).
However, the data structures SD(j) can also be
implemented as deques. If SD(j) is a deque, then the
elements inside it are pairs (idx, Cmin(idx)) and are
sorted both according to the index idx and the value
Cmin(idx). When we insert a packet idx into SD(j), in
fact we insert the pair (idx, Cmin(idx)) into the data
structure. Before doing this, we remove from the end of
SD(j) all the pairs (q,Cmin(q)) with Cmin(q)≥Cmin(idx);
only after this will we add the pair (idx,Cmin(idx)) at the
end of the deque SD(j). When we remove a packet idx
from SD(j), we check if the first pair from SD(j) is (idx,
Cmin(idx)); if yes, then we remove that pair from the
beginning of the deque; otherwise, we perform no
changes. In order to find the minimum element from
SD(j), we consider the pair (idx, Cmin(idx)) from the
beginning of SD(j) and return the value Cmin(idx) (or
+∞ if SD(j) is empty). The time complexity of all the
operations on a deque SD(j) is O(N), leading to an
O(N·K) overall time complexity.
 A second packet scheduling problem is the following.
We want to transfer N equal-sized packets from a source
to the same destination using some of the P available

Recent Advances in Signals and Systems

ISSN: 1790-5109 207 ISBN: 978-960-474-114-4

disjoint paths (numbered from 1 to P). Every path i has
three parameters: cf(i), cv(i), pmax(i). cf(i) is the fixed
cost which needs to be paid in order to use the path i,
and cv(i) is the cost which needs to be paid in order to
send 1 packet on path i. Thus, in order to send k≥1
packets on path i, we need to pay a cost equal to
pcost(i,k)=cf(i)+k·cv(i); pcost(i,0)=0. Moreover, we
cannot send more than pmax(i) packets on path i. We
want to send all the N packets to the destination (in any
order) by paying the minimum total sum. We will start
by pointing out the following fact. Let’s assume that we
paid the fixed costs for the paths q1, …, qM and let’s
assume that we have cv(q1)≤cv(q2)≤…≤cv(qM). We will
send as many packets as possible on the path q1 (because
it has the lowest cost per packet), then as many as
possible on the path q2, and so on. Thus, if we pay the
fixed costs for M paths, then M-1 of them are used fully
(we send the maximum possible number of packets on
them) and the last one may be used only partially. Based
on this observation, we can use the following pseudo-
polynomial dynamic programming algorithm. We first
sort the paths such that cv(1)≤cv(2)≤…≤cv(P). We will
compute Cmin(i,j)=the minimum total cost for sending j
packets, using some of the first i paths, and each path is
either fully used or not used at all. We have
Cmin(0,0)=0 and Cmin(0,j>0)=+∞. For i≥1 we have
Cmin(i,0≤j<pmax(i))=Cmin(i-1,j) and Cmin(i,
pmax(i)≤j≤N)=min{Cmin(i-1,j), Cmin(i-1,j-pmax(i))+
pcost(i,pmax(i))}. During the second stage of the
algorithm we traverse the paths from P down to 1 and
we will compute Cmin2(i,j)=the minimum cost of
sending j packets on a single path, considering only the
paths i, i+1, …, P. Cmin2(P+1,0)=0 and
Cmin2(P+1,j≥1)=+∞. Cmin2(i,0≤j≤min{N,pmax(i)})=
min{Cmin2(i+1,j), pcost(i,j)}; Cmin2(i,pmax(i)<j≤N)=
Cmin2(i+1,j). Then, in order to find the minimum total
sum to be paid for sending all the N packets, we compute
Smin=min{Cmin(i,N), min{Cmin(i,j) + Cmin2(i+1,N-j) |
0≤i≤P, 0≤j≤N-1}}. This solution takes O(P·N+P·log(P))
time and O(P·N) space. We can reduce the space
complexity to O(P+N) as follows. First, we notice that
after computing Cmin(i,*) we do not require the values
Cmin(i’<i,*). As soon as we compute all the values
Cmin(i,*) we consider all the candidates
Cmin(i,j)+Cmin2(i+1,N-j) for Smin. However, we need
to compute Cmin2(i+1,N-j) differently. We can consider
all the paths i+1, …, P and interpret them as half-lines;
half-line i has the equation y(x)=cf(i)+x·cv(i). Then, we
need to compute the lower envelope of these half-lines
(or the upper-envelope if we consider –cf(i) and –cv(i)
instead of cf(i) and cv(i) for every half-line; linear time
algorithms for the upper envelope of half-lines exist).
After computing the lower envelope, Cmin2(i+1,N-j) is
equal to the smallest value of any half-line at x=N-j;
these values can be computed in O(log(P)) time: we find

the x-interval of the lower envelope which contains the
value x=N-j, then we access the half-line q with the
smallest value on that interval and then we compute
pcost(q,x). This way, the time complexity increases to
O(P·N·log(P)+P2). We can keep the time complexity
down to O(P·N+P2) by traversing the values x=N-j in
increasing (or decreasing) order. This way, the x-interval
of the next value of x is either the interval of the current
value of x, or the next interval on the lower envelope;
thus, we can find the x-interval containing each value x
in O(1) time, as we do not need to use binary search. A
simpler O(P·N+P·log(P)) solution starts by sorting the
paths s.t. cv(1)≥…≥cv(P). Then, we compute Cmin’(i,j)
(in increasing order of i), such that: Cmin’(0,0)=0,
Cmin’(0, 1≤j≤N)=+∞, Cmin’(1≤i≤P, 0≤j≤min{pmax(i),
N})=min{Cmin’(i-1,j), pcost(i,j)} and Cmin’(1≤i≤P,
pmax(i)<j≤N)=min{Cmin’(i-1,j), Cmin’(i-1,j-pmax(i)) +
pcost(i, pmax(i))}. The answer is Cmin’(P,N). We can
use O(N) space, like in the case of the Cmin(*,*) values.

5 Largest Caterpillar in a Tree Network
Tree topologies occur frequently in communication
networks, particularly in the case of multicast
communication. Some types of trees, which were used in
[6] for devising an efficient multicast strategy, are the
caterpillar graphs. These graphs consist of a central path
of vertices, and each of the vertices on the central path
may have any number of leaves as neighbors, plus the (at
most) two neighbors on the central path. We will now
introduce the more general class of k-level-caterpillars.
First, we define the concept of k-level-leaf. A vertex i is
a k-level-leaf (for k≥1) if every neighboring vertex j is a
k’-level-leaf for some k’<k, except for possibly one
neighbor. For k=1, a vertex i is a 1-level-leaf if it has
degree 1. No vertex is a 0-level-leaf. A k-level-
caterpillar is a graph which consists of a central path of
vertices such that every vertex on the central path has
only k’-level-leaves as neighbors (with k’≤k), except for
the (at most) 2 neighbors on the central path. Thus, the
caterpillar graphs mentioned previously are 1-level-
caterpillars according to this new definition. A 0-level-
caterpillar is simply a path. We first provide two
algorithms for deciding if a given graph with n vertices
is a k-level-caterpillar. First, we verify if the given graph
is a tree (it must consist of a single connected component
and the total number of edges must be n-1). Then, the
first algorithm works in k stages. In the first stage we
mark all the leaves i with mark(i)=1 and the other
vertices j are left unmarked (mark(j)=+∞). In the pth
stage (2≤p≤k), we consider all the unmarked vertices of
the tree. Let’s consider such a vertex i (with
mark(i)=+∞). We count the number q of neighbors j of
vertex i for which mark(j)≥p. If q≤1 then we set
mark(i)=p. Since every stage takes O(n) time, the time

Recent Advances in Signals and Systems

ISSN: 1790-5109 208 ISBN: 978-960-474-114-4

complexity of this algorithm is O(n·k). The second
algorithm has O(n) time complexity and starts after
checking that the given graph is a tree. We compute for
every vertex i the value dmax(i)=the maximum distance
from vertex i to some leaf of the tree. We can use, for
instance, the algorithm presented in [5] for computing
the center of a tree, which computes all the dmax(*)
values in overall O(n) time. Then, for every vertex i we
consider all of its neighbors j and set jmax=the neighbor
j with the largest value dmax(j) among all of vertex i’s
neighbors. We then set kmin(i)=1+max{1+dmax(j)|j is a
neighbor of i and j≠jmax} (we consider max{empty
set}=0). Vertex i is a kmin(i)-level-leaf. Afterwards, we
consider all the vertices i with kmin(i)>k : every such
vertex must have at most two neighbors j with kmin(j)>k
(its potential 2 neighbors on the central path).
 We now consider the following problem: given a tree
T with n vertices (numbered from 1 to n), in which every
vertex i has a weight wv(i) and every edge (u,v) has a
weight we(u,v) (the weights may even be negative), we
want to find a k-level caterpillar subtree of T whose sum
of edge and vertex weights is maximum. We root the
tree at any vertex r. Thus, r will be the tree’s root and it
will introduce parent-son relationships between the tree
vertices. We will traverse the tree vertices bottom-up
(from the leaves towards the root). For every vertex i of
the tree we will compute O1(i)=the maximum total
weight of a k-level-caterpillar subtree whose central path
of vertices starts at vertex i and contains only vertices in
vertex i’s subtree, and O2(i)=the maximum total weight
of a k-level-caterpillar subtree fully contained in vertex
i’s subtree (and vertex i may belong to the k-level-
caterpillar or not). Besides these 2 sets of values, we will
compute for every vertex i the values Wmax(i,j)=the
maximum total weight of the edges and vertices of a
subtree in which vertex i is a j’-level-leaf (j’≤j), and all
the other vertices are j’’-level-leaves (for various j’’<j’)
and are fully contained in vertex i’s subtree. We have
Wmax(i,0)=-∞. For j≥1 we have Wmax(i,j)=
max{Wmax(i,j-1), wv(i) plus the sum of the values
max{0, we(i,s(i,q))+Wmax(s(i,q), j-1)} with 1≤q≤ns(i)}
(ns(i)=the number of sons of vertex i; s(i,q)=the qth son
of vertex i). Then, the values O1(i) and O2(i) are
computed as follows. First, we compute the sum S(i),
defined as follows: the sum of the values
(max{we(i,s(i,j))+Wmax(s(i,j),k), 0}), for 1≤j≤ns(i). Then
we have Omax=max{O1(s(i,j))+we(i,s(i,j))-max{
we(i,s(i,j))+Wmax(s(i,j),k), 0}|1≤j≤ns(i)} and jmax is the
index j for which we obtain Omax. O1(i)=max{wv(i)+
S(i), wv(i)+S(i)+Omax}. Then we compute Omax2
=max{O1(s(i,j)) + we(i,s(i,j)) - max{we(i,s(i,j)) +
Wmax(s(i,j),k), 0}| 1≤j≤ns(i), j≠jmax}. We have O2(i) =
max{O1(i), O1(i)+Omax2, max{O2(s(i,j))|1≤j≤ns(i)}}.
O2(r) is the maximum total weight of a k-level-
caterpillar subtree. The time complexity is O(n·k).

6 Related Work and Conclusions
Efficient data transfer scheduling models and techniques
were discussed and presented in [2, 3, 7]. Time-slot
based scheduling data structures and algorithms were
introduced and analyzed in [3, 7]. Multicast strategies
based on caterpillar topologies were discussed in [6]. An
economy-based method for scheduling data-intensive
applications in Grids was given in [1]. Some risk
assessment methodologies were presented in [4].
 In the first part of this paper we presented the first
steps towards providing low-risk and economically
feasible data transfer services. We introduced three new
types of data transfer services and discussed methods of
setting prices, alleviating risks and managing data
transfer schedules. In the second part of the paper we
discussed two packet scheduling optimization problems
and presented algorithms for identifying maximum
weight (k-level-) caterpillar subtrees in trees.

References:
[1] S. Venugopal, and R. Buyya, An Economy-based

Algorithm for Scheduling Data-Intensive
Applications on Global Grids, Tech. Report, GRIDS-
TR-2004-11, Grid Computing and Distributed
Systems Laboratory, University of Melbourne, 2004.

[2] M. I. Andreica, E.-D. Tirsa, N. Tapus, F. Pop, and C.
M. Dobre, Towards a Centralized Scheduling
Framework for Communication Flows in Distributed
Systems, Proc. of the 17th Intl. Conf. on Control Syst.
and Comp. Science, Vol. 1, 2009, pp. 441-448.

[3] M. I. Andreica, and E.-D. Tirsa, Towards a Real-
Time Scheduling Framework for Data Transfers in
Tree Networks, Proc. of the 10th IEEE International
Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC), 2008, pp. 467-474.

[4] M. E. Andreica, I. Dobre, M. Andreica, B. Nitu, and
R. Andreica, A New Approach of the Risk Project
from Managerial Perspective, Economic
Computation and Economic Cybernetics Studies and
Research, Vol. 42, 2008, pp. 121-129.

[5] M. I. Andreica, and N. Tapus, Constrained Content
Distribution and Communication Scheduling for
Several Restricted Classes of Graphs, Proc. of the
10th IEEE Intl. Symp. on Symbolic and Numeric Algo.
for Scientific Computing, 2008, pp. 129-136.

[6] A. Basak, MPLS Multicasting Using Caterpillars and
a Graceful Labelling Scheme, Proceedings of the 8th
International Conference on Information
Visualisation, 2004, pp. 382-387.

[7] M. I. Andreica, and N. Tapus, Time Slot Groups - A
Data Structure for QoS-Constrained Advance
Bandwidth Reservation and Admission Control,
Proc. of the IEEE Intl. Symp. on Symb. and Numeric
Algo. for Scientific Comput., 2008, pp. 354-357.

Recent Advances in Signals and Systems

ISSN: 1790-5109 209 ISBN: 978-960-474-114-4

