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Abstract: - In this work, the distributions of the number of received and lost packets, respectively named gap and 
burst, of a VoIP communication are modeled with discrete finite-state Markov chains. Through a study of 
measurements from monitored VoIP calls, it is shown that these models can adequately represent the geometric-
type decay of these distributions. Two-state model performs well for homogeneous losses but for non-
homogeneous losses four-state model fits better. An analysis of the performance of a packet-level FEC scheme, 
based on ݊-packet redundancy, is developed. The perceived packet loss rate that results of applying this 
correction scheme is quantified. The studied measurements show that 1-packet redundancy is generally 
sufficient to improve the quality of the communication to an acceptable level. 
 
Key-Words: - VoIP, packet loss rate, burst length distribution, ݊-packet FEC. 
 
1 Introduction 
Internet became the point of convergence of 
information and media transmission. Data, voice, 
video, etc., are transmitted through the same 
communication channel. The service provided by the 
Internet is named “best effort”, which means that the 
devices between links generally do not differentiate 
between the types of traffic and there is neither 
resource reservation nor prioritization. Congestion 
due to the high demand of network resources is the 
cause of the impairment of its quality of service, 
which consists of delay problems, i.e., the delay and 
its variation (delay jitter) are higher, and packet loss. 
The automatic repeat request (ARQ) technique, the 
correction scheme of the transmission control 
protocol (TCP), is used to eliminate (or reduce) 
packet losses, but it is not suitable for many real-time 
and near real-time applications, which have tighter 
delay tolerance. Then, other types of error correction 
techniques, adequate for these applications, are 
needed, e.g. multiple packet transmission (MPT) or 
forward error correction (FEC), to assure certain 
quality of service. 

In this work, modeling of packet loss of a VoIP 
communication through a wide area network (WAN) 
is developed. Discrete finite-state Markov chains are 
used to represent how these losses occur in the 
communication channel, which consists of a sequence 

of routers connected by links through which the 
packets traverse. 

Consecutive packet receipts and losses are named 
gaps and bursts, respectively. Due to the time-
correlated occupancy of the network, packet losses 
commonly occur in bursts such that their lengths 
follow a geometric-type distribution, as well as gaps 
[1] [2]. 

At small time scales, i.e. a few seconds or 
minutes, a two-state Markov chain can reproduce this 
phenomenon, but a non-homogeneous behavior 
becomes noticeable at larger scales and, in this case, 
the two-state Markov chain is insufficient, thus a 
more general model is necessary. The four-state 
Markov chain seems to capture or simulate better this 
widely known non-homogeneous behavior of the 
characteristics of network traffic. The four-state 
model approach allows us to represent and simulate 
those periods with low and high packet loss rate 
(PLR) that alternate in sequence according to certain 
probability. 

MPT consists of sending copies of packets when 
high losses occur, these copies must be equally 
spaced in the time interval they are sent in order to 
maximize the probability of receipt [3]. Although this 
technique has the advantage that it is very easy to 
implement, it is not convenient because of the high 
bandwidth requirement. 
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The ܰ-packet FEC technique consists of sending 
information about packet ݊ along with later packets, 
i.e., with packets ݊ ൅ 1, ݊ ൅ 2, …, ݊ ൅ ܰ, in order to 
reconstruct packet ݊ in the case it is lost. With this 
correction scheme, the last ܰ packets of a burst can 
be recovered and then, the perceived PLR of the end 
user is lower than the PLR due to the network. The 
amount of redundancy generally is defined as a 
function of the PLR [4], e.g., it is not efficient to send 
redundant information if there are no missing 
packets. This correction scheme, which is performed 
at packet level, is the scope of the analysis presented 
in this work. Codification schemes of the redundant 
information on later packets are described in [5]. 

 
 
2 Contributions 
The contributions of this work are summarized as 
follows: 

1. A statistical description of the two-state and 
four-state Markov chains, assuming that it is time-
homogeneous (i.e., the probabilities of transition 
between states are constant) is presented. 

2. An analytical description of the performance 
of ݊-packet FEC scheme is given, i.e., the perceived 
PLR as a function of the network loss rate, the burst 
length distribution and the level of redundancy. 

3. A set of measurements, which consists of 
monitored VoIP calls from which loss sequences are 
obtained, is studied in order to verify the proposed 
models. 
 
 
3 Finite-state Markov Chains 

 
 

3.1 Matrix Representation of the Steady-
state 

Let ܵ ൌ ଵܵ, ܵଶ, … , ܵ௠ be the ݉ states of an ݉-state 
Markov chain and let ݌௜௝ be the probability of the 
chain to pass from the state ௜ܵ to the state ௝ܵ, i.e., 
௜௝݌ ൌ ܲሺ ௜ܺ ൌ |௜ݔ ௜ܺିଵ ൌ  ௜ିଵሻ. Having the Markovݔ
property means that, given the present state, future 
states are independent of the past states, i.e., 
ܲሺܺ௡ାଵ ൌ ௡ାଵ|ܺ௡ݔ ൌ ,௡ݔ ܺ௡ିଵ ൌ ,௡ିଵݔ … ሻ ൌ
ܲሺܺ௡ାଵ ൌ ௡ାଵ|ܺ௡ݔ ൌ  ௡ሻ. The Markov chains usedݔ
in this work also are time-homogeneous, which 
means that the probabilities of transition between 
states are constant over time, i.e., 
ܲሺܺ௡ାଵ ൌ ௡ାଵ|ܺ௡ݔ ൌ ௡ሻݔ ൌ
ܲሺܺ௡ ൌ ௡|ܺ௡ିଵݔ ൌ  .௡ିଵሻݔ

All states communicate (are reachable from) each 
other, which makes the chain irreducible. Also, the 

chain is aperiodic, i.e., state ௜ܵ can be reached from 
itself in any number of steps (݊ ൌ 1,2,3, …). 

The probabilities of transitions between states can 
be represented by a transition matrix. The elements 
of the one-step ݉ ൈ ݉ transition matrix ܶ are 

௜ܶ௝ ൌ  ௜௝. To obtain the ݊-step transition matrix it is݌
necessary to multiply the matrix itself ݊ times [6], 
i.e., 

௡ܶ ൌ ܶ௡ (1)
As the number of steps (݊) increases, the 

probability of transition to the state ௜ܵ depends less of 
the initial state. i.e., as ݊ tends to ∞, the matrix ௡ܶ 
converges to a matrix with the next form: 

∞ܶ ൌ lim
௡՜∞ ௡ܶ ൌ ൦

ଵݏ ଶݏ ڮ ௠ݏ
ଵݏ ଶݏ ڮ ௠ݏ
ڭ ڭ ڰ ڭ

ଵݏ ଶݏ ڮ ௠ݏ

൪  (2)

such that 
ଵݏ ൅ ଶݏ ൅ ڮ ൅ ௠ݏ ൌ 1  (3)

In (2) and (3), ݏ௜ represents the named steady 
probability of state ௜ܵ. The steady-state transition 
matrix ∞ܶ can be obtained then by solving (3) and (4) 
[7]: 

ܵܶ ൌ ܵ  (4)
where  ܵ ൌ ሾݏଵ ଶݏ …  .௠ሿݏ

Assuming that the chain is irreducible and 
aperiodic, the matrix ∞ܶ is well defined and unique. 

 
3.1.1 Two-state Markov Chain 
The two-state Markov chain is shown in Fig. 1. State 

ଵܵ represents packet loss and ܵଶ, packet receipt. Two 
substitutions (݌ଵଵ ൌ 1 െ ଶଶ݌ ଵଶ and݌ ൌ 1 െ  ଶଵ) are݌
made in order to represent the chain with the lowest 
number of parameters. The steady-state probability of 
the chain to be in the state ଵܵ, namely the PLR, is 
given by (5) [4]: 

ଵݏ ൌ
ଶଵ݌

ଵଶ݌ ൅ ଶଵ݌
 (5)

and clearly ݏଶ ൌ 1 െ  .ଵݏ
 

 
Fig. 1: Two-state Markov chain. White and shady circles 

represent correct and erroneous states, respectively. 
 

The burst and gap length distributions ( ௕݂ሺ݇ሻ and 
௚݂ሺ݇ሻ, respectively) can be expressed in terms of ݌ଵଶ 

and ݌ଶଵ, as expressed by (6) and (7): 
௕݂ሺ݇ሻ ൌ ଵଶሺ1݌ െ ଵଶሻ௞ିଵ (6)݌
௚݂ሺ݇ሻ ൌ ଶଵሺ1݌ െ ଶଵሻ௞ିଵ (7)݌

which have also respective means ܧሼ ௕݂ሺ݇ሻሽ ൌ  ଵଶ݌/1

S1 S2 

p21 

p12 
1-p21 1-p12 
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and ܧ൛ ௚݂ሺ݇ሻൟ ൌ  ଶଵ. It is easy to proof (6), as݌/1
∑ ௕݂ሺ݇ሻ∞

௞ୀଵ ൌ 1 and ௕݂ሺ݇ ൅ 1ሻ ൌ ௕݂ሺ݇ሻ · ሺ1 െ  ;ଶଵሻ݌
and similarly for (7). 
 
3.1.2 Four-state Markov Chain 
The four-state Markov chain is shown in Fig. 2. 
Missing arrows indicate zero probability. States ଵܵ 
and ܵଷ (shady circles) represent packet losses 
(erroneous); ܵଶ and ܵସ (white circles), packet receipt 
(correct). 

Six parameters (݌ଶଵ, ,ଵଶ݌ ,ସଷ݌ ,ଷସ݌ ,ଶଷ݌ ଷଶ݌ א
ሺ0,1ሻ) are necessary to define all the transition 
probabilities. Without loss of generality, probabilities 
of transitions between correct states, as well as 
transitions between erroneous ones, have been set to 
zero. 

 

 
Fig. 2: Four-state Markov chain. Only two types of 

transitions between different states are allowed: from 
correct to erroneous and from erroneous to correct. 

 
The four steady-state probabilities of this chain 

are: 

ଵݏ ൌ
1

1 ൅ ଵଶ݌
ଶଵ݌

 ൅ ଶଷ݌ଵଶ݌
ଶଵ݌ ଷܲଶ

൅ ଷସ݌ଶଷ݌ଵଶ݌
ସଷ݌ଷଶ݌ଶଵ݌

 (8)

ଶݏ  ൌ
1

1 ൅ ଶଵ݌
ଵଶ݌

൅ ଶଷ݌
ଷଶ݌

൅ ଷସ݌ଶଷ݌
ସଷ݌ଷଶ݌

 (9)

ଷݏ ൌ
1

1 ൅ ଷସ݌
ସଷ݌

൅ ଷଶ݌
ଶଷ݌

൅ ଷଶ݌ଶଵ݌
ଶଷ݌ଵଶ݌

 (10)

ସݏ ൌ
1

1 ൅ ସଷ݌
ଷସ݌

൅ ସଷ݌ଷଶ݌
ଷସ݌ଶଷ݌

൅ ସଷ݌ଷଶ݌ଶଵ݌
ଷସ݌ଶଷ݌ଵଶ݌

 (11)

The probability of the chain to be either in ܵଵ or in 
ܵଷ, that corresponds to PLR, is then: 

ݎ ൌ ଵݏ ൅  ଷݏ (12)
The average burst length (ܾ) is calculated as the 

quotient of the probability of loss and the probability 
of transition from a lossless state to a loss state (13), 
that is: 

തܾ ൌ
ଵݏ ൅ ଷݏ

ଶଵ݌ଶሺݏ ൅ ଶଷሻ݌ ൅  ସଷሻ݌ସሺݏ (13)

Similarly, the average gap length is: 
 

ҧ݃ ൌ
ଶݏ ൅ ସݏ

ଵଶሻ݌ଵሺݏ ൅ ଷସ݌ଷሺݏ ൅ ଷଶሻ݌
  (14)

Note that the transitions from error state to correct 
state and vice versa have equal probability, i.e. 
ଶଵ݌ଶሺݏ ൅ ଶଷሻ݌ ൅ ସଷሻ݌ସሺݏ ൌ ଵଶሻ݌ଵሺݏ ൅ ଷସ݌ଷሺݏ ൅  .ଷଶሻ݌

The distribution of the burst length can be derived 
the following the next procedure: 

Let ௕݂ሺ݇ሻ denote the probability that the burst 
length is ݇; ܥଵሺ݇ሻ, the probability that the burst 
length is ݇ or greater and the ݇௧௛ transmission is from 
state ଵܵ and ܥଷሺܾሻ, the probability that the burst 
length is ݇ or greater and ݇௧௛ transmission is from 
state ଵܵ and ܥ௕ሺ݇ሻ, the probability that the burst 
length is ݇ or greater such that ܥ௕ሺ݇ሻ ൌ ଵሺ݇ሻܥ ൅
ଷሺ݇ሻ and ௕݂ሺ݇ሻܥ ൌ ௕ሺ݇ሻܥ െ ௕ሺ݇ܥ ൅ 1ሻ. Clearly 
௕ሺ݇ሻܥ ൌ ∑ ௕݂ሺ݅ሻ∞

௜ୀ௞ . Also, as transitions between 
states ଵܵ and ܵଷ have zero probability, ܥଵሺ݇ ൅ 1ሻ ൌ
ଵሺ݇ሻሺ1ܥ െ ଵଶሻ݌ ൌ ଵሺ1ሻሺ1ܥ െ ଷሺ݇ܥ ଵଶሻ௞ and݌ ൅ 1ሻ ൌ
ଷሺ݇ሻሺ1ܥ െ ଷସ݌ െ ଷଶሻ݌ ൌ ଷሺ1ሻሺ1ܥ െ ଷସ݌ െ  .ଷଶሻ௞݌
Then to calculate ௕݂ሺ݇ሻ it is necessary to obtain 
 ଷሺ1ሻ, whose respective values areܥ ଵሺ1ሻ andܥ
ଵሺ1ሻܥ ൌ ଶଵ݌ଶሺݏଶଵ/ሾ݌ଶݏ ൅ ଶଷሻ݌ ൅  ସଷሿ and݌ସݏ
ଷሺ1ሻܥ ൌ ሺݏଶ݌ଶଷ ൅ ଶଵ݌ଶሺݏସଷሻ/ሾ݌ସݏ ൅ ଶଷሻ݌ ൅  .ସଷሿ݌ସݏ

As the minimum burst length is 1, ܥ௕ሺ1ሻ ൌ
ଵሺ1ሻܥ ൅ ଷሺ1ሻܥ ൌ 1. Then, the distribution of the 
burst length is: 

௕݂ሺ݇ሻ ൌ ଵሺ1ሻܳଵሺ݇ሻܥ ൅  ଷሺ1ሻܳଷሺ݇ሻܥ (15)
where ܳଵሺ݇ሻ ൌ ሺ1 െ ଵଶሻ௞ିଵ݌ െ ሺ1 െ ଵଶሻ௞݌ ൌ
ଵଶሺ1݌ െ ଵଶሻ௞ିଵ and ܳଷሺ݇ሻ݌ ൌ ሺ1 െ ଷସ݌ െ ଷଶሻ௞ିଵ݌ െ
ሺ1 െ ଷସ݌ െ ଷଶሻ௞݌ ൌ ሺ݌ଷସ ൅ ଷଶሻሺ1݌ െ ଷସ݌ െ  .ଷଶሻ௞ିଵ݌
As expressed by (15), ௕݂ሺ݇ሻ is the sum of two 
geometric series with respective rates 1 െ  ଵଶ and݌
1 െ ଷସ݌ െ  ଷଶ; this implies that ௕݂ሺ݇ሻ is a decreasing݌
function of ݇, i.e., bursts of greater length have lower 
probabilities than shorter ones. 

A similar procedure can be followed to obtain the 
gap length distribution ( ௚݂ሺ݇ሻ), which is: 

௚݂ሺ݇ሻ ൌ ଶሺ1ሻܳଶሺ݇ሻܥ ൅  ସሺ1ሻܳସሺ݇ሻܥ (16)
where ܥଶሺ1ሻ ൌ ሺݏଵ݌ଵଶ ൅ ଵଶ݌ଵݏଷଶሻ/ሾ݌ଷݏ ൅
ଷଶ݌ଷሺݏ ൅ ସሺ1ሻܥ ,ଷସሻሿ݌ ൌ ሺݏଷ݌ଷସሻ/ሾݏଵ݌ଵଶ ൅
ଷଶ݌ଷሺݏ ൅ ଷସሻሿ , ܳଶሺ݇ሻ݌ ൌ ሺ1 െ ଶଵ݌ െ ଶଷሻ௞ିଵ݌ െ
ሺ1 െ ଶଵ݌ െ ଶଷሻ௞݌ ൌ ሺ݌ଶଵ ൅ ଶଷሻሺ1݌ െ ଶଵ݌ െ  ଶଷሻ௞ିଵ݌
and ܳସሺ݇ሻ ൌ ሺ1 െ ସଷሻ௞ିଵ݌ െ ሺ1 െ ସଷሻ௞݌ ൌ
ସଷሺ1݌ െ ଶሺ1ሻܥ ସଷሻ௞ିଵ. Also note that݌ ൅ ସሺ1ሻܥ ൌ 1. 

S2 

 p21 p12 

1-p12 

1-p21-p23  p34 p43 

1-p43 

1-p34-p32 

S3 

S1 S4 

p23 

p32 

low losses high losses 
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Note that, although the resulting equations 
correspond to the four-state model of Fig. 2, this 
procedure shows the key for the generalized method 
for any finite-state Markov chain, which is to find 
first the cumulative density function (CDF), i.e., 
 .௚ሺ݇ሻܥ ௕ሺ݇ሻ andܥ
 
 
4 Performance Evaluation of the ࡺ-

packet FEC Technique 
ܰ-packet FEC consists of that packet ݊ ൅ 1 contains 
information about packet ݊, so that if packet ݊ is lost, 
it can be approximately reconstructed from the 
redundant information. Packet ݊ cannot be 
reconstructed if there is no redundant information, i.e. 
when packet ݊ ൅ 1 is also lost. The 1-packet FEC 
technique performance can be described as: it reduces 
the size of a burst of length ݇ to ݇ െ 1. The perceived 
PLR (ݎଵ′) is proportional to the perceived average 
burst length, which in this case decreases by 1 
(packet), then it is equal to: 

′ଵݎ ൌ
൫തܾ െ 1൯ݎ

തܾ   (17)

where തܾ, the average burst length, is തܾ ൌ
∑ ݇ ௕݂ሺ݇ሻ∞

௞ୀଵ  and ௕݂ሺ݇ሻ is the burst length 
distribution. 

If the redundancy level extends to ܰ packets, i.e. 
packet ݊ has information about ݊ ൅ 1, ݊ ൅ 2, …, 
݊ ൅ ܰ packets, the length of all bursts decreases from 
݇ to max ሺ0, ݇ െ ܰሻ packets, then the new burst 
length distribution ௕݂

′ ሺ݇ሻ is: 

௕݂
′ ሺ݇ሻ ൌ ൞ ෍ ௕݂ሺ݅ሻ

ே

௜ୀଵ

; ݇ ൌ 0

௕݂ሺ݇ ൅ ܰሻ; ݇ ൐ 0

  (18)

Note that (18) considers bursts of zero length. The 
interpretation of this is as follows: bursts do really 
occur in the network but, as they are corrected by a 
ܰ-packet FEC technique, they are diminished (when 
݇ ൐ ܰ) or eliminated (when ݇ ൑ ܰ) in the receiver. 
Then, ௕݂

′ ሺ݇ሻ is the new burst length distribution and 
its mean can be calculated as: 

തܾ ′ ൌ ෍ൣ݇ ௕݂
′ ሺ݇ሻ൧

∞

௞ୀ଴

  (19)

തܾᇱ ൌ തܾ െ ܰ ൅ ෍ሺܰ െ ݇ሻ ௕݂ሺ݇ሻ
ே

௞ୀଵ

 
(20)

Consequently, the perceived PLR is: 

ேݎ
ᇱ ൌ

ൣതܾ െ ܰ ൅ ∑ ሺܰ െ ݇ሻ ௕݂ሺ݇ሻேିଵ
௞ୀଵ ൧ݎ

തܾ   (21)

which is a generalized form of (17). 
Note that (21) expresses the perceived PLR of the 

receiver without considering other sources of losses, 

e.g., additional perceived losses occur if packets are 
delayed more than certain threshold (e.g., de-jitter 
buffer size). In this case, although the packet arrived 
to the receiver, it is dropped and consequently, lost. 
Furthermore, bit-level errors that may be present in 
received but corrupted packets are an important 
source of errors, especially for wireless 
communications. 

 
 

5 Modeling from a Loss Sequence 
Let us define the loss sequence as follows: 

௞ܻ ൌ ቄ0;
1; 

if packet ݇ is received  (22)
if packet ݇ is lost 

From the loss sequence, the probabilities of 
transitions were also estimated using the following 
algorithms: 

 
 

5.1 Two-state Parameters Estimation 
The estimations of ݌ଵଶ and ݌ଶଵ are: ݌ଵଶ ൌ  ௖՜௘/݊ଵݐ
and ݌ଶଵ ൌ  ௘՜௖ are theݐ ௖՜௘ andݐ ௘՜௖/݊଴, whereݐ
respective number of transitions from correct states to 
error states and from error states to correct states, and 
݊଴ and ݊ଵ are the respective number of received and 
lost packets. 

 
 

5.2 Four-state Parameters Estimation 
In this case the values of the sequence ௧ܻ are divided 
into regions of two types: the first with lower loss 
rate (whose first and last values are zeros) and the 
second with higher loss rate (whose first and last 
values are ones) than certain threshold, e.g. 1%. 
Then, from the first region, ݌ଵଶ and ݌ଶଵ are estimated 
the same way than in a two-state model. Similarly, 
 .ଷସ are estimated from the second region݌ ସଷ and݌
Finally, let ݐଵ௦௧՜ଶ௡ௗ be the number of transitions 
from the first region to the second; ݐଶ௡ௗ՜ଵ௦௧, the 
number of transitions from the second to the first; 
݊ଵ௦௧, the number of received packets in the first 
region (zeros) and ݊ଶ௡ௗ, the number of lost packets in 
the second region (ones), then ݌ଶଷ ൌ  ଵ௦௧՜ଶ௡ௗ/݊ଵ௦௧ݐ
and ݌ଷଶ ൌ  .ଶ௡ௗ՜ଵ௦௧/݊ଶ௡ௗݐ

 
 

6 Characterization of Measured Data 
Traces 

The measurements studied in this work are those 
corresponding to Sets 3 and 4, described in [8]. There 
are 48 data traces. Each one of these represents a 1-
hour VoIP call. As each one of these calls was 
monitored at one endpoint, its respective series of 
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sequence numbers (of received packets) was captured 
and, from this, the loss sequence ( ௞ܻ) was obtained. 
Also the respective PLR and respective gap and burst 
length distributions ( ௚݂ሺ݇ሻ and ௕݂ሺ݇ሻ) were 
estimated. 

From the estimated probabilities of transitions, the 
gap and burst length distributions of both two-state 
and four-state models, defined by (6) and (7) for two-
state model and (15) and (16) for the four-state model 
are obtained. The square root of the mean squared 
error between the respective distributions obtained 
from measured and theoretical models is also 
calculated. 

 
 

6.1 Results 
The burst and gap length distributions for one of the 
captured traces, obtained from a VoIP call with codec 
G.711 and packet inter-departure time of 20݉ݏ, are 
shown respectively in Fig. 3 and Fig. 4. 

In Fig. 3 it is shown that the burst length decays 
rapidly, e.g., to zero probability for burst of length 
lower than 5 packets. It is also observed that both 
two-state and four-state models can characterize this 
decay. 

 

0.00
0.20
0.40
0.60
0.80
1.00

1 2 3 4 5

f b
(k

)

k
reference two-state four-state  

Fig. 3: Burst length distribution of one of the loss 
sequences. 

 
The gap length distribution decays slower than the 

burst length distribution. There exist gaps of tens and 
hundreds of packets with non-negligible probability 
and, in this case, the less flexible one-parameter 
formula of the two-state model cannot fit the 
measured distribution, in contrast with the four-state 
model, which fits it adequately. 

The SMSE for burst length distribution of both 
two-state and four-state model is quite similar (less 
than 0.01) for most traces, as seen in Fig. 5. But there 
is a remarkable difference between both models in 
the gap distribution. In Fig. 6 it can be observed that 
the SMSE four-state model fits remarkably better the 
gap distribution for most traces (its maximum SMSE 
is 0.002). 
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Fig. 4: Gap length distribution of one of the loss 
sequences. 
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 Fig. 5: SMSE of two-state and four-state burst length 
distribution. 
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Fig. 6: SMSE of two-state and four-state gap length 
distribution. 

 
Fig. 7 shows the PLR of the 48 studied data 

traces, which is calculated as the quotient of the 
number of lost packets and the number of sent 
packets. Also, by applying (21), the perceived PLR 
after a ܰ-packet FEC is estimated for ܰ ൌ 1, 2 and 3. 
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Fig. 7: Perceived PLR for redundancy of ܰ ൌ 0,1,2,3 
packets. 
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To determine how the performance is improved 
when increasing the level of redundancy (ܰ), the 
relative gain is calculated, which defined as: 

∆௥ᇲሺܰሻ ൌ
െሺݎே

ᇱ െ ேିଵݎ
ᇱ ሻ

ݎ
; ܰ ൐ 0  (23)

Fig. 8 shows the relative gain for the studied traces 
for the redundancy levels ܰ ൌ 1, 2 and 3. The major 
relative gain (approximately 80%ሻ is obtained by 
adding redundancy of one packet, i.e., for ܰ ൌ 1. In 
this case the perceived PLR decreases below 0.55% 
for all studied traces, which is acceptable for VoIP 
calls. Although PLR constraints can be lower than 
0.1% for Internet backbone routers or public 
telephony systems, a less strict limitation applies for 
VoIP providers and user local’s ISP networks, where 
losses up to 1% are considered undetectable [9]. 
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Fig. 8: Relative gain of the perceived PLR. 
 
 
7 Conclusions 
In this work, modeling and characterization of packet 
loss for a VoIP communication is presented. 
Formulae for theoretical gap and burst length 
distributions, as a function of the probabilities of 
transitions for both models, are given. 

The strategy used to obtain the gap and burst 
length distributions of four-state model presented in 
Section 3.1.2 exemplifies the generalized 
methodology for a ݉-state Markov chain model, 
which consists of finding first their respective CDF, 
i.e., ܥ௕ሺ݇ሻ and ܥ௚ሺ݇ሻ. 

Algorithms for reconstructions, i.e., estimation of 
the probabilities of transitions between states for two-
state and four-state models, are also described. 

It is shown through an evaluation based on SMSE 
that both two-state (at least for most cases) and four-
state models can capture the geometric-type decay of 
the distribution of the burst length, but the two-state 
model fails when modeling the gap length 
distribution when non-homogeneous losses are 
present. I.e., the gap length distribution is the sum of 
two geometrical series, as defined by (16), not only 
one, as defined by (7). 

 

An analysis of the ܰ-packet FEC scheme is also 
presented. The expected perceived PLR obtained with 
this correction scheme is quantified, as expresses 
(21). This resulting general formula applies for the ܰ- 
packet FEC scheme, regardless of the shape of the 
burst length distribution. 

Through the study of the measurements and the 
computation of the perceived PLR and relative gain, 
it is shown that 1-packet FEC is generally sufficient 
to improve the quality of the communication to an 
acceptable level, e.g., where the PLR is lower than 
1%. 
 
 
References: 
[1] H. Schulzrinne, J. F. Kurose, D. F. Towsley. Loss 

Correlation for Queues with Bursty Input 
Streams, Proc. IEEE ICC ’92, Chicago II, 1992, 
pp.219-224. 

[2] J. R. Yee, E. J. Weldon, Evaluation of the 
Performance of Error Correcting Codes on a 
Gilbert Channel, IEEE transactions on 
Communications, Vol. 43 No. 8, 1995. 

[3] J. Bolot, S. Fosse-Parisis, D. Towsley. Adaptive 
FEC-based Error Control for Interactive Audio in 
the Internet, Proceedings of IEEE INFOCOM, 
1998, pp. 1453-1460. 

[4] H. Lee, H. Lee. A Packet Loss Recovery Scheme 
Based on the Gap Statistics, C. Kim (Ed.): ICOIN 
2005, LNCS 3391, Springer-Verlag Berlin 
Heidelberg, 2005, pp. 627-634. 

[5] N. Erdöl, C. Castellucia, Ali Zilouchian. 
Recovery of Missing Speech Packets Using the 
Short-time Energy and Zero-crossing 
Measurement, IEEE Transactions on Speech and 
Audio Processing, Vol. 1 No. 3, July 1993. 

[6] W. Ching, M. K. Ng., Markov Chains: Models, 
Algorithms and Applications, Springer, 2006. 

[7] G. G. Yin, Q. Zhang, Discrete-Time Markov 
Models, Two-Time-Scale Methods and 
Applications, Springer, 2005. 

[8] H. Toral, D. Torres, C. Hernandez, L. Estrada. 
Self-similarity, Packet Loss, Jitter, and Packet 
Size: Empirical Relationships for VoIP, 18th 
International Conference on Electronics, 
Communications and Computers, 
CONIELECOMP, March 2008. 

[9] K. Maheswari, M. Punithavalli, A Survey of 
Packet Loss in VoIP, International Journal of 
Computational Intelligence Research, Vol. 5, No. 
1, 2009, pp. 57–66. 

Recent Advances in Signals and Systems

ISSN: 1790-5109 197 ISBN: 978-960-474-114-4




