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Abstract: Identifying the vigilance states of the mammalian is an important research topic to bioscience in 
recently years, which the vigilance states is usually categorized as slow wave sleep, rapid eye movement sleep, 
and awake, etc. To discriminate difference vigilance states, a well-trained expert needs spend a long time to 
analyze a mass of physiological record data. In this paper, we proposed an automatic sleep stages classification 
system by analyzing rat’s EEG signal. The rat’s EEG signal is transferred by FFT and then extracted features. 
These extracted features are used as training patterns to further construct the proposed classification system. 
The proposed classification system contains two components, the principle component analysis (PCA) as the 
first component is used to projects the high dimensional features into lower dimensional subspace, and the 
k-nearest neighbor (k-NN) method as the second component is applied to identify the physiological state for a 
period of EEG signal. By experimenting on 810 periods of EEG signal, the proposed classification system 
achieves satisfactory classification accuracy of sleep stages. 
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1 Introduction 
Sleep is circadian activities composed with repeated 
cycles of slow wave sleep (SWS) and rapid eye 
movement sleep (REM). For the research fields 
related to sleep studies (e.g. sleep depriving, the 
effect of drugs, circadian clock, etc.), identifying the 
sleep stages with precision and effectiveness is an 
important research topic . Scoring vigilance in sleep 
studies is a time-consuming work to a 
well-experienced expert. Consequently, how to 
reduce the human intervention is an signif icant topic 
in this research field. A variety of automated sleep 
staging systems via different analyses have been 
developed over the past decades [1, 10-17]. Some of 
proposed methods still required human intervention 
[1, 17]. For example, the user has to decide the 
appropriate parameters (thresholds) or participate in  
the entire classification procedure. However, to 
select appropriate parameters to different conditions  
is a very subjective task to each researcher. To solve 
the problem of selecting parameters, we apply 
machine learning techniques to develop an automatic 
sleep stages classification system of rats. By 
collecting the labeled EEG data in advance, a 
machine-learning-based classification system is 
constructed to recognize the testing patterns of 
different vigilance states with one channel of EEG 
signal. Through the proposed method, three types of 
vigilance state could be categorized automatically to 
save the time of human intervention. In this paper, 

we roughly category sleep stages into the following 
three states: 
1. Awake (AW) 
2. Slow wave sleep (SWS) 
3. Rapid eye movement sleep (REM) 

During the awake stage, the animal represents a 
low amplitude and high frequency EEG. Some 
investigators distinguished active awake from quite 
awake by high EMG activity. The spectrum of EEG 
in this stage is with high theta and gamma power 
density. Slow wave sleep which is defined by high 
amplitude and low frequency EEG begins with sleep 
spindle and is dominant with delta waves. In REM, 
the animal showed the low amplitude and high 
frequency EEG which is similar to the awake stage 
and atonic with flat EMG activity. High activities of  
theta and gamma band were the characteristics of this 
stage [2-9]. The EEG and EMG signals of three 
states are as shown in Fig 1.  

 

 
Fig 1. The EEG and EMG signals of three vigilance 
states. 
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Fig 2. The architecture of proposed classification system. 

 
Table. 1. The frequency range of five frequency bands. 

Band Delta Theta Alpha Beta Gamma 
Frequency Range 0~4 Hz 4~8 Hz 8~13 Hz 13~20 Hz 20~50 Hz 

 
In this paper, we develop a 

machine-learning-based sleep classification system 
to classify three mentioned sleep stages. There are 
two advantages of the proposed system. First, 
without setting any parameters or thresholds by a 
user, the classification system is constructed under 
the discriminative function which is optimized by 
some criteria, such as high precision rate or 
minimum false detection rate. Besides, without 
applying the EMG signal, we only analyze EEG 
signal to recognize the vigilance state of a rat. The 
organization of the paper is as follows. In Section 2, 
we describe system architecture and the proposed 
techniques. Experimental results of the proposed 
method are given in Section 3. Finally, Section 4 
concludes the paper. 

 
 

2 The Proposed Classification System 
The classification system is composed of two key 
units: feature extraction unit and pattern 
classification unit as shown in Fig. 2. Before we 
introduce the details of two units, we first describe 
the recording procedure of EEG and EMG signals of 
a rat. 
 
2.1 The recording of EEG and EMG Signals 
For the implantation of recording electrode, the rats 
were initially anesthetized with sodium pentobarbital 
(50mg/kg). Ketamine hydrochloride was 
administrated as necessary to maintain the depth of 
anesthesia so the animals did not represent the flexor 
reflex during the surgery. Rats were mounted on the 
stereotaxic apparatus. For the EEG recording, a 
parietal electrode was implanted on the same level of 
bregma and 4mm lateral to the midline. The signal 

was referenced to a ground electrode implanted over 
the cerebellum. Two 3-strained stainless steel wires 
(A-M systems; #793400) isolated with Teflon were 
embedded in the neck muscle for EMG recording. 
Those signals were connected to a connector. All of 
those instruments were sealed and secured with 
dental cement on the skull and the skin was sutured 
with wound clips. The rats were usually recovery 
after one week. 

Before the beginning of recording, rats were 
placed in a test chamber for 4 hours per day to 
habituate the recording environment. On the 
recording day, the rats were temporarily anesthetized 
with halothane (4% in pure oxygen) for connecting 
the cable and headstage to the connector on the rat 
skull. After thirty minutes, the EEG and EMG signals 
started to be recorded when the rats revived from 
anesthesia and accommodated the recording 
chamber. 
 The signals were recorded with a Multi-channel 
Neuronal Acquisition Processor system (MNAP, 
Plexon, Dallas, TX) and passed from the headstage 
to an amplifier and band-passed-filtered (EMG filter: 
0.5 ~ 8.8 KHz, gain: 1000-5000; EEG filter: 0.7 ~ 
170 Hz, gain: 1000-5000). Each rat was recorded for 
2 to 6  hours and the sampling rate is 1K Hz. The 
recorded files were dealt offline with Neuroexplorer 
(Nex technology). EEG signal was then transformed 
with Fast Fourier Transform (FFT). The power 
spectrum of EEG was calculated for 4 seconds 
window and the window was shifted 1 second each 
time. 

For most rule-based classification methods of 
sleep stages, the EEG spectrum is usually divided 
into five frequency bands [1] as given in Table. 1. 
This makes researchers effectively to analyze EEG  
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Fig. 3. The activities of delta band (green line), gamma band (blue line) and alpha band (red line) of three sleep 
stages. 

 
Fig. 4. The EEG spectrum obtained by applying FFT. 

 
signal and reduce the complexity for designing the 
classification rules. Delta band and gamma band 
denote the low and high frequency signal, and they 
are the key bands for classifying sleep stages. In Fig. 
3, we measure the power of delta band as delta 
activity (green line) and the power of gamma band as 
gamma activity (blue line), respectively. One may 
find that delta activity is observed more predominant 
than other frequency bands in SWS state, and gamma 
activity is more predominant in REM and awake 
states. To further distinguish REM and awake, most 
classification methods measure EMG amplitude as 
key information, because the muscle intensity is 
lower or not observed in REM stage. One thing 
should be noticed here; unlike REM stage, we 
observe that the power strength of gamma band in 

awake state is close to the power strength of delta 
and alpha band. This motivates us to classify sleep 
stages with EEG signal only. 
 
2.2 Feature Extraction 

For any machine learning technique, the first 
work in training procedure is extracting meaningful 
features from original data. Fast Fourier Transform 
(FFT) is performed on each period of 4 seconds EEG 
signal to generate EEG spectrum, as shown in Fig. 4. 
For example, the EEG spectrum of the sixth second 
is derived from the EEG signal consisting of the 
signal between the third second to the sixth second. 
Different to above rule -based classification methods , 
the EEG spectrum is separated into 32 uniform 
frequency bands. We then calculate the relative ratio 
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Fig. 5. (a) Percentage of variance explained by the 32 components. (b) Training patterns are projected into 
3-dimensional subspace by PCA. (c) Test patterns are projected into 3-dimensional subspace by PCA. 
 
of each band’s power to all frequency bands’ total 
power. Finally, the EEG signal in each time point can 
be extracted 32 relative ratios as features to a training 
pattern for the following training procedure. 

Before constructing the classification system, 
we need a well-experienced expert decide the label 
of each data pattern. By examining the activities of 
gamma and delta band of EEG, the activity of EMG 
and the captured video, the expert categories each 
data pattern as one of three sleep stages. Finally, the  
EEG signals of 108 and 810 seconds are labeled as 
training and test data patterns, respectively. The time 
duration of each state is listed in Table 2. 

 
Table. 2. Time durations of each state. 

Time Duration 
State 

Training Data Patterns Test Data Patterns 

REM 36 Sec. 97 Sec. 
SWS 36 Sec. 403 Sec. 

Awake 36 Sec. 310 Sec. 

Total 108 Sec. 810 Sec. 
 

 
2.3 Pattern Classification Methods  
The pattern classification unit can be implemented 
by any algorithm based on linear discriminant 
function, neural networks, or support vector 
machines. In this paper, the pattern classification unit 
contains two components that are principal 
component analysis (PCA) and k-nearest neighbor 
(k-NN). PCA is a widely used statistical technique 
for unsupervised dimension reduction. We apply it as 
preprocessing to project the extracted 
high-dimensional features into lower dimensional 
subspace in a way of maximizing the sum-of-square 
error. In our dataset, the first 3 components contains 
about 50% of the variance (Fig. 5(a)). The 
projections of the three main components into a 3D 
space are given in Fig. 5(b) and 5(c). The data 

patterns of SWS, AW and REM state are drawn as 
yellow, red and blue points, respectively. We observe 
that data patterns are roughly separated into three 
elliptical clusters and the data patterns in REM and 
AW cluster are slight overlap (see Fig. 5(c)). Two 
benefits of applying PCA are concluded as following. 
First, PCA could help us to denote which bands 
might contain important information for 
classification. Second, projecting the 
high-dimensional features into lower-dimensional 
subspace can help user to visualize these data 
patterns.  

After projecting by PCA, each data pattern is 
then classified by the k-NN method (Dasarathy [19], 
Levine et al. [20], O’Callaghan [21]), which matches 
each test pattern with all possible training patterns 
and considers k-nearest samples, 1≥k , in its 
classification decision. It has been shown that the 
asymptotic error rate of k-NN is less than twice the 
Bayes rate (Cover and Hart [22]). In many 
applications, k-NN does indeed achieve good 
accuracy rates and it is also easily to be 
implemented. . 

 
 
3. Experimental Results 
As shown in Table 2, there are 108 samples for 
constructing the classification system and 810 
samples for testing the performance. Training 
samples and test samples are collected independently 
from the same adult rat in different days. This means 
that the duration of collecting training and test data 
are occurred at several time points. The training 
samples are first projected by PCA and then used to 
construct the k-NN classifier. The proposed 
classification system spends less than 1 second to 
category 810 test samples and achieves 95.43% 
accuracy rate. More details of classification results 
are given in Table 3. Here we summarize some 
observations. First, all precision rates are over 90%, 
especially for SWS state (99.75%). Contrast with 
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SWS state denoted as the yellow cluster in Fig. 5(c), 
the higher precision rate of SWS state is expectable. 
Second, most misclassified errors are occurred in 
REM and AW states, such situation can be contrast 
with Fig. 5(c). Third, although most studies in sleep 
field emphasize that the EMG signal is key factor to 
discriminate between REM and AW. However, the 
proposed classification system with EEG signal only 
provides good performance.   
 
Table. 3. The classification results of proposed 
method. 

 Prediction 

  REM SWS AW Precision

REM 88 0 9 90.70% 

SWS 0 402 1 99.75% 

AW 17 10 283 91.29% 

Ground 
Truth 

Recall 84.80% 97.60% 96.60%  

 
 
4 Conclusion 
In this paper, an automatic sleep stage classification 
system is developed based on machine learning 
technique. By simply analyzing EEG signal, the 
feature extraction of the proposed system is achieved 
by FFT and classification is performed by PCA and 
k-NN. The proposed system can obtain a prediction 
of current sleep state for each second and achieve 
95.43% accuracy rate with a short period of 
computational time. The satisfactory performance 
makes it highly suitable for a real-time application in 
the future.  
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