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Abstract: - The aim of the present paper is that of developing a computational technique of the Campbell diagram of 
rotors. This paper deals with bending in the field of mono-rotors, such as in compressors and turbines. This 
presentation concerns the use of the Campbell diagram and highlights some specific cases of its use. 
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1   Introduction 
The Campbell diagram is one of the most important tools 
for understanding the dynamic behaviour of the rotating 
machines. It basically consists of a plot of the natural 
frequencies of the system as functions of the spin speed. 
Although being based on complete linearity, the 
Campbell diagram of the linearized model can yield 
many important information concerning a nonlinear 
rotating system. A critical speed of order k of a single – 
shaft rotor system is defined [2] as spin speed for which 
a multiple of that speed coincides with one of the 
system’s natural frequencies of precession.  The paper 
deals with bending only and consists of two main parts. 
The first part is a brief presentation of rotor equations 
and the second part gives models and examples. 
 
 
2   Rotor Equations 
The equations of motions of anisotropic rotor-bearing 
systems which consist of a flexible nonuniform 
axisymmetric shaft, rigid disk and anisotropic bearings 
are obtained, in second order form, by the finite element 
method. The model consists of a rotor treated as a 
continuous elastic shaft with several rigid disks, 
supported on an anisotropic elastic bearings. Consider 
that the dynamic equilibrium configuration of the rotor-
bearing system the undeformed shaft is along the x- 
direction of an inertial x, y, z coordinate system. In the 
study of the lateral motion of the rotor, the displacement 
of any point is defined by two translations ( wv ,  two 
rotations 

) and 
( )zy ϕϕ ,  [2].   [3],

The model could use one of the following three beam 
finite element types:  
beam C1 finite element type based on Euler-Bernoulli 
beam model;  
beam C1 finite element type based on Timoshenko   
beam model;  

beam C0 isoperimetric finite element type based on 
Timoshenko beam model.  
The beam finite element has two nodes. For the static 
analysis, a 2D problem, there are two degrees of freedom 
(DOF) per node, one displacement perpendicularly on 
the beam axis and the slope of the deformed beam. In the 
case of the dynamic analysis four degrees of freedom 
(DOF) per node are considered: two displacements and 
two slopes measured in two perpendicular planes 
containing the beam. The equations may be written as 
[1], [2], [3] 
               ( ) FqKqGΩCqM =+++ &&&                          (1) 
where q is the global displacement vector, whose upper 
half contains the nodal displacements in the y-x plane, 
while the lower half contains those in z-y plane, and 
where the positive definite matrix M is mass (inertia) 
matrix, the skew symmetric matrix G is gyroscopic 
matrix, and the nonsymmetric matrices C and K are 
called the damping and the stiffness matrices, 
respectively.  
The matrices of M, C, G, K, q, and F consist of element 
matrices given as  
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where n4N = , n is the number of nodes. 
ritten in state 

                                   (5) 

                          (6) 

The equation of motion (1) can be rew
space form as: 
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A and B are real but in 
metric. The re
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The  matrices general 
indefinite, nonsym sulting system of 

NN 22 ×

equation (5) gives nonself-adjoint eigenvalue problem. 
The eigenvalue problem associated with Eq. (5) and its 
adjoint are given by  
                          iii uB=uAλ                                   (8)    

                         TT
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 are right
quations (8), (9) as 2N eigensolutions, 

 is er

    

kk vBv =  ( N2,..,2,1k,i =

where iu  and  and left eigenvectors, iv
respectively. E  h
where N  the ord  of the system global matrices. They 
are purely real for over damped modes and appear in 
complex conjugate pairs for under damped or undamped 
modes of precession. In general, the eigenvalues are a 
function of the rotating assembly spin speed Ω and are of 
the form 
                      ( )Nij iii ,..,,, 21=±= ωαλ               (10) 
The real part iα of the eigenvalue is the damping 

imaginary part constant, and the iω  is 
 o

the damped 
natural frequency f whirl speed or precession speed.  
It is well known that most vibrations in rotating 
machinery are induced by rotational-related source. For 
example, rotating unbalance is the major source of 
vibration synchronous to the rotational speed Ω; 
misalignment and cracks in shafts cause the vibration iΩ 
(i is a integer); ball bearing defects cause the vibration 
nΩ (n is a real number). A critical speed of order s of a 
single shaft rotor is defined as spin speed for which a 
multiple of that speed coincides with one of the systems 
natural frequencies of precession. The intersection of 
excitation frequencies line Ω= sω  with the natural 

frequency curve iω  defines the critical speed cr
in . Thus, 

when cr
in=Ω , the excitation frequency cr

iin creates a 
resonance condition [1], [2].   
Howev  a definition regarding the c cal speed 
of rotor bearing systems, in particular, with rotational 
speed dependent parameters, 

er, such riti

is conceptually incorrect 
since the damped natural frequencies change with the 
rotational speed.  
One approach for determining critical speeds is to 
generate the whirl speed map, include all excitation 
frequency lines of interest, and graphically note the 
intersections to obtain the critical speeds associated with 
each excitation.   It is common practice to plots both 
whirl speed maps, i.e., the whirl frequencies and 
damping ratio iς  (or in terms of the logarithmic 
decrement iδ ) versus the rotor spin speed Ω. In order to 

case these diagrams are drown for a finite number of 
rotations, we should achieve a correspondence between 
the modal forms and the eigenvalues. 
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This is necessary to establish following the crossing of 
ves of the Campbell diagram, to w

xamples, for two rotor-bearings systems. The Campbell 
ent obtained by the 

m table 1. In Fig. 2 and Fig. 2 the Campbell 
ia ecrement are given.  

 
 

Fig.1 Rotor configuration 
 

two cur hich modal 
form belongs the point. The ordering of the eigenvalues 
can be done using the orthogonality relations between 
the modal vectors [2].  
In the present paper the authors have put in order the 
eigenvalues according to the fact that when changing the 
order of the eigenfrequencies the logarithmic decrement 
has a jump, Fig. 2.  
In this paper, in order to obtain the critical speed and to 
plotting of the Campbell diagrams, the authors have used 
the computer program DIROPTIM [3].  
The solution of the generalized eigenvalues problem has 
been found using the generalized canonical Hessenberg 
and Schur matriceal forms, FSRG [3]. 
 
 
3 Illustrative Examples 

 this section we shall consider two numerical In
e
diagrams and logarithmic decrem
computer code written by the authors is further 
presented.   
 
 Example 1 
In this example we consider the system from Fig. 1 with 
otor data fror

d gram and logarithmic d
 

obtain a correct plotting of the Campbell diagrams, in 
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Fig.2 Logarithmic decrement 

 
Shaft Disk Bearings               

l1 = 0.2 m, 
l2 = 0.3 m  m3 = 45.94 Kg, 

 m4 = 55.13 Kg 

 m2 = 14.58 Kg,    

l3 = 0.5 m,   

 
l4 = 0.3 m 

JT2 = 0.064 Kg m2  
JT3 = 0.498 Kg m2   

2JT4 = 0.602 Kg m
d = 0.1 m  
ρ=7800 Kg/m
E=2e11 N/m

3 
2 

 1 
kyy = 7e7   N/m   

JP2 = 0.123 Kg m2   
JP3 = 0.976 Kg m2   
JP4 = 1.171 Kg m2 

Station

kzz = 5e7   N/m 
0 Ns/m  cyy = 700

czz = 4000 Ns/m 
Station 5 
kyy = 6e7   N/m   
kzz = 4e7   N/m 

 Ns/m  cyy = 6000
czz = 5000  Ns/m

Table 1 Rotor data 
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Example 2 
We conside the simple rotor supported by ball rearings 
(s=0.3 m, a=0.4 m), Fig. 5 and rotor data given by    
Table 2.  

Fig.5 Rotor configuration 
 

Shaft Disk Bearings 

garithmic decrement 
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E = 2e15  N/m2 
ρ = 1000  
Kg/m3 
d = 10 m

m = 30  Kg 
JT = 1.2 Kg m2 
J = 1.8  Kg m2 

Bearing (1) 
kyy = 0.50e7 N/m  
k = 0.70e7 N/m 

m 
L = s+a = 
(0.3+0.4) m 

 

P 

 

zz 
Bearing (2) 
kyy = 0.50e7 N/m 
kzz = 0.70e7 N/m 

 

Fig.3 Campbell diagram Table 2 Rotor data 
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Fig.7 Logarithmic decrement 
 

 
 
 

 
 
 
 
 
 

4   Conclusion 
When the Campbell diagram and the mass unbalance 
responses are concerned, it should be pointed out that: - 
If the rotors are symmetric with low damping, mostly 
rotors supported by roller bearings, the interpretation 
concerning the intersection points is not straightforward. 
- If the rotor is not symmetric, as with many rotors 
because of fluid film bearings, and highly damped 0 < Q 
< 2.5, the intersection points do not give any forbidden 
speed range. - If the rotor is not symmetric with 2.5 < Q, 
the intersection points give forbidden ranges and it is 
then necessary to determine the mass unbalance 
responses and check the amplitudes. 
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