

Software Testing: Perception on Exploration and Ad-libbing

SANJEEV DHAWAN*, KULVINDER S. HANDA*, RAKESH KUMAR**

*Faculty of Computer Engineering, University Institute of Engineering & Technology

 (U.I.E.T), Kurukshetra University, Kurukshetra (K.U.K)- 136 119, Haryana, INDIA.

**Faculty of Computer Science, Department of Computer Science and Applications

(D.C.S.A), Kurukshetra University, Kurukshetra (K.U.K)- 136 119, Haryana, INDIA.

E-mail: rsdhawan@rediffmail.com

Abstract: - Developing software, which is free from faults, remains one of the most challenging and

fundamental problems in software engineering. To realizing the precise need of software architectures,

researchers have pursued formal methods, mathematically based notations, techniques, and tools for

correctly documenting the software. Despite the availability and potential benefits of formal methods, the
use of such methods is still far from the routine practices. There are numerous reasons, involving issues such

as the complexity of the languages and tools, lack of expertise, and the existing software development

culture. Perhaps most importantly, the use of formal methods is widely considered to be expensive, which

prohibits their use for most of the critical systems. As a result of these cost issues, practicing software

engineers have largely avoided formal methods, instead relying on testing. Despite the costs associated with

identifying good candidate test cases, running the tests, and validating the results, developers rely upon

testing as their primary method of ensuring software dependability.

Key-Words: - Software architecture, software testing, test generation, test distribution, test analysis, test

reduction

1 Introduction
Testing is a crucial part of the software life cycle,

and recent trends evidence the importance of this

activity along the whole development process.

The testing activities have to start at the

requirement specification level and have to be

propagated down to the code-level, all along the

various subsequent refinement steps. Testing

involves several demanding tasks: the ability to

launch the selected tests (in a controlled host

environment, or worse in the tight target
environment of an embedded system); deciding

whether the test outcome is acceptable or not

(which is referred to as the test oracle problem).

Therefore, the impacts of failure cost in direct

cause (the fault), and the indirect one (root cause

analysis). However, the problem that has received

the highest attention in the literature is to select an

appropriate test case. In brief, how to identify a

suite of test cases that is effective in

demonstrating that the software behaves as

intended, or, otherwise, in evidencing the existing

malfunctions. Clearly, a good test suite is in fact

the crucial starting point to a successful testing

session. In contrast with the conventional practice

of handcrafted ad-hoc test cases, or of random

input generation, many methods for systematic

test selection have been proposed in the past

decades. No method is superior to the others, thus

several methods should be used in combination

throughout the lifecycle, with focus shifting, as

development proceeds, on differing aspects of

software behavior, and also on differing

projections of the system. The term model-based

testing refers to test case derivation from a model

representing the software behavior. Indeed,

testing is always against an expected behavior: the
difference being essentially whether such a model

is explicit (which is clearly better), or implicit,

i.e., in the mind of the testers. In particular, when

there exists a specification of the system to be

tested in some formal language, this can be used

as the reference model both for test-case selection

and as a test oracle. This allows for rigorous
mathematical analysis, and automated processing.

Testing an implementation against its formal

specifications is also known as conformance

testing, which, looking at the big picture of test

strategies belongs to the black box class, because

we do not consider the internals of a system, but

only its input/output behavior.

After the test cases are derived from the

specifications, two major problems remain to be

solved: traceability and test execution.

Traceability concerns “relating the abstract values

of the specification to the concrete values of the

implementation”. To be able to execute these tests

MATHEMATICAL and COMPUTATIONAL METHODS

ISSN: 1790-2769 113 ISBN: 978-960-474-133-5

 on the code, we need to refine the test cases into

more concrete sequences that have a meaningful

interpretation in terms of the actual system I/O

interface. Test execution entails forcing the

Implementation Under Test (IUT) to execute the
specific sequence of events that has been selected.

A problem rises with concurrent programs

which, starting from the same input, may exercise

different sequences of interactions (among several

concurrent processes) and produce different

results. This problem has already been analyzed

in the literature, and deterministic- and non-

deterministic-testing approaches have been

proposed. In non-deterministic testing [1], the

approach is to repeat the launching of a program

run under some specified input conditions several

times until the desired test sequence is observed

(or a maximum number of iterations are reached).

In contrast, the deterministic testing approach

forces a program to execute a specified test

sequence by instrumenting it with synchronization

constructs that deterministically reproduce the

desired sequence.

2 Software Architecture and Testing
Software architecture (SA) represents the most

promising approach to tackle the problem of

scaling up in software engineering, because,

through suitable abstractions, it provides the way

to make large applications manageable.

Nowadays, SA descriptions are commonly

integrated into the software development process;

SA production and management are, in general,

quite expensive tasks. Therefore the effort is

worthwhile if the SA artifacts are extensively

used for multiple purposes. Typical use of SA is

as a high-level design blueprint of the system to

be used during system development and later on

for maintenance and reuse. In particular, the

importance of the role of SA in testing and

analysis is evident. SA formal dynamic
descriptions are used for many different kinds of

analysis. We are here interested in SA primarily

as a means for driving the testing of large,

complex systems. Our concern is on exploiting

the information described at the SA level to drive

the testing of the implementation. How formal SA

descriptions (and the obtained models) can be
used for testing purposes [2]. In other words, we

assume the SA description is correct and we are

investigating approaches to specification-based

integration and system testing [3], whereby the

reference model used to generate the test cases is

the SA description [4][2]. Figure shown below

provides a useful hierarchical decomposition of

different testing techniques and their relationship

to different classes of test adequacy criteria.

 Software Testing

 Execution-based Testing Non-Executing-based Testing

 Program Combined Specification

 Testing Testing Testing Inspection

 Structurally Fault Error-based Ad-hoc Checklist Scenario

 based based Criterion based based based

 Criterion Criterion

Fig. 1. Shows the hierarchical decomposition of

different testing techniques

2.1 Fault Detection
This is something that is quite beyond most

current testing methods. The claim “the

system/component is fault-free” is quite beyond

current testing methods. In practice all we can

usually say is that we have uncovered a number of

faults over a period of testing effort and the graph

of the number of faults against the period or

amount of testing, measured suitably, indicates

that the growth rate is reducing. Figure 2 shows

the relationship between fault detection and test

time. The trouble is we do not know that no

further faults are in the system at any particular

time. Also, in general we cannot assert that the

only faults remaining are located in a specific

module or component. A general formula for this

curve is not known, if one existed it would

probably depend on the type of system, on the

type of test methods and perhaps on the people

doing and managing the testing as well as wider
issues relating to the management of the design

project, the attitudes of the clients, the

implementation vehicle, the design methods and

so on.

Fig. 2. Shows the relationship between fault

detection and test time

MATHEMATICAL and COMPUTATIONAL METHODS

ISSN: 1790-2769 114 ISBN: 978-960-474-133-5

High quality empirical results obtained over a

very long period would be needed to make proper

use of this approach even then it is less than ideal.

2.2 Effectiveness of Test
The problem of measuring the effectiveness of an

individual testing project usually depends on

estimating the coverage of the tests [5]. For

example, if the tests are structurally based, using

program charts, say, then popular methods

include establishing that every path has been

exercised or every decision node has been visited.

This does not tell us anything about fault

detection; it merely measures effort rather than

reward! The current accepted definition of fault

coverage is misleading since it is not the case that

a precise measure can be placed on the number of

faults that remain after the test process has been

applied. In most cases the definition of fault

coverage is based on assumptions of the type

described above, that we are questioning. In much

of the literature the estimates of the fault coverage

are obtained by running experiments with simple

examples involving implementations that have

faults seeded in them and counting the numbers of

known faults detected by the methods. These

empirical results are of curiosity value only.

Miller & Paul provide a theoretical method for
establishing fault coverage of a test strategy;

however, they assume that the implementation

machine has the same number of states as the

specification machine. Before we look, briefly, at

what progress there has been in addressing some

of the theoretical issues of testing we will

consider a popular method for the analysis and

comparison of the effectiveness of different

testing methods.

2.3 Test Method Effectiveness
A number of authors have sought to compare the

effectiveness of, for example, random testing

methods with formally based functional testing

[1]. Here the method was to take a small system

and to insert known faults into it, then to apply

the two techniques to establish which was most

successful at detecting these faults. Further

analysis could be done on the type of faults each

method was good or poor at detecting. Faults

were classified for this purpose in a number of

categories. Results from this type of survey can be

useful in establishing the relative strengths and
weakness of different, specific methods of test set

generation. However, the situation is essentially

artificial and it is not clear what can be said in

general. The method is unable to prove, for

example, that either approach is better at detecting

naturally occurring or unseeded faults (the seeded

ones may not be typical of real faults), or to

identify conditions under which a method detects

all faults. A number of attempts at developing a

theory of testing or to analyze the testing situation

have been made. We will briefly consider few of
them as follows:

2.3.1 An Algebraic Approach to

Computational Modeling

The process of software design, including within

that activity all phases of requirements capture,

specification, design, prototyping, analysis,

implementation, validation, verification and

maintenance is one that is oriented, or should be,

around the construction of computational

solutions to specific problems. When we are

constructing a software system (this also applies

to hardware) we are attempting to construct

something that will, when operating, carry out

some computable function. Consequently it is

worth considering what this means. Essentially,

computable functions have been identified as the

functions computed by Turing machines. The

method will not be applicable to implementations

that behave like a Turing machine that does not
halt. In other words we will not try to deal with

those systems that regress into an infinite loop

from which no output emanates, for our purposes

these systems will be deemed to be unacceptable

anyway. A way to establish that a system is not of

this form is to identify a period of time, which is

the maximum that the system can run for without
producing any detectable output. We will also

assume that the specification of the system is also

of this form, namely a Turing machine that halts

under its intended operating conditions. Real-time

systems are covered by this definition since we

require that the specified system does have

detectable behavior under all conditions. This is a

kind of design for test condition that we will see

more of later. We then have two algebraic objects,

the Turing machine representing the specification

of the desired system and the Turing machine

representing the complete implementation. A

testing method would then try to ascertain if these

two machines computed the same function.

This is a basic strategy that we will develop,

however, not in the context of a Turing machine,

which is too low level and unwieldy, but in the

context of a more useful, elegant and equivalent

model. In so doing we will quote some important

theoretical results that justify what we are doing.
It is important to stress that the method of finite

state machine testing proposed by Chow, and

developed by a number of other authors is based

on a similar sort of philosophy, the difference

being that they have to make very strong

MATHEMATICAL and COMPUTATIONAL METHODS

ISSN: 1790-2769 115 ISBN: 978-960-474-133-5

assumptions about the nature of the

implementation machine. However, their work

did act as an important inspiration for our own

platform testing for the finite state machines.

2.3.2 Model-based Testing
Simply put, a model of software is a depiction of

its behavior. Behavior can be described in terms

of the input sequences accepted by the system, the

actions, conditions, and output logic, or the flow

of data through the application’s modules and

routines. In order for a model to be useful for

groups of testers and for multiple testing tasks, it

needs to be taken out of the mind of those who

understand what the software is supposed to

accomplish and written down in an easily

understandable form. It is also generally

preferable that a model be as formal as it is

practical. With these properties, the model

becomes a shareable, reusable, precise description

of the system under test. There are numerous such

models, and each describes different aspects of

software behavior. For example, control flow;

data flow, and program dependency graphs

express how the implementation behaves by
representing its source code structure. Decision

tables and state machines [6], on the other hand,

are used to describe external so-called black box

behavior. When we speak of MBT, the testing

community today tends to think in terms of such

black box models.

2.3.3 Differential Testing
Differential testing addresses a specific

problem—the cost of evaluating test results.

Every test yields some result. If a single test is fed

to several comparable programs (for example,

several C compilers), and one program gives a

different result, a bug may have been exposed.

For usable software, very few generated tests will

result in differences. Because it is feasible to

generate millions of tests, even a few differences

can result in a substantial stream of detected bugs.

The trade-off is to use many computer cycles

instead of human effort to design and evaluate

tests. Particle physicists use the same paradigm:

they examine millions of mostly boring events to

find a few high-interest particle interactions.

Several issues must be addressed to make

differential testing effective [4]. The first issue

concerns the quality of the test. Any random

string fed to a C compiler yields some result—
most likely a diagnostic. Feeding random strings

to the compiler soon becomes unproductive,

however, because these tests provide only shallow

coverage of the compiler logic. Developers must

devise tests that drive deep into the tested

compiler. The second issue relates to false

positives.

The results of two tested programs may differ and

yet still be correct, depending on the

requirements. Similarly, even for required
diagnostics, the form of the diagnostic is

unspecified and therefore difficult to compare

across systems. The third issue deals with the

amount of noise in the generated test case. Given

a successful random test, there is likely to be a

much shorter test that exposes the same bug. The

developer who is seeking to fix the bug strongly

prefers to use the shorter test. The fourth issue

concerns comparing programs that must run on

different platforms. Differential testing is easily

adapted to distributed testing.

3 Need of Generating Tests
The difficulty of generating tests from a model

depends on the nature of the model. Models that

are useful for testing usually possess properties
that make test generation effortless and,

frequently, automatable. For some models, all that

is required is to go through combinations of

conditions described in the model, requiring

simple knowledge of combinatorics. In the case of

finite state machines, it is as simple as

implementing an algorithm that randomly

traverses the state transition diagram. The

sequences of arc labels along the generated paths

are, by definition, tests. For example, in the state

transition diagram below, the sequence of inputs

“a, b, d, e, f, i, j, k” qualifies as a test of the

represented system.

Fig. (3) shows the state transition diagram

There are a variety of constraints on what

constitutes a path to meet the criteria for tests.

Examples include having the path start and end in

the starting state, restricting the number of loops

or cycles in a path, and restricting the states that a

path can visit. While writing the automation code,

 b

a

d

c

e

f
 g

h

i
 j

k

l

m

n

o

p

q

1

2

3

9

8

Start/ Final

6
 5

4

7

MATHEMATICAL and COMPUTATIONAL METHODS

ISSN: 1790-2769 116 ISBN: 978-960-474-133-5

adherence to good engineering practices is

required. Scripts are bound to interact with each

other and evolve as the software evolves. Scripts

can be used for as long as the software is being

tested, so it worth while investing some time in
writing good, efficient ones. With model-based

testing, the number of simulation routines is in the

order of the number of inputs, so they are

generally not too time-consuming to write [7].

4 Test Distribution
Each tested or comparison program must be

executed where it is supported. This may mean

different hardware, operating system, and even
physical location. There are numerous ways to

utilize a network to distribute tests and then

gather the results. One particularly simple way is

to use continuously running watcher programs.

Each watcher program periodically examines a

common file system for the existence of some

particular files upon which the program can act. If
no files exist, the watcher program sleeps for a

while and tries again. On most operating systems,

watcher programs can be implemented as

command scripts. There is a test master and a

number of test beds. The test master generates the

test cases, assigns them to the test beds, and later

analyzes the results. Each test bed runs its

assigned tests. The test master and test beds share

a file space, perhaps via a network. For each test

bed there is a test input directory and a test output

directory. A watcher program called the test

driver waits until all the (possibly remote) test

input directories are empty. The test driver then

writes its latest generated test case into each of the

test input directories and returns to its watch-sleep

cycle. For each test bed there is a test watcher

program that waits until there is a file in its test

input directory. When a test watcher finds a file to

test, the test watcher runs the new test, puts the

results in its test output directory, and returns to
the watch-sleep cycle.

Another watcher program called the test analyzer

waits until all the test output directories contain

results. Then the results, both input and output,

are collected for analysis, and all the files are

deleted from every test input and output directory,

thus enabling another cycle to begin. Using the
file system for synchronization is adequate for

computations on the scale of a compile-and-

execute sequence. Because of the many sleep

periods, this distribution system runs efficiently

but not fast. If throughput becomes a problem, the

test system designer can provide more

sophisticated remote execution. The distribution

solution as described is neither robust against

crashes and loops nor easy to start. It is possible

to elaborate the watcher programs to respond to a

reasonable number of additional requirements.

5 Test Analysis
The test analyzer can compare the output in

various ways. The goal is to discover likely bugs

in the compiler under test. The initial step is to

distinguish the test results by failure category,

using corresponding directories to hold the

results. If the compiler under test crashes, the test

analyzer writes the test data to the crash directory.

If the compiler under test enters an endless loop,

the test analyzer writes t he test data to the loop

directory. If one of the comparison compilers
crashes or enters an endless loop, the test analyzer

discards the test, since reporting the bugs of a

comparison compiler is not a testing objective. If

some, but not all, of the test case executions

terminate abnormally, the test case is written to

the ABEND directory. If all the test cases run to

completion but the output differs, the case is
written to the test diff directory. Otherwise, the

test case is discarded.

6 Test Reduction
A tester must examine each filed test case to

determine if it exposes a fault in the compiler

under test. The first step is to reduce the test to the

shortest version that qualifies for examination. A

watcher called the crash analyzer examines the

crash directory for files and moves found files to a

working directory. The crash analyzer then

applies a shortening transformation to the source

of the test case and reruns the test. If the compiler

under test still crashes, the original test case is

replaced by the shortened test case. Otherwise, the
change is backed out output, are collected for

analysis, and all the files are deleted from every

test input and output directory, thus enabling

another cycle to begin. Using the file system for

synchronization is adequate for computations on

the scale of a compile-and-execute sequence.

Because of the many sleep periods, this
distribution system runs efficiently but not fast. If

throughput becomes a problem, the test system

designer can provide more sophisticated remote

execution. The distribution solution as described

is neither robust against crashes and loops nor

easy to start. It is possible to elaborate the watcher

programs to respond to a reasonable number of

additional requirements.

7 Generator of Test Data
Testing the functional requirements of the

software, i.e. the relationship between input and

output, to check non-functional requirements like

MATHEMATICAL and COMPUTATIONAL METHODS

ISSN: 1790-2769 117 ISBN: 978-960-474-133-5

temporal constraints and a test adequacy criterion.

There exist many of them. For example, in the

statement coverage we require all the statements

in the program to be executed. On the other hand,

branch coverage requires taking all the branches
in the conditional statements. The same test

adequacy criterion is taken in condition-decision

coverage. To fulfill this criterion all conditions

must be true and false at least once after executing

all the set of test data on it. A condition is an

expression that is evaluated during the program

execution to a Boolean value (true or false) with

no other nested conditions. All the comparison

expressions are conditions. On the contrary, a

decision is a Boolean expression whose value

affects the control flow. It is important to note

that full condition-decision coverage implies full

branch coverage but not vice versa. That is, if we

find a set of test inputs that makes true and false

all the program conditions at least once we can

ensure that all the decisions will take values true

and false and, in consequence, that all branches

will be taken; but taking all branches does not

ensure that all conditions take the two Boolean

values.

8 Conclusions and Predictions
Testing is an important technique for the

improvement and measurement of a software

system’s quality. Any approach to testing

software faces essential and accidental

difficulties. While software testing is not an elixir

that can guarantee the production of high quality

applications. However, the theoretical and

empirical investigations have shown that the

rigorous, consistent, and intelligent application of

testing techniques can improve software quality.

Software testing normally involves the stages of

test case specification, test case generation, test

execution, test adequacy evaluation, and

regression testing. Each of these stages in our
model of the software testing process plays an

important role in the production of programs that

meet their intended specification. The body of

theoretical and practical knowledge about

software testing continues to grow as research

expands the applicability of existing techniques

and proposes new testing techniques for an ever-
widening range of programming languages and

application domains [8].

References:

[1] Kaner, Cem, Jack Falk, and Hung Nguyen,

Testing Computer Software, 2nd Edition,

John Wiley & Sons, 1999.

[2] Bertolino, A., Corradini, F., Inverardi, P.,

Muccini, H.: Deriving Test Plans from

Architectural Descriptions. In ACM Proc.

Int. Conf. on Software Engineering

(ICSE2000), pp. 220-229, June 2000.

[3] W.J. Gutjahr, “Importance Sampling of

Test Cases in Markovian Software Usage
Models,” Probability in the Engineering and

Information Sciences, v. 11, 1997, pp.19-

36.

[4] Kevin Sullivan, Jinlin Yang, David Coppit,

Sarfraz Khurshid, and Daniel Jackson.

Software assurance by bounded exhaustive

testing. In Proceedings of International

Symposium on Software Testing and

Analysis (ISSTA 2004), Boston, 11–14 July

2004. IEEE.

[5] Bach, James, General Functionality and

Stability Test Procedure,

http://www.testingcraft.com/.

[6] Hyoung Seok Hong, Young Gon Kim, Sung

Deok Cha, A Test Sequence Selection

Method for Statecharts. The Journal of

Software Testing, Verification &

Reliability, 10(4): 203-227, December

2000.

[7] David Coppit and Jennifer M. Haddox-
Schatz. On the use of specification-based

assertions as test oracles. Proceedings of the

29th Annual IEEE/NASA Software

Engineering Workshop, Maryland, 6–7

April 2005. IEEE.

[8] Aynur Abdurazik and Jeff Offutt. Using

UML collaboration diagrams for static
checking and test generation. Proceedings

of the 3rd International Conference on the

Unified Modeling Language (UML 00),

York, UK, October 2000.

MATHEMATICAL and COMPUTATIONAL METHODS

ISSN: 1790-2769 118 ISBN: 978-960-474-133-5

