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Abstract: - Developing software, which is free from faults, remains one of the most challenging and 

fundamental problems in software engineering. To realizing the precise need of software architectures, 

researchers have pursued formal methods, mathematically based notations, techniques, and tools for 

correctly documenting the software. Despite the availability and potential benefits of formal methods, the 
use of such methods is still far from the routine practices. There are numerous reasons, involving issues such 

as the complexity of the languages and tools, lack of expertise, and the existing software development 

culture. Perhaps most importantly, the use of formal methods is widely considered to be expensive, which 

prohibits their use for most of the critical systems. As a result of these cost issues, practicing software 

engineers have largely avoided formal methods, instead relying on testing. Despite the costs associated with 

identifying good candidate test cases, running the tests, and validating the results, developers rely upon 

testing as their primary method of ensuring software dependability.    
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1    Introduction 
Testing is a crucial part of the software life cycle, 

and recent trends evidence the importance of this 

activity along the whole development process. 

The testing activities have to start at the 

requirement specification level and have to be 

propagated down to the code-level, all along the 

various subsequent refinement steps. Testing 

involves several demanding tasks: the ability to 

launch the selected tests (in a controlled host 

environment, or worse in the tight target 
environment of an embedded system); deciding 

whether the test outcome is acceptable or not 

(which is referred to as the test oracle problem). 

Therefore, the impacts of failure cost in direct 

cause (the fault), and the indirect one (root cause 

analysis). However, the problem that has received 

the highest attention in the literature is to select an 

appropriate test case. In brief, how to identify a 

suite of test cases that is effective in 

demonstrating that the software behaves as 

intended, or, otherwise, in evidencing the existing 

malfunctions. Clearly, a good test suite is in fact 

the crucial starting point to a successful testing 

session. In contrast with the conventional practice 

of handcrafted ad-hoc test cases, or of random 

input generation, many methods for systematic 

test selection have been proposed in the past 

decades. No method is superior to the others, thus 

several methods should be used in combination 

throughout the lifecycle, with focus shifting, as 

development proceeds, on differing aspects of 

software behavior, and also on differing 

projections of the system. The term model-based 

testing refers to test case derivation from a model 

representing the software behavior. Indeed, 

testing is always against an expected behavior: the 
difference being essentially whether such a model 

is explicit (which is clearly better), or implicit, 

i.e., in the mind of the testers. In particular, when 

there exists a specification of the system to be 

tested in some formal language, this can be used 

as the reference model both for test-case selection 

and as a test oracle. This allows for rigorous 
mathematical analysis, and automated processing. 

Testing an implementation against its formal 

specifications is also known as conformance 

testing, which, looking at the big picture of test 

strategies belongs to the black box class, because 

we do not consider the internals of a system, but 

only its input/output behavior.   

After the test cases are derived from the 

specifications, two major problems remain to be 

solved: traceability and test execution. 

Traceability concerns “relating the abstract values 

of the specification to the concrete values of the 

implementation”. To be able to execute these tests 
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 on the code, we need to refine the test cases into 

more concrete sequences that have a meaningful 

interpretation in terms of the actual system I/O 

interface. Test execution entails forcing the 

Implementation Under Test (IUT) to execute the 
specific sequence of events that has been selected. 

A problem   rises with concurrent programs 

which, starting from the same input, may exercise 

different sequences of interactions (among several 

concurrent processes) and produce different 

results. This problem has already been analyzed 

in the literature, and deterministic- and non-

deterministic-testing approaches have been 

proposed. In non-deterministic testing [1], the 

approach is to repeat the launching of a program 

run under some specified input conditions several 

times until the desired test sequence is observed 

(or a maximum number of iterations are reached). 

In contrast, the deterministic testing approach 

forces a program to execute a specified test 

sequence by instrumenting it with synchronization 

constructs that deterministically reproduce the 

desired sequence.  

 

2  Software Architecture and Testing 
Software architecture (SA) represents the most 

promising approach to tackle the problem of 

scaling up in software engineering, because, 

through suitable abstractions, it provides the way 

to make large applications manageable. 

Nowadays, SA descriptions are commonly 

integrated into the software development process; 

SA production and management are, in general, 

quite expensive tasks. Therefore the effort is 

worthwhile if the SA artifacts are extensively 

used for multiple purposes. Typical use of SA is 

as a high-level design blueprint of the system to 

be used during system development and later on 

for maintenance and reuse. In particular, the 

importance of the role of SA in testing and 

analysis is evident. SA formal dynamic 
descriptions are used for many different kinds of 

analysis. We are here interested in SA primarily 

as a means for driving the testing of large, 

complex systems. Our concern is on exploiting 

the information described at the SA level to drive 

the testing of the implementation. How formal SA 

descriptions (and the obtained models) can be 
used for testing purposes [2]. In other words, we 

assume the SA description is correct and we are 

investigating approaches to specification-based 

integration and system testing [3], whereby the 

reference model used to generate the test cases is 

the SA description [4][2]. Figure shown below 

provides a useful hierarchical decomposition of 

different testing techniques and their relationship 

to different classes of test adequacy criteria. 
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Fig. 1. Shows the hierarchical decomposition of 

different testing techniques 

 

2.1  Fault Detection 
This is something that is quite beyond most 

current testing methods. The claim “the 

system/component is fault-free” is quite beyond 

current testing methods. In practice all we can 

usually say is that we have uncovered a number of 

faults over a period of testing effort and the graph 

of the number of faults against the period or 

amount of testing, measured suitably, indicates 

that the growth rate is reducing. Figure 2 shows 

the relationship between fault detection and test 

time. The trouble is we do not know that no 

further faults are in the system at any particular 

time. Also, in general we cannot assert that the 

only faults remaining are located in a specific 

module or component. A general formula for this 

curve is not known, if one existed it would 

probably depend on the type of system, on the 

type of test methods and perhaps on the people 

doing and managing the testing as well as wider 
issues relating to the management of the design 

project, the attitudes of the clients, the 

implementation vehicle, the design methods and 

so on.  

 
Fig. 2. Shows the relationship between fault 

detection and test time 
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High quality empirical results obtained over a 

very long period would be needed to make proper 

use of this approach even then it is less than ideal.  

 

2.2   Effectiveness of Test  
The problem of measuring the effectiveness of an 

individual testing project usually depends on 

estimating the coverage of the tests [5]. For 

example, if the tests are structurally based, using 

program charts, say, then popular methods 

include establishing that every path has been 

exercised or every decision node has been visited. 

This does not tell us anything about fault 

detection; it merely measures effort rather than 

reward! The current accepted definition of fault 

coverage is misleading since it is not the case that 

a precise measure can be placed on the number of 

faults that remain after the test process has been 

applied. In most cases the definition of fault 

coverage is based on assumptions of the type 

described above, that we are questioning. In much 

of the literature the estimates of the fault coverage 

are obtained by running experiments with simple 

examples involving implementations that have 

faults seeded in them and counting the numbers of 

known faults detected by the methods. These 

empirical results are of curiosity value only. 

Miller & Paul provide a theoretical method for 
establishing fault coverage of a test strategy; 

however, they assume that the implementation 

machine has the same number of states as the 

specification machine. Before we look, briefly, at 

what progress there has been in addressing some 

of the theoretical issues of testing we will 

consider a popular method for the analysis and 

comparison of the effectiveness of different 

testing methods.  

 

2.3   Test Method Effectiveness 
A number of authors have sought to compare the 

effectiveness of, for example, random testing 

methods with formally based functional testing 

[1]. Here the method was to take a small system 

and to insert known faults into it, then to apply 

the two techniques to establish which was most 

successful at detecting these faults. Further 

analysis could be done on the type of faults each 

method was good or poor at detecting. Faults 

were classified for this purpose in a number of 

categories. Results from this type of survey can be 

useful in establishing the relative strengths and 
weakness of different, specific methods of test set 

generation. However, the situation is essentially 

artificial and it is not clear what can be said in 

general. The method is unable to prove, for 

example, that either approach is better at detecting 

naturally occurring or unseeded faults (the seeded 

ones may not be typical of real faults), or to 

identify conditions under which a method detects 

all faults. A number of attempts at developing a 

theory of testing or to analyze the testing situation 

have been made. We will briefly consider few of 
them as follows:  

 

2.3.1 An Algebraic Approach to 

Computational Modeling 

The process of software design, including within 

that activity all phases of requirements capture, 

specification, design, prototyping, analysis, 

implementation, validation, verification and 

maintenance is one that is oriented, or should be, 

around the construction of computational 

solutions to specific problems. When we are 

constructing a software system (this also applies 

to hardware) we are attempting to construct 

something that will, when operating, carry out 

some computable function. Consequently it is 

worth considering what this means. Essentially, 

computable functions have been identified as the 

functions computed by Turing machines. The 

method will not be applicable to implementations 

that behave like a Turing machine that does not 
halt. In other words we will not try to deal with 

those systems that regress into an infinite loop 

from which no output emanates, for our purposes 

these systems will be deemed to be unacceptable 

anyway. A way to establish that a system is not of 

this form is to identify a period of time, which is 

the maximum that the system can run for without 
producing any detectable output. We will also 

assume that the specification of the system is also 

of this form, namely a Turing machine that halts 

under its intended operating conditions. Real-time 

systems are covered by this definition since we 

require that the specified system does have 

detectable behavior under all conditions. This is a 

kind of design for test condition that we will see 

more of later. We then have two algebraic objects, 

the Turing machine representing the specification 

of the desired system and the Turing machine 

representing the complete implementation. A 

testing method would then try to ascertain if these 

two machines computed the same function.  

This is a basic strategy that we will develop, 

however, not in the context of a Turing machine, 

which is too low level and unwieldy, but in the 

context of a more useful, elegant and equivalent 

model. In so doing we will quote some important 

theoretical results that justify what we are doing. 
It is important to stress that the method of finite 

state machine testing proposed by Chow, and 

developed by a number of other authors is based 

on a similar sort of philosophy, the difference 

being that they have to make very strong 
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assumptions about the nature of the 

implementation machine. However, their work 

did act as an important inspiration for our own 

platform testing for the finite state machines. 

 

2.3.2   Model-based Testing 
Simply put, a model of software is a depiction of 

its behavior. Behavior can be described in terms 

of the input sequences accepted by the system, the 

actions, conditions, and output logic, or the flow 

of data through the application’s modules and 

routines. In order for a model to be useful for 

groups of testers and for multiple testing tasks, it 

needs to be taken out of the mind of those who 

understand what the software is supposed to 

accomplish and written down in an easily 

understandable form. It is also generally 

preferable that a model be as formal as it is 

practical. With these properties, the model 

becomes a shareable, reusable, precise description 

of the system under test. There are numerous such 

models, and each describes different aspects of 

software behavior. For example, control flow; 

data flow, and program dependency graphs 

express how the implementation behaves by 
representing its source code structure. Decision 

tables and state machines [6], on the other hand, 

are used to describe external so-called black box 

behavior. When we speak of MBT, the testing 

community today tends to think in terms of such 

black box models.  

 

2.3.3   Differential Testing 
Differential testing addresses a specific 

problem—the cost of evaluating test results. 

Every test yields some result. If a single test is fed 

to several comparable programs (for example, 

several C compilers), and one program gives a 

different result, a bug may have been exposed. 

For usable software, very few generated tests will 

result in differences. Because it is feasible to 

generate millions of tests, even a few differences 

can result in a substantial stream of detected bugs. 

The trade-off is to use many computer cycles 

instead of human effort to design and evaluate 

tests. Particle physicists use the same paradigm: 

they examine millions of mostly boring events to 

find a few high-interest particle interactions. 

Several issues must be addressed to make 

differential testing effective [4]. The first issue 

concerns the quality of the test. Any random 

string fed to a C compiler yields some result—
most likely a diagnostic. Feeding random strings 

to the compiler soon becomes unproductive, 

however, because these tests provide only shallow 

coverage of the compiler logic. Developers must 

devise tests that drive deep into the tested 

compiler. The second issue relates to false 

positives.  

The results of two tested programs may differ and 

yet still be correct, depending on the 

requirements. Similarly, even for required 
diagnostics, the form of the diagnostic is 

unspecified and therefore difficult to compare 

across systems. The third issue deals with the 

amount of noise in the generated test case. Given 

a successful random test, there is likely to be a 

much shorter test that exposes the same bug. The 

developer who is seeking to fix the bug strongly 

prefers to use the shorter test. The fourth issue 

concerns comparing programs that must run on 

different platforms. Differential testing is easily 

adapted to distributed testing.   

 

3   Need of Generating Tests 
The difficulty of generating tests from a model 

depends on the nature of the model. Models that 

are useful for testing usually possess properties 
that make test generation effortless and, 

frequently, automatable. For some models, all that 

is required is to go through combinations of 

conditions described in the model, requiring 

simple knowledge of combinatorics. In the case of 

finite state machines, it is as simple as 

implementing an algorithm that randomly 

traverses the state transition diagram. The 

sequences of arc labels along the generated paths 

are, by definition, tests. For example, in the state 

transition diagram below, the sequence of inputs 

“a, b, d, e, f, i, j, k” qualifies as a test of the 

represented system. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3) shows the state transition diagram 

There are a variety of constraints on what 

constitutes a path to meet the criteria for tests. 

Examples include having the path start and end in 

the starting state, restricting the number of loops 

or cycles in a path, and restricting the states that a 

path can visit. While writing the automation code, 
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adherence to good engineering practices is 

required. Scripts are bound to interact with each 

other and evolve as the software evolves. Scripts 

can be used for as long as the software is being 

tested, so it worth while investing some time in 
writing good, efficient ones. With model-based 

testing, the number of simulation routines is in the 

order of the number of inputs, so they are 

generally not too time-consuming to write [7]. 
 

4   Test Distribution 
Each tested or comparison program must be 

executed where it is supported. This may mean 

different hardware, operating system, and even 
physical location. There are numerous ways to 

utilize a network to distribute tests and then 

gather the results. One particularly simple way is 

to use continuously running watcher programs. 

Each watcher program periodically examines a 

common file system for the existence of some 

particular files upon which the program can act. If 
no files exist, the watcher program sleeps for a 

while and tries again. On most operating systems, 

watcher programs can be implemented as 

command scripts. There is a test master and a 

number of test beds. The test master generates the 

test cases, assigns them to the test beds, and later 

analyzes the results. Each test bed runs its 

assigned tests. The test master and test beds share 

a file space, perhaps via a network. For each test 

bed there is a test input directory and a test output 

directory. A watcher program called the test 

driver waits until all the (possibly remote) test 

input directories are empty. The test driver then 

writes its latest generated test case into each of the 

test input directories and returns to its watch-sleep 

cycle. For each test bed there is a test watcher 

program that waits until there is a file in its test 

input directory. When a test watcher finds a file to 

test, the test watcher runs the new test, puts the 

results in its test output directory, and returns to 
the watch-sleep cycle.  

Another watcher program called the test analyzer 

waits until all the test output directories contain 

results. Then the results, both input and output, 

are collected for analysis, and all the files are 

deleted from every test input and output directory, 

thus enabling another cycle to begin. Using the 
file system for synchronization is adequate for 

computations on the scale of a compile-and-

execute sequence. Because of the many sleep 

periods, this distribution system runs efficiently 

but not fast. If throughput becomes a problem, the 

test system designer can provide more 

sophisticated remote execution. The distribution 

solution as described is neither robust against 

crashes and loops nor easy to start. It is possible 

to elaborate the watcher programs to respond to a 

reasonable number of additional requirements.  

 

5    Test Analysis 
The test analyzer can compare the output in 

various ways. The goal is to discover likely bugs 

in the compiler under test. The initial step is to 

distinguish the test results by failure category, 

using corresponding directories to hold the 

results. If the compiler under test crashes, the test 

analyzer writes the test data to the crash directory. 

If the compiler under test enters an endless loop, 

the test analyzer writes t he test data to the loop 

directory. If one of the comparison compilers 
crashes or enters an endless loop, the test analyzer 

discards the test, since reporting the bugs of a 

comparison compiler is not a testing objective. If 

some, but not all, of the test case executions 

terminate abnormally, the test case is written to 

the ABEND directory. If all the test cases run to 

completion but the output differs, the case is 
written to the test diff directory. Otherwise, the 

test case is discarded. 

 

6    Test Reduction 
A tester must examine each filed test case to 

determine if it exposes a fault in the compiler 

under test. The first step is to reduce the test to the 

shortest version that qualifies for examination. A 

watcher called the crash analyzer examines the 

crash directory for files and moves found files to a 

working directory. The crash analyzer then 

applies a shortening transformation to the source 

of the test case and reruns the test. If the compiler 

under test still crashes, the original test case is 

replaced by the shortened test case. Otherwise, the 
change is backed out output, are collected for 

analysis, and all the files are deleted from every 

test input and output directory, thus enabling 

another cycle to begin. Using the file system for 

synchronization is adequate for computations on 

the scale of a compile-and-execute sequence. 

Because of the many sleep periods, this 
distribution system runs efficiently but not fast. If 

throughput becomes a problem, the test system 

designer can provide more sophisticated remote 

execution. The distribution solution as described 

is neither robust against crashes and loops nor 

easy to start. It is possible to elaborate the watcher 

programs to respond to a reasonable number of 

additional requirements.  

 

7    Generator of Test Data  
Testing the functional requirements of the 

software, i.e. the relationship between input and 

output, to check non-functional requirements like 
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temporal constraints and a test adequacy criterion. 

There exist many of them. For example, in the 

statement coverage we require all the statements 

in the program to be executed. On the other hand, 

branch coverage requires taking all the branches 
in the conditional statements. The same test 

adequacy criterion is taken in condition-decision 

coverage. To fulfill this criterion all conditions 

must be true and false at least once after executing 

all the set of test data on it. A condition is an 

expression that is evaluated during the program 

execution to a Boolean value (true or false) with 

no other nested conditions. All the comparison 

expressions are conditions. On the contrary, a 

decision is a Boolean expression whose value 

affects the control flow. It is important to note 

that full condition-decision coverage implies full 

branch coverage but not vice versa. That is, if we 

find a set of test inputs that makes true and false 

all the program conditions at least once we can 

ensure that all the decisions will take values true 

and false and, in consequence, that all branches 

will be taken; but taking all branches does not 

ensure that all conditions take the two Boolean 

values. 
 

8    Conclusions and Predictions 
Testing is an important technique for the 

improvement and measurement of a software 

system’s quality. Any approach to testing 

software faces essential and accidental 

difficulties. While software testing is not an elixir 

that can guarantee the production of high quality 

applications. However, the theoretical and 

empirical investigations have shown that the 

rigorous, consistent, and intelligent application of 

testing techniques can improve software quality. 

Software testing normally involves the stages of 

test case specification, test case generation, test 

execution, test adequacy evaluation, and 

regression testing. Each of these stages in our 
model of the software testing process plays an 

important role in the production of programs that 

meet their intended specification. The body of 

theoretical and practical knowledge about 

software testing continues to grow as research 

expands the applicability of existing techniques 

and proposes new testing techniques for an ever-
widening range of programming languages and 

application domains [8]. 
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