

Optimization of Software Testing Using Genetic Algorithms

SANJEEV DHAWAN*, KULVINDER S. HANDA*, RAKESH KUMAR**

*Faculty of Computer Engineering, University Institute of Engineering & Technology

 (U.I.E.T), Kurukshetra University, Kurukshetra (K.U.K)- 136 119, Haryana, INDIA.

**Faculty of Computer Science, Department of Computer Science and Applications

(D.C.S.A), Kurukshetra University, Kurukshetra (K.U.K)- 136 119, Haryana, INDIA.

E-mail: rsdhawan@rediffmail.com

Abstract: - This paper presents the study of optimization of software testing techniques by using Genetic

Algorithms (GAs) and a sufficient testing convergence condition of GAs is presented. Some new categories of

genetic codes are applied in some problem optimizations for the generation of reliable software test cases. These

GAs have found their application in detecting errors in the software packages. For example, based on Symmetric

Codes theory, new genetic strategy, GA with symmetric code is developed. In the current paper, some key

definitions of genetic transformation have been used viz. crossover, mutation and selection. Some of our research

shows that genetic encoding techniques have very important influence on the performance of software test cases.

This paper is organized into three parts: part I describes the functionality of GAs, part II presents the usage of

GAs in software testing to the alternatives of existing software testing techniques, part III discusses the

implementation of GAs using MATLAB for the generation of optimized test cases.

Key-Words: - Genetic Algorithms, optimization, software testing, soft computation.

1 Introduction
Genetic Algorithms have been introduced in the

sixties by Professor John Holland at university of

Michigan as models of an Artificial Evolution [1, 2].

In the thirty past years, they have been successfully

applied to a wide range of problems such as Natural

Systems Modeling (e.g. Artificial Life

environments, immune system modeling [2, 3],

Machine Learning systems, and optimization. GAs

basically handle a population of chromosomes

(individuals) often modeled by vector of binary

genes. Each one encodes a potential solution to the

considered problem and is named by a so-called

fitness value, which is directly correlated to how

good it is to solve the problem. In general, there are

two basic approaches to test software. The first,

more appreciated in the academia, consists of using

formal specifications to design an application and

then use theorem provers to demonstrate the

application’s properties. This approach is very strict

but unfortunately not often used because the breadth

of formal specification methods does not encompass

all the functionality needed in today’s complex

applications. The second approach consists of doing

test as part of the traditional engineering models

(e.g. waterfall, spiral, prototyping) that have a

specific phase for testing generally occurring after

the application has been implemented. The

modifications to these traditional models have being

incorporating testing in every phase of the software

development with methodologies such as extreme

programming [4] used in the implementation of

Windows XP. Despite all the claims, the truth here is

that current approaches are insufficient to test

software appropriately, thus causing the current

status of the field, which clearly seems to be loosing

the battle of providing users with reliable software.

It has been noticed that complete reliability is hard

to achieve in empirical approaches to complete

testing is impossible. This does not mean that a good

set representing the full space of possible tests

cannot be automatically generated thus reducing the

cost of software development [5, 6].

Therefore, in the present paper, an attempt has been

made to describe the basic nature of existing genetic

transformations used for software testing and their

related scenarios and applications for generating the

efficient software test cases. Keeping in mind the

above-mentioned requirement, we have been

engaged in a number of activities involving study of

software testing, genetic algorithms by using

practical and theoretical analysis. Efforts have been

made to understand the problem, and develop the

corresponding high-level modules in C++ by using

MATHEMATICAL and COMPUTATIONAL METHODS

ISSN: 1790-2769 108 ISBN: 978-960-474-133-5

MATLAB version 7.0 tools and libraries provided

by the language using the basic parameters of

genetic algorithms for the generation of reliable and

cost effective test cases.Clearly explain the nature of

the problem, previous work, purpose, and

contribution of the paper.

2 Process of Genetic Algorithms
Starting with a random initial population, we

iteratively apply a so-called Genetic Transformation,

which consists of three genetic-like operators such

as crossover, mutation and selection having the

following specific role: -

a) Selection exponentially spreads, over

generations, above average fitted chromosomes

by allowing them more offsprings in next

generation.

b) Crossover exploits genetic material of the

current populations by breeding most interesting

strings.

c) Mutation is a process that allows the re-

introduction of new genetic material in the

population. It introduces diversity in population

by flipping randomly chosen genes. As a result,

this overall non-linear dynamics leads to a

homogeneous final population only featuring

instances of the best chromosome found so far

[7].

2.1 Selection
There are two important issues in the evolution

process of the genetic search: population diversity

and selective pressure. Strong selective pressure may

force early convergence to a local optimum solution.

In contrast, the search is ineffective if the population

is too diverse in terms of the desired qualities, and

the selective pressure is weak. Parents are selected

according to their fitness. The better the

chromosomes are, the more chances to be selected

they have. Chromosome with bigger fitness will be

selected more times.

This can be simulated by following algorithm: -

Step 1: Calculate the sum of all chromosome

fitnesses in population––sum S.

Step 2: Generate random number from interval

(0,S)––r.

Step 3: Go through the population and sum fitnesses

from 0––sum S. When the sum S is greater

then r, stop and return the chromosome

where you are. Of course, step 1 is

performed only once for each population.

2.2 Crossover
Crossover results in two chromosomes being

selected as parents and then crossed to produce two

offspring. This results in some of the features of one

parent being combined with those of the other. For

example:

a f c b g d Parent 1

D E C A F B Parent 2

a f c A F B Offspring 1

D E C b g d Offspring 2

In this case, the two parents have been split exactly

in half, with each child receiving half the parent. The

Chromosomes with higher fitness values are more

frequently selected for crossover (thus enhancing

their chances of passing on their traits to the next

generation). This is an example of the survival of the

fittest. Crossover acts as an accelerator of the search

process performed by the GA. That is, crossover

allows a GA to quickly combine beneficial new

traits in the population. This means that crossover

makes it possible to merge good solutions to

generate potentially better ones.

2.3 Mutation
The other evolutionary operator is mutation.

Mutation is used to alter one or more elements in the

chromosome. For example, given the chromosome:

a b d f a g

Mutation might select the element at position 4 and

change it to a Z thus resulting in a new chromosome:

a b d Z a g

The new chromosome generated by either crossover

or mutation can then be introduced to the population

and evaluated. This can be done immediately

(incremental GAs) or en masse when a certain

number of new chromosomes have been generated

(generational GAs). Whichever approach is used, it

is normally the case that an equivalent number of

chromosomes are deleted from the population.

Mutation helps to ensure diversity in the population.

In terms of the search space, it helps the GA to jump

to other parts of the space.

3 Algorithmic Approach Used for

Genetic Algorithms
The basis of all GAs is the algorithm illustrated in

the following steps: -

a) initialize a set of genes.

b) evaluate genes in population.

MATHEMATICAL and COMPUTATIONAL METHODS

ISSN: 1790-2769 109 ISBN: 978-960-474-133-5

c) until the maximum number of generations.

have been created.

d) Crossover / mate genes in population.

e) mutate genes in new population.

f) evaluate genes in extended population.

g) select genes to populate next generation.

The algorithm uses point crossover as depicted in

Figure 1. Point crossover works by selecting a break

point in the chromosome of the two selected

individuals and recombining them using each-

others’ half [8, 9].

Fig. 1. Information flow for the GA steps.

4 Test Case Generation using Genetic

Algorithms
For the test case generation, the following figure 2

has been designed, which consists of program P1

having multiple input and one output variables. X is

the set of all input variables and Y is the set of all

output variables [5, 6, 10].

 x1 x2xn X = {x1, x2, . . ., xn}

Fig. 2. Shows the program P1 with multiple inputs

and outputs.

Test data for set X can be defined in terms of

preconditions that describe valid and invalid data

values for each input variable x. These preconditions

may be determined from several sources, including

the program's specification and the constraints of the

computing environment. To create a test set, it is

common to apply black-box test data selection

criteria (such as equivalence-class partitioning,

boundary value analysis, etc.) to each input variable

of X with respect to the preconditions. After

applying test selection criteria to each variable of X,

we will have a set of test data values for each of the

input variables:

D(x1), D(x2), …, D(xn) (1)

Since program P1 has multiple input variables, we

must now consider how to test combinations of

program inputs. The most thorough approach is to

test every possible combination of the selected test

data values using GAs. The fitness functions based

on other factors may be used to generate a sequence.

In fact, in a more elaborate use of GAs, the data

itself can be updated in a feedback loop based on the

result of the execution of the test plan. Another point

that needs to be noted is that the fitness function as

defined earlier has a strong dependency to the

application one needs to test. For instance, it may be

more meaningful to use a function based on the

standard deviation of the inconsistency so that test

plans that do not fall within the norm are given a

higher score and hence tested first. Our approach for

the generation of optimized test plans is quite

different from other nature-inspired strategies such

as GA and Neural Networks [11, 12, 13].

5 Results
The algorithms presented in this paper have been

implemented on MATLAB version 7.0 for the

generation of optimized test cases using GAs. These

algorithms have been tested extensively with

different test inputs containing many special cases,

including random testing and testing based on

specification of software. The figure 3.1 shows the

fitness value for the different number of input

variables, figure 3.2 shows the optimized fitness

value for the generation of reliable test cases., and

the figure 3.3 shows the best, worst and mean test

scores for the generation.

Fig. 3.1. Shows the fitness value vs. number of

variables.

Program P1

Y

MATHEMATICAL and COMPUTATIONAL METHODS

ISSN: 1790-2769 110 ISBN: 978-960-474-133-5

Fig. 3.2. Shows the optimized output of fitness value

vs. generation.

Fig. 3.3. Shows the best, worst and mean test scores

vs. generation.

6 Perspectives and Further Work
Genetic encoding techniques have significant

influence on GAS' performance in solving some

problems with big algorithm complexity. Our study

shows that, in some problems some special codes

must be taken, or else the algorithms may not be

able to get convergence or the solution got is poor.

The simulation shows that the proposed GAS with

the special codes can find solutions with better

quality in shorter time than some classical GAs. This

paper has presented the optimised behaviour for the

generation of software test cases using Genetic

Algorithms as a new efficient class. However, the

generation of Genetic Algorithms based on real

meta-level evolution of a suitable metrics over the

search space is yet to be determined. From an

empirical point of view, dynamical environments

have revealed to be of a great help in characterizing

metrics properties. Such metrics will explain the

effectiveness of GAs in dynamic scenarios, which

will open the new field for genetic encoding

techniques. Further work will consist in studying in

more details how can such an optimal meta-mask be

evolved and what properties it must feature thus

enlightening us on GAs dynamics.

Acknowledgements
A major part of the research reported in this paper is

carried out at U.I.E.T, and D.C.S.A, K.U.K,

Haryana, India. We are highly indebted and credited

by gracious help from the Ernet section of K.U.K for

their constant support and help while testing our

proposed models on to different systems. The

authors would like to thank those nameless

individuals who worked hard to supply the data.

References:

[1] D.E. Goldberg, Genetic Learning in

optimization, search and machine learning.

Addisson Wesley, 1994.

[2] J.J. Grefenstette. Genetic algorithms for

changing environments. In R. Manner abd B.

Manderick, editor, Parallel Problem Solving

from Nature 2, pages 465-501. Elsevier Science

Publishers B.V., 1992.

[3] P. D’haeseleer, S. Forrest, and P. Helman. An

immunological approach to change detection:

algorithms, analysis and implications. In

Proceedings of the 1996 IEEE Symposium on

Computer Security and Privacy, 1996.

[4] C. E. Williams. Software testing and uml. In

Proceedings of the 10th International

Symposium on Software Reliability

Engineering, Boca Raton, Florida, Nov. 1999.

IEEE Press.

[5] Watkins, A., The automatic generation of test

data using genetic algorithms, Proceedings of

the 4th Software Quality Conference, vol. 2,

1995, pp. 300-309.

[6] J. Wegener, K. Buhr, H. Pohlheim, Automatic

Test Data Generation For Structural Testing of

Embedded Software Systems by Evolutionary

Testing. GECCO, 2002, pp. 1233-1240.

[7] John Hunt, Testing Control Software using a

Genetic Algorithm, Engg Appl. Artif. lntell.

Vol. 8, No. 6, pp. 671-680, 1995, Elsevier

Science Ltd.

[8] F. Vavak and T.C. Fogarty. A comparative

study of steady state and generational genetic

algorithms for use in nonstationary

environments. In Proceedings of the Society

for the Study of Artificial Intelligence and

Simulation of Behavior, workshop on

MATHEMATICAL and COMPUTATIONAL METHODS

ISSN: 1790-2769 111 ISBN: 978-960-474-133-5

Evolutionnary Computation’96, pages 301-

307. University of Sussex, 1996.

[9] J. J. Grefenstette, et al, "Genetic algorithm for

the Traveling salesman problem", in Proc. Int.

Conf. Genetic Algorithms and Their

Applications, July 1985, pp. 160-168.

[10] Kenneth, D. Jong, et al, "Using Genetic

Algorithms to solve NP-complete Problems",

Intl. Conf 3rd. Genetic Algorithms and Their

Applications. 1989, pp. 124-132.

[11] D. Berndt, J. Fisher, L. Johnson, J. Pinglikar,

and A. Watkins. Breeding software test cases

with genetic algorithms. In HICSS ’03:

Proceedings of the 36
th
 Annual Hawaii

International Conference on System Sciences

(HICSS’03), pages 338-347, Washington, DC,

USA, 2003. IEEE Computer Society.

[12] D. J. Berndt. Investigating the performance of

genetic algorithms-based software test case

generation. In Eighth IEEE International

Symposium on High Assurance Systems

Engineering (HASE’04), 2004.

[13] C. C. Michael, G. E. McGraw, M. A. Schatz,

and C. C. Walton. Genetic algorithms for

dynamic test data generation. In ASE ’97:

Proceedings of the 1997 International

Conference on Automated Software

Engineering (ASE ’97) (formerly: KBSE),

pages 307-308, Washington, DC, USA, 1997.

IEEE Computer Society.

MATHEMATICAL and COMPUTATIONAL METHODS

ISSN: 1790-2769 112 ISBN: 978-960-474-133-5

