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Abstract: - This paper presents the study of optimization of software testing techniques by using Genetic 

Algorithms (GAs) and a sufficient testing convergence condition of GAs is presented. Some new categories of 

genetic codes are applied in some problem optimizations for the generation of reliable software test cases. These 

GAs have found their application in detecting errors in the software packages. For example, based on Symmetric 

Codes theory, new genetic strategy, GA with symmetric code is developed. In the current paper, some key 

definitions of genetic transformation have been used viz. crossover, mutation and selection. Some of our research 

shows that genetic encoding techniques have very important influence on the performance of software test cases. 

This paper is organized into three parts: part I describes the functionality of GAs, part II presents the usage of 

GAs in software testing to the alternatives of existing software testing techniques, part III discusses the 

implementation of GAs using MATLAB for the generation of optimized test cases. 
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1   Introduction 
Genetic Algorithms have been introduced in the 

sixties by Professor John Holland at university of 

Michigan as models of an Artificial Evolution [1, 2]. 

In the thirty past years, they have been successfully 

applied to a wide range of problems such as Natural 

Systems Modeling (e.g. Artificial Life 

environments, immune system modeling [2, 3], 

Machine Learning systems, and optimization. GAs 

basically handle a population of chromosomes 

(individuals) often modeled by vector of binary 

genes. Each one encodes a potential solution to the 

considered problem and is named by a so-called 

fitness value, which is directly correlated to how 

good it is to solve the problem.  In general, there are 

two basic approaches to test software. The first, 

more appreciated in the academia, consists of using 

formal specifications to design an application and 

then use theorem provers to demonstrate the 

application’s properties. This approach is very strict 

but unfortunately not often used because the breadth 

of formal specification methods does not encompass 

all the functionality needed in today’s complex 

applications. The second approach consists of doing 

test as part of the traditional engineering models 

(e.g. waterfall, spiral, prototyping) that have a 

specific phase for testing generally occurring after 

the application has been implemented. The 

modifications to these traditional models have being 

incorporating testing in every phase of the software 

development with methodologies such as extreme 

programming [4] used in the implementation of 

Windows XP. Despite all the claims, the truth here is 

that current approaches are insufficient to test 

software appropriately, thus causing the current 

status of the field, which clearly seems to be loosing 

the battle of providing users with reliable software. 

It has been noticed that complete reliability is hard 

to achieve in empirical approaches to complete 

testing is impossible. This does not mean that a good 

set representing the full space of possible tests 

cannot be automatically generated thus reducing the 

cost of software development [5, 6].  

Therefore, in the present paper, an attempt has been 

made to describe the basic nature of existing genetic 

transformations used for software testing and their 

related scenarios and applications for generating the 

efficient software test cases. Keeping in mind the 

above-mentioned requirement, we have been 

engaged in a number of activities involving study of 

software testing, genetic algorithms by using 

practical and theoretical analysis. Efforts have been 

made to understand the problem, and develop the 

corresponding high-level modules in C++ by using 
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MATLAB version 7.0 tools and libraries provided 

by the language using the basic parameters of 

genetic algorithms for the generation of reliable and 

cost effective test cases.Clearly explain the nature of 

the problem, previous work, purpose, and 

contribution of the paper. 

 

2   Process of Genetic Algorithms 
Starting with a random initial population, we 

iteratively apply a so-called Genetic Transformation, 

which consists of three genetic-like operators such 

as crossover, mutation and selection having the 

following specific role: -  

  

a) Selection exponentially spreads, over 

generations, above average fitted chromosomes 

by allowing them more offsprings in next 

generation.  

b) Crossover exploits genetic material of the 

current populations by breeding most interesting 

strings.  

c) Mutation is a process that allows the re-

introduction of new genetic material in the 

population. It introduces diversity in population 

by flipping randomly chosen genes. As a result, 

this overall non-linear dynamics leads to a 

homogeneous final population only featuring 

instances of the best chromosome found so far 

[7].  

 

2.1   Selection 
There are two important issues in the evolution 

process of the genetic search: population diversity 

and selective pressure. Strong selective pressure may 

force early convergence to a local optimum solution. 

In contrast, the search is ineffective if the population 

is too diverse in terms of the desired qualities, and 

the selective pressure is weak. Parents are selected 

according to their fitness. The better the 

chromosomes are, the more chances to be selected 

they have. Chromosome with bigger fitness will be 

selected more times. 

This can be simulated by following algorithm: - 

 

Step 1: Calculate the sum of all chromosome 

fitnesses in population––sum S. 

Step 2: Generate random number from interval 

(0,S)––r. 

Step 3: Go through the population and sum fitnesses 

from 0––sum S. When the sum S is greater 

then r, stop and return the chromosome 

where you are. Of course, step 1 is 

performed only once for each population. 

2.2   Crossover 
Crossover results in two chromosomes being 

selected as parents and then crossed to produce two 

offspring. This results in some of the features of one 

parent being combined with those of the other. For 

example: 

a f c b g d  Parent 1 

D E C A F B  Parent 2 

a f c A F B  Offspring 1 

D E C b g d  Offspring 2 

In this case, the two parents have been split exactly 

in half, with each child receiving half the parent. The 

Chromosomes with higher fitness values are more 

frequently selected for crossover (thus enhancing 

their chances of passing on their traits to the next 

generation). This is an example of the survival of the 

fittest. Crossover acts as an accelerator of the search 

process performed by the GA. That is, crossover 

allows a GA to quickly combine beneficial new 

traits in the population. This means that crossover 

makes it possible to merge good solutions to 

generate potentially better ones. 

 

2.3   Mutation 
The other evolutionary operator is mutation. 

Mutation is used to alter one or more elements in the 

chromosome. For example, given the chromosome:   

a b d f a g 

Mutation might select the element at position 4 and 

change it to a Z thus resulting in a new chromosome: 

a b d Z a g 

The new chromosome generated by either crossover 

or mutation can then be introduced to the population 

and evaluated. This can be done immediately 

(incremental GAs) or en masse when a certain 

number of new chromosomes have been generated 

(generational GAs). Whichever approach is used, it 

is normally the case that an equivalent number of 

chromosomes are deleted from the population. 

Mutation helps to ensure diversity in the population. 

In terms of the search space, it helps the GA to jump 

to other parts of the space.  

 

3 Algorithmic Approach Used for 

Genetic Algorithms  
The basis of all GAs is the algorithm illustrated in 

the following steps: -  

a) initialize a set of genes. 

b) evaluate genes in population. 
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c) until the maximum number of generations. 

have been created. 

d) Crossover / mate genes in population. 

e) mutate genes in new population. 

f) evaluate genes in extended population. 

g) select genes to populate next generation. 

The algorithm uses point crossover as depicted in 

Figure 1. Point crossover works by selecting a break 

point in the chromosome of the two selected 

individuals and recombining them using each-

others’ half [8, 9]. 
 

 
Fig. 1. Information flow for the GA steps. 

 

4   Test Case Generation using Genetic 

Algorithms  
For the test case generation, the following figure 2 

has been designed, which consists of program P1 

having multiple input and one output variables. X is 

the set of all input variables and Y is the set of all 

output variables [5, 6, 10]. 

             x1 x2 . . . . .xn      X = {x1, x2, . . ., xn} 

 

 

 

 

 

       

Fig. 2. Shows the program P1 with multiple inputs 

and outputs. 

Test data for set X can be defined in terms of 

preconditions that describe valid and invalid data 

values for each input variable x. These preconditions 

may be determined from several sources, including 

the program's specification and the constraints of the 

computing environment. To create a test set, it is 

common to apply black-box test data selection 

criteria (such as equivalence-class partitioning, 

boundary value analysis, etc.) to each input variable 

of X with respect to the preconditions. After 

applying test selection criteria to each variable of X, 

we will have a set of test data values for each of the 

input variables:  

D(x1), D(x2), …, D(xn)                                         (1)  

Since program P1 has multiple input variables, we 

must now consider how to test combinations of 

program inputs. The most thorough approach is to 

test every possible combination of the selected test 

data values using GAs. The fitness functions based 

on other factors may be used to generate a sequence. 

In fact, in a more elaborate use of GAs, the data 

itself can be updated in a feedback loop based on the 

result of the execution of the test plan. Another point 

that needs to be noted is that the fitness function as 

defined earlier has a strong dependency to the 

application one needs to test. For instance, it may be 

more meaningful to use a function based on the 

standard deviation of the inconsistency so that test 

plans that do not fall within the norm are given a 

higher score and hence tested first. Our approach for 

the generation of optimized test plans is quite 

different from other nature-inspired strategies such 

as GA and Neural Networks [11, 12, 13].  

 

5 Results 
The algorithms presented in this paper have been 

implemented on MATLAB version 7.0 for the 

generation of optimized test cases using GAs. These 

algorithms have been tested extensively with 

different test inputs containing many special cases, 

including random testing and testing based on 

specification of software. The figure 3.1 shows the 

fitness value for the different number of input 

variables, figure 3.2 shows the optimized fitness 

value for the generation of reliable test cases., and 

the figure 3.3 shows the best, worst and mean test 

scores for the generation. 

 
Fig. 3.1. Shows the fitness value vs. number of 

variables. 

Program P1 

Y 

MATHEMATICAL and COMPUTATIONAL METHODS

ISSN: 1790-2769 110 ISBN: 978-960-474-133-5



 
Fig. 3.2. Shows the optimized output of fitness value 

vs. generation. 

 
Fig. 3.3. Shows the best, worst and mean test scores 

vs. generation. 

 

6   Perspectives and Further Work 
Genetic encoding techniques have significant 

influence on GAS' performance in solving some 

problems with big algorithm complexity. Our study 

shows that, in some problems some special codes 

must be taken, or else the algorithms may not be 

able to get convergence or the solution got is poor. 

The simulation shows that the proposed GAS with 

the special codes can find solutions with better 

quality in shorter time than some classical GAs. This 

paper has presented the optimised behaviour for the 

generation of software test cases using Genetic 

Algorithms as a new efficient class.  However, the 

generation of Genetic Algorithms based on real 

meta-level evolution of a suitable metrics over the 

search space is yet to be determined. From an 

empirical point of view, dynamical environments 

have revealed to be of a great help in characterizing 

metrics properties. Such metrics will explain the 

effectiveness of GAs in dynamic scenarios, which 

will open the new field for genetic encoding 

techniques. Further work will consist in studying in 

more details how can such an optimal meta-mask be 

evolved and what properties it must feature thus 

enlightening us on GAs dynamics. 
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