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Abstract: - The objective of this paper is to demonstrate the utilization of algebraic controller design in an 
unconventional ring while control integrating processes with time delay. In contrast to many other methods, the 
proposed method is not based on the time delay approximation. A control structure combining a simple feedback loop 
and a two-degrees-of-freedom control structures is considered. This structure can be conceived as a simple feedback 
loop with inner stabilizing loop. The control design is performed in the ring of retarded quasipolynomial (RQ) 
meromorphic functions (RMS) - an algebraic method based on the solution of the Bézout equation with Youla-Kučera 
parameterization is presented. Final controllers may be of so-called anisochronic type and ensure feedback loop 
stability, tracking of the step reference and load disturbance attenuation. Among many possible tuning methods, the 
dominant pole assignment method is adopted. 
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1   Introduction 
     Integrating models appear while modeling mass or 
energy accumulation, rotation of machineries, etc. These 
processes contain undesirable pole which need to be 
shifted by the feedback loop. As well, the great deal of 
technological and other processes own an input-output 
time delay. The presence of a delay entails problems 
with controllers design due to the fact that the delay 
significantly influences the feedback properties of a 
control system. The combination of integrating behavior 
of the system and delays makes a controller design more 
difficult. 
     There have been investigated various principles for 
control of integrating processes with a time delay. Some 
of these methods utilize standard PI or PID controllers, 
e.g. [1]-[3]. Some ideas are based on generalized Smith 
predictor, e.g. [4]-[6] or predictive approaches, mainly 
using state-space description [7].  
     One of significant approaches in modern control 
theory is a family of algebraic methods. Unlike some 
traditional state-space models, algebraic tools are based 
on fractional description of systems. Any transfer 
function can be expressed as a ratio of two elements in 
the appropriate ring. Traditional transfer function is 
represented by a polynomial fraction. This description is 
employed for algebraic control strategy for integrating 
delayed systems in [8] where the control structure with 
two feedback controllers (Fig.1) is considered. Another 
frequently used ring, besides polynomials, is designed as 
RPS (ring of Hurwitz stable and proper rational functions) 
[9], [10]. Algebraic control philosophy in this ring then 

exploits Bézout identity (Diophantine equation) along 
with Youla-Kučera parameterization to obtain stable and 
proper controllers. Algebraic controller design methods 
mentioned above requires rational approximation of 
exponentials expressing delays, usually via first order 
Padé approximation. 
    This contribution presents an algebraic method 
avoiding any time delay approximation. A ring of stable 
and proper retarded quasipolynomial meromorphic 
functions (RMS) for this purpose is utilized. A term of 
this ring is a ratio of two quasipolynomials where the 
denominator quasipolynomial is stable and the whole 
ratio is proper with respect to highest s-powers. The only 
effort to design controllers in this ring for integration 
delayed systems is in [11] where a simple 1DOF control 
structure was utilized. 
    In this paper, an algebraic approach based on Bézout 
identity and the Youla-Kučera parameterization using 
control system with two controllers is considered. The 
presented feedback system can be comprehend and 
solved in double meaning. First, it is possible to take the 
system as a whole. It means that overall input-output 
transfer functions are utilized for controller design. This 
approach was presented in [12] where it is compared 
with linear quadratic (LQ) polynomial approach [8]. 
Second, the control system can be viewed as a simple 
control feedback with inner (stabilizing) feedback loop. 
In this case, inner loop is solved first and the main loop 
subsequently. The final controllers ensure (in both cases) 
feedback loop stability, step reference tracking and load 
disturbance attenuation, and they are tuned by pole 
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assignment method described in [13]. The paper 
discusses and compares results of both cases.   
Illustrative example also demonstrates and verifies the 
usefulness and applicability of the proposed method. 
      
 
2   System Description in RMS Ring 
 
2.1 RMS Ring 
     Algebraic control methods are based on input-output 
system formulation in the form of transfer function. 
Conventional transfer functions as a ratio of two 
polynomials are not directly applicable for models 
containing delays due to exponentials resulting from the 
Laplace transform of delays. In order to express the 
numerator and denominator in polynomials, the first 
order Padé approximation is then usually utilized. 
However, there is also possible to use another way. 
Rational approximation can be avoided so that the 
transfer function can be performed in the ring of stable 
and proper RQ-meromorphic functions, RMS. 
     Any function over this ring is a ratio of two retarded 
quasipolynomials y(s)/x(s) in general. A denominator 
quasipolynomial x(s) of degree n means 
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where “retarded” refers to the fact that the highest s-
power is not affected by exponentials. Quasipolynomial 
(1) is stable iff it owns no finite zero s0 such that Re {s0} 
≥ 0. In other words, a term in RMS ring is analytic in the 
right half complex plane. Stability can be verified by the 
Michailov stability criterion, see e.g. in [14]. The 
numerator y(s) of an element in RMS can be factorized in 
the form )exp()(~)( ssysy τ−= , where τ > 0 and )(~ sy   is 
a retarded quasipolynomial of degree l 
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The quasipolynomial fraction is called proper iff l ≤ n.  
 
2.1 Integrating Delayed Plant in RMS 
     RMS ring can be naturally utilized for description of 
systems with delays in both left and right sides of 
appropriate differential equation. The transfer function 
of the plant or the controller is then expressed as a ratio 
of two terms in RMS ring. This contribution deals with 
the integrating time delay systems inscribed with the 
transfer function 
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where m0(s) is an appropriate quasipolynomial of degree 
one. The suitable form of m0(s) is discussed in the 
Section 4 where controller design for inner feedback 
loop is described. 
 
 
3   Control System with Two Controllers 
     Controller design described in Section 4 have been 
implemented for a simple feedback loop or internal 
model structure (IMC) up to this day. In this paper, the 
control system structure with two controllers is utilized, 
see Fig.1. 

 

 
Fig.1 - Proposed control structure with two controllers. 

 
     In the scheme, W(s) is the reference signal, D(s) is the 
load disturbance, E(s) is the control error, U0(s) is the 
controller output, U(s) is the plant input, and Y(s) is the 
plant output (controlled value) in the Laplace transform. 
The plant transfer function is depicted as )(sG , the 
“inner” feedback controller is )(sGQ , and )(sGR  
represents “outer” controller. 
     The following basic transfer function can be derived 
in the control system in general: 
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where 
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M(s) = A(s) P(s) + B(s) [R(s) + Q(s)]        (6) 
and R(s), Q(s) and P(s) are from RMS and the numerator 
of M(s) corresponds to the characteristic 
quasipolynomial of the closed loop. 
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4   Algebraic controller design in RMS ring 
     The algebraic controller design presented in this 
paper supposes that all transfer functions and signals in 
the control systems are in the form of a ratio of terms in 
RMS.  
     The control system scheme in Fig. 1 can be grasped 
either as the whole system corresponding to transfer 
functions (4) or as an inner feedback loop with controller 
GQ and outer loop with controller GR. Algebraic control 
design for the former was shown in [12]. This 
contribution concerns in the latter idea. 
     Basic requirements on the control systems are closed-
loop stability, asymptotical reference tracking and load 
disturbance attenuation. To avoid the presence of input 
disturbance in the inner feedback for controllers design, 
let the control system scheme be rearranged as in Fig.2. 
All transfer functions in (4) are still valid; however, 
controllers design for the inner loop excludes the 
disturbance. The idea is that inner feedback pre-
stabilizes the controlled process, i.e. zero pole is moved 
to the left, and the outer feedback controller ensures 
mentioned requirements for pre-stabilized system G0. 
 

 
Fig.2 - Reconfigured control scheme 

 
 
4.1 Inner loop pre-stabilization  
     Let an integrating delayed plant be pre-stabilized 
using a proportional controller GQ = q0. The condition 
for closed-loop stability is given by Diophantine 
equation 
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The natural task is to find a suitable stable 
quasipolynomial ( )sm0 . The solution of (6) gives 
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The requirement is q0 to be real; therefore the simplest 
m0(s) has to be of the form 

( ) ssKqsm +−= τexp)( 00          (9) 
Stability of m0(s) can be studied e.g. using Michajlov 
criterion, which results in 
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where 1>mA  is the gain margin 
( 1=mA correspondences to stability border).  
     Thus, transfer function of the inner feedback loop is 
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4.2 System stabilization  
     Now the task is to control G0 using a simple feedback 
with controller GR. However, the numerator and 
denominator in (10) are not from RMS and thus the 
transfer function must be factorized as 
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where )(1 sm  is a stable (quasi)polynomial. In order to 
have (12) as simple as possible, let  

λ+= ssm )(1            (13) 
where 0>λ  is a selectable real parameter which brings 
an additional degree of freedom. Naturally one can take 
another m1(s); an example is presented in Section 4.4.  
     Closed loop stability is ensured by a solution of 
Diophantine equation  
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it is possible to parameterize using the Youla-Kučera 
parameterization 
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to fulfill other control requirements via appropriate 
choice of Z(s). 
 
4.3 Reference Tracking and Disturbance 
Rejection 
     Parameterization (15) enables to find the solution of 
(13), so that requirements of reference tracking and 
disturbance rejection are accomplished. Both inputs are 
considered as step functions 
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where )(smw  and )(smd  are arbitrary stable 
(quasi)polynomials of degree one and HW(s), HD(s), 
FW(s), FD(s) MSR∈ . 
      The requirement is both FW(s) and FD(s) divide P(s); 
in other words control error, E(s), must be from RMS. It 
means that the numerator of P(s) contains at least one 
zero root.  Let 
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Then the feedback controller reads 
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Note that this controller is of so-called anisochronic 
structure [14], i.e. it owns delays in the feedback. 
     Recall that the inner-feedback controller is 
proportional, GQ = q0 ; however, in terms of algebraic 
philosophy and Fig. 1 it can be written also as 
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4.4 An Alternative Solution 
     As was mentioned in Section 4.1, stable 
(quasi)polynomial m1(s) can be chosen other than in 
(13). Another natural choice is 
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which gives the inner-feedback transfer function 
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In this case, stabilizing Diophantine equation  
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has one of particular solutions 
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and choosing 1)( 0 −= qsZ  in the Youla-Kučera 
parameterization, the final outer-feedback controller 
structure ensuring reference tracking and disturbance 
rejection is then 
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which is generalized (delayed) PI controller. The inner-
feedback controller is GQ = q0 again. 
 
4.5 Comparison to direct controller design 
     Control system in Fig. 1 can be conceived also as one 
system without separation of inner feedback loop. 
Algebraic controller design in RMS for this philosophy 
was proposed in [12] where the following two sets of 
(alternative) controllers were derived 
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where α  is a selectable real parameter constrained in the 
same way as q0 in (10), another selectable real parameter 

1,0∈γ  represents the distribution of the solution, see 
details in [12], and λ  has analogous function to λ .  
 
 
5   Controllers Tuning 
     The final sets of controllers, (19), (20), (25) – (27), 
still own unknown parameters that have to be set 
properly. There are naturally plenty of approaches 
solving the problem of controller tuning.  
     The well applicable and relatively simple tuning 
method was described e.g. in [13]. This method enables 
to set the desired dominant poles of the closed loop, the 
maximum number of which is given by the number, k, of 
unknown parameters in the characteristic 
quasipolynomial. If the dominant poles are denoted 
as kii ...1, =σ , the characteristic equation as m(s), and a 
vector of unknown parameters as v, then the following 
system of k linear equations is obtained 

kim i ...1;0),( ==vσ           (28) 
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     For complex poles, one root from each complex pair 
is taken and (28) is divided into two equations of the 
form 
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The significant feature is that set (28) or (29) is linear 
with respect to unknown parameters, which makes the 
solution easy to find. 
     In the case of delayed integrator, the system given by 
outer controller (25) has the characteristic 
quasipolynomial 

( )20 )exp()( sKqssm τ−+=          (30) 
with unknown parameter 0q . 
Since there is a single parameter to be found, 0q , the 
only double real dominant root or a conjugate pair of 
complex roots can be prescribed. Moreover, stability 
condition (10) must be considered. In case of real poles, 
the optimal choice is the prescription of leftmost 
dominant roots. It can be proved that this optimal double 
real pole is ensured by the option 

eτK
q 1
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which corresponds with dominant pole 1
2,1

−−= τσ  
In case of conjugate poles, the solution of (29) gives the 
same real  0q  if a complex root satisfies 

{ } { } { }( )τσσσ iii Imtan/ImRe −=          (32) 
     These roots (real or complex) must be chosen 
carefully because some attempts to place them 
excessively to the left in the complex plane can lead into 
the following situation. Due to the fact that the 
quasipolynomial (30) has the infinity number of roots, 
the chain of complex roots can move to the right near to 
the stability border (imaginary axis) and thus these roots 
can take over the role of dominant poles of the system.  
     The characteristic of the quasipolynomial feedback 
system with outer controller (19) is 

[ ]( )λτ +−+= ssKqssm )exp()( 0          (33) 
In this case, two parameters are to be set. Again, 
condition (10) must be fulfilled and 0>λ . The task of 
pole placement can be solved separately for each of 
factors in (33). In [8], the suggestion for the choice of λ  
is 

τ
λ 2
=             (34) 

which, in comparison with (31), does not allow for the 
dominant pole.  
     Coefficient γ in (26) and (27) influences the feedback 
system behavior as well because it appears in the 
numerators of closed loop transfer functions. However, it 
does not impact the spectrum of the system. In this 
paper, various values of γ are set randomly. 

6   Illustrative example 
 
     This simulation example composed in Matlab-
Simulink environment demonstrates the usability of the 
proposed controller design method in RMS. For the sake 
of limit space, simulation shows output only and the 
control action values are commented if necessary. 
    Hence, let K = 1 and τ  = 5. Assume controllers (19) 
and (20) first. The highest value of q0 according to (31) 
when a double real root is chosen is q0 = 0.0736 (for σ1,2 
= -0.2). This choice corresponding to gain margin Am = 
4.27 is confronted with the dominant pole σ = -0.18 ± 
0.1j, i.e. q0 = 0.0835, Am = 3.76. Parameter λ  is chosen 
according to (34) as 4.0=λ . The control performance of 
this controller is compared with controllers (19) and 
(25), with the same setting, in Fig. 3.  

 
Fig.3 - Step setpoint and load disturbance responses – 
Controllers1: (19), (20); Controllers2: (19), (25); K = 1, 
τ  = 5, λ  = 0.4, d = -0.1. 

 
     As can be seen in Fig.3, a change of q0 for controllers 
(19) and (20) does not affect setpoint response. 
Disturbance response for these controllers is much better 
then for (19) and (25); however, this performance is 
afflicted by higher control action peaks. 
     Finally, the response using (19) and (20) is compared 
with responses of the feedback system containing 
controllers (26) and (27) obtained via “direct” controller 
design in Fig.4. These controllers have the consistent 
setting with controllers (19) and (20), i.e. 4.0== λλ , 
q0 = α = 0.0736, and equable distribution of the solution, 
i.e. 5.0=γ . Fig.4 clearly indicates that controllers (19)-
(20) and (26) causes identical disturbance response. The 
advantage of the latter controllers insists in the 
possibility of setting the distribution of the solution 
using γ . However, proposed alternative approach via 
consideration of the inner feedback loop gives 
comparable simulation results. 
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Fig.4 - Step setpoint and load disturbance responses – 
Controllers1: (19), (20); Controllers3: (26); Controllers4: 
(27); K = 1, τ  = 5, 4.0== λλ , q0 = α = 0.0736, 

5.0=γ , d = -0.1. 
 
 
7   Conclusion 
     In this contribution, the problem of algebraic control 
design in the ring of stable and proper RQ meromorphic 
functions for integrating time delay processes has been 
investigated. The proposed method does not involve the 
delay approximation. The controller structure is derived 
through the solution of the Bézout equation with Youla-
Kučera parameterization. The methodology enables to 
find various controllers that satisfy requirements on 
closed loop stability, step reference tracking and step 
load disturbance attenuation. The control system 
combines conventional 1DOF and 2DOF schemes and it 
is conceived as a inner (pre-stabilizing) feedback loop 
plus outer loop. The final controllers are tuned using 
dominant pole assignment method. The efficiency and 
usability of the proposed method is verified on a 
simulation example. 
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