
Adaptive Progress Indicator for Long Running SQL Queries 
 

MARIO MILICEVIC, KRUNOSLAV ZUBRINIC, IVONA ZAKARIJA 
Department of Electrical Engineering and Information Technology  

University of Dubrovnik 
Cira Carica 4, 20000 Dubrovnik 

CROATIA 
  

 
 

Abstract: - Percent-done progress indicators are a technique for graphically showing how much of a long task has been 
completed. In the database environment such information is especially important during the long-running query 
execution. The proposed method constructs (during the learning phase) adaptive progress indicator model analyzing 
influence of averaged system state (represented with attributes describing CPU, memory and disk subsystem activity) 
on the query response time. Experimental evaluation shows that adaptive progress indicators can enhance users' 
experience and productivity.   
 
Key-Words: - progress indicator, query response time, long-running query 
 
1   Introduction 
In recent years Data Warehousing (DW) and Business 
Intelligence (BI) technologies have grown as new 
hardware and software solutions lowered cost and 
simplified implementation. DW applications have 
focused on strategic decision support, leading to 
complex and often long-running queries - but in the 
same time the real-time enterprise initiatives imply 
interactive analysis that requires fast query response 
times. Many different tools and techniques are discussed 
and implemented to improve DW performances, but the 
importance of the user-system interaction (interface) is 
often neglected - especially details like progress 
indicators (estimators). 
     Even two decades ago, Myers [9] analyzed the 
importance of progress indicators on the user experience 
in graphical user interfaces. He concluded that users 
have a strong preference for the progress indicators 
during long tasks, because they enhance the 
attractiveness and effectiveness of programs that 
incorporate them. Progress indicators give the users 
enough information at a quick glance, to estimate how 
much of the task (not necessarily in database context) 
has been completed, and when the task will be finished. 
     Unfortunately, today’s database systems provide only 
basic feedback to users about the query execution 
progress, especially regarding impact of the database 
server throughput on query response time. 
 
 
2   Related Work 
The basic considerations about response times has been 
discussed about thirty years ago, when Miller [7] 
described three important threshold levels of human 
attention. 

     Same limits were confirmed for the web based 
application in [10]: 
     - 0.1 second - the limit for having the user feel that 
the system is reacting instantaneously, meaning that no 
special feedback is necessary, except to display the 
result. 
     - 1.0 second - the limit for the user's flow of thought 
to stay uninterrupted, even though the user will notice 
the delay. Normally, no special feedback is necessary 
during delays of more than 0.1 but less than 1.0 second, 
but the user does lose the feeling of operating directly on 
the data. 
     - 10 seconds - the limit for keeping the user's 
attention focused on the dialogue. For longer delays, 
users will want to perform other tasks while waiting for 
the computer to finish, so they should be given feedback 
indicating when the computer expects to be done. 
Feedback during the delay is especially important if the 
response time is likely to be highly variable, since users 
will then not know what to expect. 
     Progress indicators in the database query processing 
context were discussed in the several recent works. 
Chaudhuri et al. [1] [2] introduced the concept of 
decomposing a query plan into a number of segments 
delimited by blocking operators. Query progress is 
estimated with the number of getnext() calls made by 
operators - but only in the context of an isolated system 
(where there is no other activity besides the execution of 
the query). 
     Similar approach was presented by Luo et al. [3] [4]. 
In order to support the progress indicators, authors 
divided a query plan into one or more segments and 
focused on the individual segments rather than the entire 
query plan, but again for the isolated single query. In the 
next work [5] they extended model with the multi-query 

Proceedings of the 8th WSEAS International Conference on APPLIED COMPUTER SCIENCE (ACS'08)

ISSN: 1790-5109 281 ISBN: 978-960-474-028-4

mailto:mario.milicevic@unidu.hr
mailto:krunoslav.zubrinic@unidu.hr
mailto:ivona.zakarija@unidu.hr


progress indicator, which explicitly considers 
concurrently running queries. 
     Mishra et al. [5] also presented framework for 
progress estimation of the operators and query segments 
using the getnext() model of query progress, with the 
similar limitations as mentioned before. 
    Majority of existing approaches relies on estimating 
intermediate cardinalities of operators in the query plan, 
but also  requires communication with database engine 
during the query execution - which can be demanding or 
even unsupported. 
 
 
3   Adaptive Progress Indicator 
In general, percent-done progress indicators are a 
technique for graphically showing how much of a long 
task has been completed [9]. 
 
 
3.1 General Properties of Progress Indicators 
Desirable properties of progress indicators were 
mentioned in [1]: 
     - Accuracy: the estimated percentage of work 
completed by the query at any point during its execution 
should be close to the actual percentage of work 
completed by the query at that point; 
     - Fine granularity: it follows from the above accuracy 
requirement that the estimator should be able to provide 
estimates at sufficiently fine granularity over the 
duration of the query’s execution; 
     - Low overhead: an essential requirement for a 
progress estimator to be practical is that it should impose 
low overhead on the actual execution of the query. 
     - Leveraging feedback from execution: as query 
execution progresses, more information based on 
(intermediate) results of execution becomes available. 
Ideally, an estimator should be able to take full 
advantage of such information; 
     - Monotonicity: since the actual execution of the 
query progresses monotonically, ideally, the estimated 
progress should be also be monotonically increasing 
from the start of query execution to its finish. 
     While the first three properties are unquestionable, 
insisting on the last two features can produce compelling 
problems during the implementation phase. Leveraging 
feedback from the execution based on the intermediate 
results relies on (often problematic and/or 
undocumented) communication with RDMS during the 
query execution. 
     Monotonicity is logical requirement in the context of 
the isolated single query system, but the real-life 
examples show that database server workloads and 
resource utilization change considerably over time - 
resulting in the varying response times for identical 

queries. Furthermore, server's throughput can be 
dramatically changed (increased or decreased) during the 
long-running query execution - so corresponding 
response time predictions (as a function of the 
instantaneous server workload) also vary widely (but not 
always monotonically). 
 
3.2 Model and Implementation 
Influence of the system load and the system throughput 
on the response time, as well as a possibility of the 
accurate response time prediction - as a function of 
actual system state (CPU, memory and disk subsystem 
activity) during 1s interval, immediately before the 
observed query activation - has been already analyzed in 
[6].  
     In this work we consider another approach for 
constructing model representing SQL query behavior 
under dynamic server workload. During the learning 
phase, system state is again monitored within 1s 
intervals, but during the complete query execution. In 
the next step collected averaged system states 
(represented with the averaged attributes) and measured 
response times are taken as an input into different data 
mining algorithms [13]. Using linear regression we can 
build usable models, but better results can be expected 
with more elaborate methods (e.g. M5P [11] [12]). In 
order to capture the true system's behavior under various 
conditions, at least three structurally different queries 
must be analyzed - leading to at least three parallel 
models. 
     Built models are used during the production phase for 
the estimation (in regular intervals - default value is 1s) 
of the remaining query execution time - as a function of 
averaged system state (till observed moment). Response 
time prediction with three similar, but different models 
has a smoothing effect and the relative prediction error 
decreases considerably. Unknown queries from the 
production phase can be associated with referent queries 
from the learning phase through the estimated cost 
(supplied by Cost Based Optimizer (CBO)).  
     System state monitoring and models implementation 
during production phase fulfill low-overhead 
requirement. 
 
 
3.3 Experimental Evaluation 
Different long-running queries were observed in the 
environment of the real database server (up to 200 
concurrent users).  
     Figure 1 shows distribution of the response times for 
one of analyzed queries. Response times vary between 
92s and 472s, with typical response time of 110s 
(measured in single-query environment, with minimized 
influence of database cache memory). It is obvious that 

Proceedings of the 8th WSEAS International Conference on APPLIED COMPUTER SCIENCE (ACS'08)

ISSN: 1790-5109 282 ISBN: 978-960-474-028-4



progress indicator models built with the single-query 
prerequisite cannot be applied effectively. 
 

 
Fig. 1. Query response time distribution 

     Figure 2 shows implementation results of the 
proposed adaptive model. Measured (actual) response 
time is 226s. Ideal response time (110s) as a result of the 
single-query model is also specified. It can be noticed 
that predicted response times vary with server workload 
fluctuations. Initial predictions (during the first 30s of 
query execution) are underestimated as a consequence of 
the higher server throughput. Prediction response time 
variations can be smoothed using moving averages. 

 

 
Fig. 2. Predicted response times during 

query execution 

     Behavior of the corresponding progress indicator is 
presented in Figure 3. - where it is obvious that progress 
indicator built on the (ideal) single-query model is 
unacceptable. Predicted progress - based on adaptive 

model - acceptably estimate real query progress. Query 
will be marked as 100% finished after 193s (what 
corresponds to 83% of real query progress). This result 
is quite acceptable taking into account that the single-
query model proclaims query completed after only 49% 
of real query progress. 
 

 
Fig. 3. Actual and predicted query progress 

     Figures 4 and 5 show identical query execution under 
different conditions (increased server workload). 
Measured (actual) response time is 362s. In this case, 
adaptive model lead to somewhat increased predicted 
response times, resulting in pessimistic predicted query 
progress: when query processing is completed, adaptive 
progress indicator shows 93% completion. Again, this 
result is acceptable taking into account that response 
time is 230% longer than under ideal conditions.  
 

 
Fig. 4. Predicted response times during 

query execution 

Proceedings of the 8th WSEAS International Conference on APPLIED COMPUTER SCIENCE (ACS'08)

ISSN: 1790-5109 283 ISBN: 978-960-474-028-4



 
Fig. 5. Actual and predicted query progress 

         In the first example even monotonicity requirement 
is generally fulfilled, unlike the second example where 
pronounced increase of server workload (in several 
moments) leads to decrement of predicted query 
completion (e.g. from 22% to 20%).  
 
 
4   Conclusion 
Proposed method for adaptive progress indicator is based 
on the tracking of the system state changes (represented 
with adequate attributes). Models built in the learning 
phase predict query execution time (total and remaining). 
Existence of the learning phase can perhaps present a 
problem in some environments, but - on the other hand - 
the fact that there is no need for detailed knowledge 
about server configuration or query structure can be an 
important achievement.  
 
 
References: 
[1] S.Chaudhuri, V. Narassaya, R. Ramamurthy, 

Estimating Progress of Execution for SQL Queries. 
SIGMOD, 2004. 

[2] S.Chaudhuri, R. Kaushik, R. Ramamurthy, When 
Can We Trust Progress Estimators for SQL Queries. 
SIGMOD, 2005. 

[3] G.Luo, J.Naughton, C.Ellman, M.Watzke, Increasing 
the Accuracy and Coverage of SQL Progress 
Indicators, ICDE, 2004. 

[4] G. Luo, J. Naughton, C. Ellman, M. Watzke, Toward 
a Progress Indicator for Database Queries, SIGMOD, 
2004. 

[5] G.Luo, J.Naughton, P.Yu, Multi-query SQL Progress 
Indicators, EDBT, 2006. 

[6] M.Milicevic, M.Baranovic, V.Batos, QoS control 
based on query response time prediction, WSEAS 

Transactions on Computers 8, Vol. 4, 2005, pp. 882-
889. 

[7] R.B.Miller, Response time in man-computer 
conversational transactions, Proceedings of AFIPS 
Fall Joint Computer Conference, Vol. 33, 1968, pp. 
267-277. 

[8] C.Mishra, N.Koudas, A Lightweight Online 
Framework For Query Progress Indicators, 23rd 
International Conference on Data Engineering,  
2007, pp. 1292-1296. 

[9] B.A.Myers, The importance of percent-done 
progress indicators for computer-human interfaces, 
Proceedings of  ACM CHI'85 Conf., 1985, pp.11-17. 

[10] J.Nielsen, Usability Engineering, Morgan 
Kaufmann, San Francisco, 1994. 

[11] J.R.Quinlan, Learning with continuous classes, 
Proceedings AI'92, ed., Sterling Adams, Singapore 
1992., pp. 343-348. 

[12] Y.Wang, I.H.Witten, Induction of model trees for 
predicting continuous classes, Proceedings of the 
Poster Papers of the European Conference on 
Machine Learning, Prague 1997., pp.128-137.  

[13] I.H.Witten, E.Frank, Data Mining: Practical 
machine learning tools with Java implementations, 
Morgan Kaufmann, 2000. 

 
 

Proceedings of the 8th WSEAS International Conference on APPLIED COMPUTER SCIENCE (ACS'08)

ISSN: 1790-5109 284 ISBN: 978-960-474-028-4




