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Abstract:
In the present paper an optimization approach using Mixed Integer Nonlinear Programming (MINLP) tech-

niques is presented. Different industrial applications are considered. The main issue in these problems are: which
decisions should be made in order to both maximize the profits of the production and to minimize the production
cycle time. Special Ordered Sets (SOS) are included in the models in order to allow the use of an efficient type of
the Branch and Bound (BB) algorithm. A set of test problems are solved using the Extended Cutting Plane (ECP)
method that has been proven efficient on many complex engineering problems. The obtained results are promising.
It is shown that the production planning can be done efficiently so that the throughput is increased.
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1 Introduction

The mixed integer optimization methods provides ef-
ficient tools, with negligible costs, that can be ap-
plied in the solving of complicated technical problems
in different industries. The objective in many indus-
tries is to achieve greater profits and/or smaller costs.
The costs might be of any kind: raw material, equip-
ment, salaries, energy, waste costs etc. Reduced en-
ergy consumption and/or a reduced amount of waste
are also important environmental issues that can, in
some cases, be tackled using mathematical optimiza-
tion.

In many industrial production planning problems
the task is to decide which decisions should be made
at what times in order to maximize the profit. The ob-
jective may, in theory, be formulated as the following:

max

{
1

τ

∫ τ

0
P (t)dt

}
(1)

where τ describes the length of the current period. The
function P (t) returns, for example, the profit of the
produced products at the time t. Note, that the same
decisions are made repeatedly in periods of the length
τ . By dividing the profit by the length of the period,
the objective gives a comparable measure of how much
profit is obtained per time unit. There are many pos-
sibilities and open questions in the modeling of the
price function P (t). However, when using gradient-
based optimization methods, it is preferable to formu-
late functions that can be expressed as explicit and,

hopefully, as convex as possible. Most optimization al-
gorithms perform well when the problems are convex,
that is, all functions are convex. Although many algo-
rithms have been proven global convergence for con-
vex problems, these usually also perform well in prob-
lems containing so called pseudo-convex functions.

Definition 1 Assume that f : C → IR is differen-
tiable. The function f is pseudo-convex if

∇f(x)T (y − x) ≥ 0 ⇒ f(y) ≥ f(x), ∀x, y ∈ C

or equivalently

f(y) < f(x) ⇒ ∇f(x)T (y − x) < 0, ∀x, y ∈ C.

From the definition above it can be noted that all
local minimas of a pseudo-convex function (that is, for
all x such that ∇f(x) = 0), are also global ones. The
following result regarding fractional functions is given
in [2]:

Theorem 2 Assume that f(x) is differentiable and a
real valued convex function and g(x) is a positive lin-
ear function over a convex set C . Then f(x)/g(x) is a
pseudo-convex function over C .

The theorem above is useful when proving the
pseudo-convexity for objective functions of the form
in 1.
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2 Chromatographic separation

In [4] a chromatographic separation problem is pre-
sented. The objective is to, within reasonable costs,
separate products of a mixture as efficiently as possible
during a continuous cyclic operation. The formulation
of the separation problem that was implemented and
solved can be summarized as follows:

max

{
1
τ

(
K∑

k=1

T∑
i=1

(
C∑

j=1

pjskij

)
− wdki

)}

subject to⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ti−1 ≤ ti
tT = τ

C∑
j=1

ykij +
K∑

l=1

xkil ≤ 1

yin
ki +

K∑
l=1

xlik ≤ 1

(ti − ti−1) − M1(1 − yin
ki ) ≤ dki

skij ≤ mkij

skij ≤ M2ykij
C∑

j=1

mkij − M4ykij ≤ qkij

Rj ·
K∑

k=1

T∑
i=1

qkij −
K∑

k=1

T∑
i=1

skij ≤ 0
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

mkij ≤
ti∫

ti−1

ckj(t, z
H
k )dt + M3(1 − ykij)

mkij ≥
ti∫

ti−1

ckj(t, z
H
k )dt − M3(1 −

J∑
l=1
l�=j

ykil)

(2)

where k = 1, . . . ,K, i = 1, . . . , T , and j = 1, . . . , C .
The concentrations ckj(t, z), that are integrands in (2),
are obtained by solving the following boundary value
problem:
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1 + Fβj)
∂ckj

∂t + F
C∑

l=1

βjl

(
ckl

∂ckj

∂t + ckj
∂ckl

∂t

)

+u
∂ckj

∂z = Dj
∂2ckj

∂z2

ckj(t, 0) = yin
k (t) · cin

j +
K∑

l=1

xlk(t) · clj(t, z
H
k )

ckj(0, z) = ckj(τ, z)

(3)

where the logical functions yin
k (t) and xlk(t) are de-

fined as follows:
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yin
k (t) =

T∑
i=1

yin
ki · δi(t)

xlk(t) =
T∑

i=1

xlik · δi(t)

δi(t) =

{
1 if t ∈ [ti−1, ti], i = 1, . . . , T
0 otherwise.

(4)

Note, that the logical decisions are modeled using bi-
nary variables while the other variables are continuous
ones. In (2) the objective function is pseudo-convex,
which can easily be verified by theorem 2.

3 Printed circuit board assembly

In [1] and [6] the production planning of a Printed
Circuit Board (PCB) assembly line is considered and
modeled as a Mixed Integer Linear Programming
(MILP) problem. The main issue is the choice of com-
ponents: which components should be assembled on
the respective machines in order to minimize the pro-
duction cycle time. In the following, an alternative ap-
proach using a pseudo-convex objective function, that
is similar to the one used in (2), is given.

max

{
1
τ

K∑
k=1

ckYk

}

subject to ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I∑
i=1

M∑
m=1

tikzikm ≤ τ

K∑
k=1

M∑
m=1

zikm = di

zikm − diyikm ≤ 0
yikm − zikm ≤ 0

M∑
m=1

yikm ≤ 1

yikm − Yk ≤ 0

(5)

where the indexes i = 1, . . . , I , j = 1, . . . , C , k =
1, . . . ,K and m = 1, . . . ,M . The variables Yk and
yikm are binary variables and zikm are integer ones.
The continuous variable τ denotes the assembly time
of the slowest machine in the production line. In (5)
all constraints are linear ones, the only nonlinear func-
tion is the objective function. Both problem formu-
lations (2) and (5) includes so-called Special Ordered
Sets of order one (SOS1) that allows an efficient type
of Branch and Bound (BB) algorithm that is needed
within the ECP-method.

4 The ECP-method

The example problems were solved using the Extended
Cutting Plane (ECP) method which is an extension of
Kelley’s Cutting Plane (CP) method [5] for solving
convex Non-Linear Programming (NLP) problems.
The ECP method is a general purpose MINLP method
with applicability to a large variety of MINLP prob-
lems. The ECP method was first extended in order to
handle convex MINLP problems [9]. The method was
further developed in [10] in order to enable the solving
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of problems consisting of both a pseudo-convex objec-
tive function and pseudo-convex constraints.

The general MINLP problems to be solved with
the ECP method can be formulated as follows:

min
z∈N∩L

f(z)

N = {z|g(z) ≤ 0}
L = {z|Az ≤ a, Bz = b} ∩ X × Y

(P )

The variable vector, z, consists of both a continuous
part and an integer part that are bound by the X and
Y sets, respectively. The objective function, f(z),
and the nonlinear constraints, g(z), should be diffe-
rentiable pseudo-convex functions defined on the set
L. If the functions g and f are pseudo-convex and if
the set X is a compact subset of 
n and if Y is a finite
discrete set in Zm, then the ECP algorithm will ensure
convergence to the global optimal solution.

The ECP method solves the problem (P) by solv-
ing the following sequence of Mixed Integer Linear
Programming (MILP) problems:

min
(μ,z)∈Ωk

μ (Pk)

where the set Ωk is defined by

Ωk = L ∩ {z | lj(z) ≤ 0, j = 1, 2, . . . , Jk}
This iterative procedure begins with Ω0 = L. Note,
that lj(z) ∈ Ωk are cutting planes underestimating the
entire feasible region of (P ) and Jk is the number of
cutting planes in Ωk at iteration k. After each iteration,
a new MILP subproblem is generated by adding and/or
modifying old cutting planes of the most violating non-
linear constraints. The generated cutting planes, with
respect to the constraints, are of the following type:

gi(z) + αr′
k ∇gi(z)T (z − zk) ≤ 0 (6)

where zk is the solution to the previous MILP prob-
lem (Pk). The MILP-subproblems were solved using
the CPLEX-software [7]. The scalar, αr′

k , is initially
one but can be updated in subsequent iterations in or-
der to guarantee that no part of the feasible region is
cut off. Convergence to the global solution is ensured
when the sequence of points converges to a solution in
the feasible region of the problem (P ), defined by the
set N ∩ L, where N ∩ L is a subset of Ωk.

The comparisons in [8], [4] and [3] revealed that
the ECP method generally requires relatively few func-
tion evalutions. For a detailed description of the ECP
algorithm, see [10].

5 Numerical examples

The parameters for the chromatographic separation
problem are given in [4]. The dimensions of the ex-
ample problems from (2) are shown in Table 1. A test
set of (PCB)-problems were generated using param-
eters given in [6], the dimensions of these problems
are shown in Table 2. The cpu-times in the tables in-
dicate the computing time for solving corresponding
problem.

Table 1: Characteristics of example problems (2).

Variables Constraints cpu
continuous integer linear nonlinear [sec]

34 14 42 16 105.1
63 27 78 32 487.8
92 71 114 48 36797.2

Table 2: Characteristics of example problems (5).

Variables Constraints cpu
continuous integer linear nonlinear [sec]

1 360 332 - 0.03
1 720 652 - 3.33
1 1800 1612 - 2.72
1 3600 3424 - 5.52

It is shown in Table 2 that relatively large prob-
lems can be solved rapidly as the (PCB)-problems con-
tain no nonlinear inequalities. The cpu-times in Table
1 indicates the time-consuming evaluations of the in-
tegral inequalities of the chromatographic separation
problem [4].

6 Conclusion

In the present paper, a pseudo-convex objective func-
tion for optimizing the production planning was pre-
sented. Two different industrial problems with a objec-
tive function of similar form were presented. The sep-
aration problem contains relatively few variables and
constraints but each evaluation of the nonlinear func-
tions requires the numerical solving of a PDE-system,
which in turn requires a certain amount of cpu-time.

The PCB-problem contains only linear functions
that can be evaluated rapidly, but the size of the prob-
lem is challenging.
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