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Abstract: We attempted to improve recognition accuracy, avoiding extensive retraining when the vocabulary is
changed or extended, by applying a hidden Markov model and neural associative memory based hybrid approach
to continuous speech recognition. In this approach hidden Markov models are used for subword-unit recognition
such as syllables. For a given subword-unit sequence a network of neural associative memories generates first
spoken single words and then the whole sentence. The fault-tolerance property of neural associative memory
enables the system to correctly recognize words although they are not perfectly pronounced or run into each other.
The approach are evaluated for TIMIT, and for WSJ1 5k and 20k test sets. The obtained results are encouraging.
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1 Introduction

State-of-the-art continuous speech recognition sys-
tems are usually based on the use of Hidden Markov
models (HMMs). However, HMMs suffer from sev-
eral difficulties, concerning increasing dictionary size,
different speaking styles of speakers, and weakness to
environmental conditions. In recent years a variety
of hybrid approaches based on HMMs and artifical
neural networks (ANNs) have been introduced to aug-
ment the performance of speech recognizers. Some
of these works involved the attempt of ANN architec-
tures to emulate HMMs [1], and ANNs were used to
estimate the HMM state-posterior probabilities from
the acoustic observations [2]. In another approach,
the ANN is used to extract observation feature vectors
for a HMM [3].

In this paper, we introduce a novel approach
based on HMMs on the elementary subword unit level
and neural associative memories (NAMs) on a higher
level, such as word and sentence levels. A NAM is a
realization of an associative memory in a single layer
artificial neural network. For large vocabulary contin-
uous speech recognition (LVCSR), context-dependent
phonemes are usually used to model the elementary
acoustic units of speech due to the insufficient amount
of training data. In our approach, a context-dependent
phoneme recognizer is used to find the best subword
unit sequence for a given speech utterance. These
subword units are longer than the context dependent
phonemes like syllables. First, HMMs generate a se-

quence of subword units and provide it to a network
of NAMs on a higher level. At the second stage of
recognition, single words are first recognized from the
HMM output stream and the whole sentence is re-
trieved according to the recognized single words. The
memory usage of the associative memories is propor-
tional to the number of distinct subword units and the
number of words required for a given recognition task.
This number is a function of the vocabulary size and
increases in general with the vocabulary size. Thanks
to the advantages of pattern completion and fault tol-
erance of NAM, the network of NAMs is able to han-
dle ambiguities on different levels that occur due to
the spurious subword-units (incorrectly recognized by
HMMs) in the input stream. The goal of the presented
approach is to take advantage of both HMMs and
NAMs in order to improve recognition performance
for large vocabularies and to generate more flexible
recognition systems. This paper first describes the hy-
brid system and evaluates it for TIMIT [6], WSJ1 5k
and 20k “hub” test sets. The results are then compared
with other studies in the literature.

2 Speech Material

2.1 TIMIT

TIMIT [6] is manually labelled and includes time-
aligned, manually verified phone and word segmen-
tations. For this study, the original set of phonemes
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was reduced to a set of 45 phonemes. The speech data
is composed of three sets: a set for training the acous-
tic models, a development set for optimising language
model scaling factor, and word insertion penalty, and
a test set for evaluating the acoustic models. Table 1
shows details of the data.

Table 1: TIMIT data sets.

Train Test Devel. Total
Word tokens 30132 9455 1570 41157

Speakers 462 144 24 630

2.2 Wall Street Journal

The Wall Street Journal (WSJ) corpus consists of two
parts, WSJ0 and WSJ1. The corpus covers 284 differ-
ent speakers. The training data is formed by combin-
ing training data from both WSJO and WSJ1.

We have worked on two test sets: the 5k (4986)
word closed vocabulary and 20k (19979) word open
vocabulary non-verbalized pronunciation WSJ tasks.
The WSJ1 5k development test has 2076 distinct
words and a total of 13866 words. For the 5k
word closed vocabulary task the si dt 05.odd set is
used, which is a subset of the WSJ1 5k development
test data formed by deleting sentences with out-of-
vocabulary (OOV) words, choosing every other re-
maining sentence, and thus is comprised of 248 sen-
tences from 10 speakers.

The WSJ1 20k development test has 2464 unique
words with the total count of 8227 words and contains
187 out of vocabulary words. 2.27 % of the word oc-
curences in the development set are not included in
the standard 20k-word vocabulary. The WSJ1 20k de-
velopment test data consists of 503 sentences from 10
speakers.

3 System

Fig. 1 shows the block diagram of the system based
on the presented approach. The first block is a set of
HMMs that transforms the speech utterance into a se-
quence of syllables. The reason for the use of a sylla-
ble as an output subword unit is that the subword unit
accuracy for syllables is higher than that for context-
dependent phonemes. The resulting syllables are then
sent to the second block which is a sentence recogni-
tion module consisting of a word recognition network
and a sentence recognition network. The word recog-
nition network extracts single words from this sylla-
ble stream and the sentence recognition network finds

the output sentence containing most of the recognized
words.

Fig. 1: The block diagram of the system.

3.1 Phoneme-based HMM

For TIMIT and WSJ the HMM systems are sepa-
rately developed using Sphinx-4 speech recognition
system [7]. The acoustic waveforms from TIMIT and
WSJ are parameterized into 13-dimensional cepstrum
along with computed delta and delta-deltas. While a
set of 45 phonemes and a silence model is used for
TIMIT, the system uses 50 phonemes and a silence
model for WSJ.

The context-dependent phoneme-based systems
follow a general strategy for acoustic model training.
All phone models are three-state left-to-right HMMs
without skip states. The training procedure essentially
involves the four steps, as follows:

◦ Single Gaussian monophone models are created and
initialized with the global mean and variance of the
training data and trained using reference transcrip-
tion derived from the pronunciation dictionary.

◦ All cross-word triphones that occur in the training
corpus are created by copying the monophone mod-
els for each required triphone context and the tran-
sition matrices across all the triphones of each base
phone are tied. Then, the models are retrained.

◦ For each group of triphones sharing the same base
phone, a decision tree is computed to cluster the
states into equivalence classes ensuring that enough
data to train will be associated with each cluster.
The distributions of all the states in each equiva-
lence cluster are tied. The state-clustered triphones
are then retrained.

◦ The number of mixture components in each state is
successively incremented by splitting single Gaus-
sian distributions into mixture distributions.

Further details of the training procedure are given
in [7]. The experiments are run using syllable level
trigram language models.

3.2 Sentence recognition module

3.2.1 Neural associative memories

A NAM realizes a mapping between an input space
and an output space, which can be specified by learn-
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ing from a finite set of patterns. There are two types
of associative memory, namely hetero-associative and
auto-associative memory. In heteroassociative mem-
ories, a mapping x �→ y is stored, a content pattern y
is addressed by its input pattern x. In auto-associative
memories, the content pattern y is equal to the cor-
responding input pattern x. We have chosen Will-
shaw’s simple binary model of associative memory
[8, 9]. The typical representation of a NAM is a ma-
trix. The binary patterns are stored by a “Hebbian”
learning rule [10]:

wij =
M∨

k=1

xk
i y

k
j , (1)

where M is the number of patterns, xk is the input
pattern, yk is the output pattern and wij corresponds
to the synaptic connectivity weight between neuron
i in the input population to neuron j in the address
population.

Retrieving is performed by a one-step retrieval
strategy with threshold:

yt
j = 1 ⇐ (Wxt)j ≥ Θ, (2)

where the threshold Θ is set to a global value and y is
the content pattern.

3.2.2 Architecture

Fig. 2 shows an overview of the sentence recognition
module which consists of two parts: word recognition
network (left of Fig. 2) and the sentence recognition
network (right of Fig. 2). Each box in Fig. 2 corre-
sponds to an associative memory.

The word recognition network consists of 5 inter-
connected associative memories and a representation
area SWU, where the memories M1 and M3 are au-
toassociative memories, while M2, WRD and M4 are
heteroassociative memories. The basic idea in this ap-
proach is that the word recognition network generates
a list of word hypotheses in terms of the syllables pro-
cessed each time a new syllable is read from the HMM
output sequence. The number of neurons used in all
the associative memories, except for WRD, depends
on the number of distinct subword units required for
the recognition task and in the case of the memory
WRD, the dependence is on the size of the task vo-
cabulary.

For continuous speech recognition tasks based
on subword units, it is usually difficult to determine
word boundaries because there is no boundary be-
tween words such as a small pause. Therefore, in our
approach the word boundary is detected when there
is no transition between the current and the subword

units previously recognized by the network during
recognition of the current word. However, in this way
the word recognition network always searches for a
long word. If two short words come subsequently in
a sentence and a long word consisting of these two
words exists in the vocabulary, it is not possible to
correctly recognize these two adjacent short words at
this level of the architecture. But this problem can
be solved on the upper (sentence) level of architecture
using additional information such as syntax.

Fig. 2: Overview of the sentence recognition module
and its internal connectivity.

The memories M1 and M3, each of which is a
memory matrix of dimension n×n (n is the number
of distinct syllables in the task vocabulary), store syl-
lables in columns using 1 out of n sparse binary code
vectors as input and output patterns. The memory M2,
a memory matrix of dimension n×n, stores the syl-
lable transitions within the words in the vocabulary
using 1 out of n sparse code vectors. The memory
WRD is a memory matrix of dimension n×r (r is a
specific number, 5000), and M4 is a memory matrix
of dimension r×n. They store each word in the vo-
cabulary using two representations, i.e. the syllablic
transcription of the word as k out of n code vector (k
is the number of syllables involved in the word) and
a randomly generated 2 out of r sparse binary code
vector. For each word, the input and output patterns
in WRD are given as syllable-level transcription and
as the randomly generated code vector of length r, re-
spectively, while the input and output patterns in M4
are used inversely.

In order to simplify the explanition of the retrieval
a “global time step” is introduced. In one global time
step, each memory performs one pattern retrieval, and
the results are forwarded to subsequent memories. All
memories work in parallel.

M1 serves as an input module and presents the
HMM output syllable to the network. M2 represents
the possible syllables which follow the resulting syl-
lable(s) (in SWU) in the previous retrieval step. M4
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represents the expected syllable in the current global
time step for the word hypothesis generated (in WRD)
in the previous global time step. But, at the begin-
ning of each word the memories M2 and M4 do not
represent any syllable due to the fact that no expec-
tation can be generated in the beginning of the word
recognition process. The outputs of the memories M1,
M2 and M4 are summed up and a common threshold
is then applied. In this way, the spurious syllables,
which can cause ambiguities on the word level, may
be corrected by the network. The resulting syllable is
represented in the area SWU.

The memory M3 stores the processed syllables up
to the current step. Each time a new syllable has been
recognized and stored in M3, WRD is responsible for
generating a word hypothesis or superposition of word
hypotheses with respect to the syllables activated in
M3. When a word boundary is detected, the iterations
for the current word end. If the word recognition net-
work can not decide on a unique word representation
for a given syllable sequence, a superposition of word
hypotheses matching the input sequence is generated
by the network. After recognition of each word hy-
pothesis (or superposition of word hypotheses), it is
forwarded to the network that is responsible to recog-
nize the sentence.

The second part in the architecture is the sentence
recognition network which consists of one autoasso-
ciative memory M5 and two heteroassociative mem-
ories BGW and SEN. Given a sequence of words (or
superpositions of words), it recognizes the output se-
quence of word trigrams. The memory BGW is a
memory matrix of dimension V ×L , where V is the
number of words in the vocabulary and L is the num-
ber of word bigrams in the test set, and transforms
two sequential output words into a binary bigram rep-
resentation. The memory M5 is a memory matrix of
dimension (L)×(L). It stores the bigram representa-
tions of the output words. The last memory SEN is a
memory matrix of dimension K×K, where K is the
number of word trigrams in the test set. After recog-
nition of all words, all the bigram representations are
sent to SEN as input and the output sequence of word
trigrams are recognized.

4 Experiments

The presented hybrid system was evaluated on TIMIT
test set, the 5k (4986) word closed vocabulary and 20k
(19979) word open vocabulary nonverbalised pronun-
ciation WSJ tasks. TIMIT vocabulary contains 6218
distinct words, 17983 word bigrams and 20075 word
trigrams.

For 20k WSJ open test, over 2% of the word oc-

currences are not included in the standard 20k-word
vocabulary. Naturally, words that are not in the vo-
cabulary can not be recognized accurately. The 20k-
word open vocabulary contains 5965 syllables, 6543
word bigrams and 7342 word trigrams. The 5k-word
closed vocabulary contains 2682 syllables, 6241 word
bigrams and 7514 word trigrams.

A speech utterance such as “japan plays by dif-
ferent rules ones rigged for the producer” is first pro-
cessed by a phoneme-based HMM and a syllable se-
quence is then generated, e.g. “START jh ah p ae n
p l ey z b ay d ih f er *** r uw l d w ah n z r ih g d
f ao r dh ah p r ah d uw s er END”, where the last
syllable “***” of the word “different” can not be rec-
ognized (it should have been “ah n t”) and the single
syllable word “rules” is also incorrectly recognized
as “r uw l d”, which should have been “r uw l z”.
“START” and “END” denote the beginning and end
of the sentence, respectively.

In Fig. 3, the state of the word recognition net-
work is shown after the first syllable “jh ah” in the
HMM output sequence has been processed. M1 shows
the first syllable received from the HMM output at the
current global time step, while M2 and M4 do not rep-
resent any syllable due to the beginning of the word
recognition process. Therefore, SWU represents the
same syllable and it is forwarded to M3. The syllable
in M3 does not allow for a unique word interpretation
because there are many words in the vocabulary which
contain the syllable “jh ah” and thus a list (superposi-
tion) of all matching word patterns (with the highest
activation) is finally displayed in WRD. Note that this
additional calculation of overlaps with word patterns
is only holded for display and only in the WRD mem-
ory.

Fig. 3: The word recognition module after the first
syllable “jh ah” has been processed. Because of the
limited display area of WRD, only the first 5 matching
words are displayed in WRD.

Fig. 4 shows the sentence recognition module af-
ter the second syllable belonging to the word “japan”
has been recognized. M1 represents the HMM out-
put, the memories M2 and M4 represent the expected
syllable at the current step with respect to the word
hypotheses represented in WRD and the syllable rep-
resented in SWU in Fig. 3. The word recognition
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network generates a unique decision for “JAPAN” in
WRD, after processing both syllables belonging to the
word. Fig. 5 shows the sentence recognition module
after the first word “JAPAN” has been recognized. Af-
ter recognition, the generated word hypothesis is for-
warded to the memory BGW to generate the bigram
word representation. Since the word “JAPAN” is the
first word in the sentence, the first bigram representa-
tion is given as “START+JAPAN”and stored in M5.

Fig. 6 shows the sentence recognition module af-
ter the syllables “d ih” and “f er” belonging to the
word “DIFFERENT” have been processed. The word
recognition network produces a superposition of word
hypotheses in WRD containing the syllables in M3
and. The superposition of word hypotheses is then
sent to BGW to generate bigram word representations.

Fig. 4: The word recognition module after both sylla-
bles belonging to the word “JAPAN” have been pro-
cessed.

Fig. 5: The word recognition module after the first
word “JAPAN” has been recognized.

Fig. 7 shows the sentence recognition module
after all words have been recognized. M5 stores all
bigram representations of the output words generated
by BGW module. These bigram representations will
be used as input in SEN in order to recognize the
spoken sentence. The output of SEN is a sequence
of word-level trigrams of the spoken sentence and,
these trigrams are used to detect the syntax of
the sentence. The sentence is then extracted from
this output sequence using a dynamic algorithm,
e.g. “start-japan+plays japan-plays+by plays-
by+different by-different+rules different-rules+ones

Fig. 6: The word recognition module after the incom-
plete set of syllables for the word “DIFFERENT” has
been processed.

rules-ones+rigged ones-rigged+for rigged-for+the
for-the+producer the-producer+end” is transformed
into “japan plays by different rules ones rigged for
the producer”.

Fig. 7: The word recognition module after all words
have been recognized.

5 Results

The WER results for TIMIT test set are shown in Ta-
ble 2 and the system based on the proposed approach
achieved a lower WER than a HMM based triphone
recognizer. The WER results for the 5k and 20k de-
velopment test sets of WSJ1 are given in Tables 3 and
4. It is shown that the system based on the proposed
approach has decreased the word error rates substan-
tially, compared to WERs in [4] which uses a cross-
word triphone based system and in [5] which is based
on language model training.

Table 2: Word error rates (WER) on TIMIT.

Recognizer Type WER (%)
Context Dep. Phoneme [11] 8.1 ± 0.6

Our Hybrid Approach 7.03
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Table 3: WER on WSJ1 5k (si dt 5k.odd).

Recognizer Type WER (%)
Cross-word Triphone [4] 6.09

Our Hybrid Approach 4.91

Table 4: WER on WSJ1 20k (si dt 20k).

Recognizer Type WER (%)
Language Training [5] 16.4
Our Hybrid Approach 13.21

6 Conclusion

In this paper, a new hybrid HMM/NAM approach
to LVCSR is represented, where HMM is used on
a subword-unit level and NAM is used on a higher
level, such as word and sentence levels. The output of
HMMs can be various types of subword units, such as
context-dependent phonemes, demi-syllables or syl-
lables. The subword unit type is chosen in terms of
the highest subword unit accuracy. If the ambiguity
on the subword unit level can not be solved, the sys-
tem then represents the ambiguity on the word level
as a superposition of all possible words and resolves
the ambiguity on the word level in the syntax of the
whole sentence.

The system was evaluated on TIMIT, 5k closed
and 20k open vocabulary tasks of WSJ1 and consider-
able improvements over the performance of the HMM
based recognizers were obtained. The implemented
system takes advantage of NAMs, such as flexibility
and fault tolerance. Thus, the network of NAMs is
able to solve ambiguities that occur due to incorrectly
recognized subword units or words, or pronounciation
variation. On the other hand, in terms of computa-
tional complexity, the presented system has an advan-
tage over pure HMM based recognition systems. The
system utilizes a task vocabulary of syllables and the
number of syllables in the vocabulary is less than that
of words. Therefore, on the HMM level, it takes less
time to search for the most appropirate syllable se-
quence for a given speech utterance. Because of the
sparse representation of syllables and words in NAMs,
the computational cost in NAMs is only limited for
active input units. Due to the high storage capacities
of the the sparse binary associative memories [9], the
presented system scales well with large vocabularies.

Compared to HMMs, another advantage of
NAMs is its more flexible functionality in terms of
the lexicon generation. In order to enlarge the vocab-
ulary, the modifications to the lexicon, the language
model and training of new subword-unit models are

necessary for HMMs, while word recognition net-
work in the presented system needs only a sequence of
subword-units from HMMs for the novel word with-
out further training of HMMs [12].
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