
Developing components for distributed search engine ObjectSpot

ZDENĚK DRBÁLEK, TOMÁŠ DULÍK, ROBERT KOBLISCHKE

Faculty of Applied Informatics
Tomas Bata University in Zlín
Nad Stráněmi 4511, 76005 Zlín

CZECH REPUBLIC

Abstract: - The development of components for Search Engine ObjectSpot realized within the frame of iCamp.eu.
This paper deals with development and implementation of following components: Spell-Checker, PDF/DOC full-text
search and content analysis, results grouping / clustering using Search Result Clustering (SRC)

Keywords: - ObjectSpot, iCamp, Spell-Checker, PDF fulltext searching, DOC fulltext searching, result grouping, SRC

1 Introduction
The iCamp is a research and development project
funded by the European Commission under the IST
(Information Society Technology) program of FP6.
The project aims at creating an infrastructure for
collaboration and networking across systems,
countries, and disciplines in Higher Education. [1]

From the user point of view, at the first glance
ObjectSpot looks like Google, but in fact, the
difference is huge: Google searches through publicly
accessible web sites, while ObjectSpot searches in
various digital libraries that have restricted access for
the general public.

This paper deals with development of components for
ObjectSpot search engine. Development of ObjectSpot
is in early stage, however at this time it has many
features already implemented. The ObjectSpot is
internally a web-based federated search client plus
middle-ware mediator for distributing queries and
collecting results to digital libraries and learning object
repositories that implement the Simple Query Interface
[6] (SQI). The latest version of object spot can be
found at [2].

The ObjectSpot inner structure is designed as follows.
There is central portlet, which passes search queries to
a mediator and mediator then tries to connect to each
of the active repositories asynchronously via SQI calls.
The repository targets then return SOAP messages
containing search results wrapped into RSS.
Before the mediator returns the results to the
ObjectSpot portlet, it parses these results and

computes a relevance rank using a precomputed
inverse document frequencies. These rank scores are
then utilized by the portlet to insert the new results at
the appropriate rank position. [3]

This paper is organized as follows. In Section 2, a
Spell-Checker component and its development is
described. The Section 3 introduces PDF/DOC
searching functionality, conversion, data storage and
gathering metadata. The Section 4 contains a brief
presentation of Search Result Clustering (SRC).
Finally, Section 5 offers the conclusion remarks.

2 Spell-Checker component
In general, a Spell-Checker is a software program
designed to verify the spelling of words. The Spell-
Checker helps a user to ensure correct spelling, while
suggesting corrections for wrongly spelled words.
Spell-Checkers are either stand-alone applications
capable of operating on a block of text, or they can be
a feature of a larger application, such as a word
processor, email client, electronic dictionary, or search
engine.[4] The Spell-Checkers are commonly used in
many search engines such as Google or Yahoo. One of
the major reasons that support the idea of Spell-
Checker implementation could be the fact that
according to some studies, over 15% of search terms
entered by users are misspelled.
The solution that was used for the ObjectSpot purpose
is based on ”aspell” unix console utility and
implemented as another feature to the mediator. The
algorithm itself only checks aspell and gives its
suggestion for entered term, no matter if the
misspelled term has been searched already. In fact,

DISTANCE LEARNING, MULTIMEDIA and VIDEO TECHNOLOGIES

ISSN: 1790-5109 82 ISBN: 978-960-474-005-5

more advanced version of spell-checker was imple-
mented earlier. That method suggested the term if it
was searched more often than the misspelled word.
After long-term tests, we found that this approach was
not optimal and therefore we rolled back to previous
version that is in the production mode nowadays and is
described at [2].

The current implementation of Spell-Checker seems to
be stable and reliable. However in the next stage
multilingual support should be considered. The
complete source code of this component can be
reached at [5].

3 PDF/DOC search engine component
The PDF/DOC search engine component is in early
stage of development. However, it is already capable
of indexing PDF/DOC file formats and storing them
into database for later use. The component consists of
two parts (subcomponents). The first part is the
indexer, which converts PDF/DOC files to plaintext,
casts the result into a ts_vector [7] and inserts this
vector into database. That is much more efficient and
brings capability of fulltext searching. The second part
is just a simple web application that connects to
database and searches through all database records,
trying to find the search term. For better
understanding, see the figure showed bellow.

Fig. 1 – Fulltext search system flowchart

All the processes in the left part of the Fig. 1 are
running periodically within the definite time interval.
On the right side of the figure, there is the querying
part, where the fulltext queries for database are
constructed and executed and the result is presented to
the user.

As long as the development of this component was
finished recently, the component will be deployed on

our server [8] and complete source code can be found
in iCamp project SVN repository at SourceForge.net.

The algorithm has several configuration parameters.
The configuration consists of database config section,
File system config, Other config and Daemon config.

Example of current release is presented on the next
figure.

Fig. 2 – Simple view of search engine prototype
Gathering metadata

Another task was the implementation of metadata
gathering. In other words that means getting
information like author(s), modification date or
document outline from the indexed documents. Since
getting the document outline from the plaintext is
complicated, it is much easier to use the “pdftohtml”
tool [9], which tries to parse the document and in most
cases it obtains well-formed “document outline” as
result. After that, the metadata gathering algorithm
goes through this result, finds the document outline
and presents it to the user. Some experiments have
been done with the “pdftotext” tool, which is normally
used for conversion PDF files to raw text, but there
was an issue when the structured PDF was created
using styles (headings, other style types, etc.), the
command converts all this structures to the basic
formatting types like font size, font style, bold italic,
etc. For that reason it was not possible to reliably
distinguish the headlines from normal text in
paragraphs.

In future development, there should be no problem to
get the whole plaintext, parse it to tokens, then filter
stop-words and display the keyword frequencies. The
top N words could be considered as keywords. Still the
most reliable way is force the user to fill all the
necessary metadata required. The problem is that
many PDF document creation programs do not fill the
metadata in default configuration

DISTANCE LEARNING, MULTIMEDIA and VIDEO TECHNOLOGIES

ISSN: 1790-5109 83 ISBN: 978-960-474-005-5

Further development

In this section, the future development objectives are
presented. More time should be spent on these points
in order to turn this system to real production state.

• Test the system with much more documents
• Experimentally set the algorithm parameters
• Support word frequencies (keywords)
• Find some other technique for getting metadata
• Optimize source code, make it more reliable
• Fit and implement our PDF/DOC search

component into the ObjectSpot mediator
• Implement a “web spider” component, which

would be able to crawl through the internet and
find the PDF/DOC files automatically without the
need of storing them locally

• User-friendly daemon process termination
• More advance technique to distinguish file formats

(currently, only file extension is used for this)

4 Search result clustering (SRC)

In this section, we will discuss search result clustering
(SRC) [10] and measure the performance of individual
grouping algorithm based on existing open-source
solution. Not much programming work has been done
here in this part. This part is aimed mainly on using
existing system that is based on Carrot2.
Carrot2 [11] is open-source Search results clustering
engine. It implements all the functionality that is
necessary to group search results and to classify them
into categories. In addition, some very advanced
features like Lingo3D are supported. Lingo3D [12] is
the third generation of high-performance document
clustering engine featuring hierarchical clustering,
ontologies, synonyms and advanced tuning
capabilities.

Algorithms description

Speed Algorithm

100 200 400

Supports
hierarchies

FuzzyAnts 2.17 8.70 16.93 Yes
HAOG-STC 0.04 0.11 0.28 Yes
Lingo 0.34 0.52 0.84 No
Rough k-
means

1.38 6.76 27.73 No

STC 0.04 0.1 0.23 No
Lingo3G 0.03 0.06 0.13 Yes
Table 1 – Grouping algorithm overview

Implementation example

The following figure shows the Carrot2 user interface
and the grouping of the results into clusters.

Fig. 3 – Example of result clustering

Note that different parameters can be defined for
different algorithms. On the figure above the Lingo
classic Cluster is selected. In the left panel, different
clusters can be seen. Those categories represent the
output of the algorithm. The Lingo supports
hierarchical structures also, so if the appropriate term
is entered it can create a tree with subcategories.

Further development

Certainly, the clustering of search results is whole field
of study. Carrot2 brings very advanced technology that
is dealing with CRS. There is also the API written in
Java. That means that it should not be a problem to
build own application that would meet the
requirements based on this engine.

5 Conclusion
Three functional components have been presented in
this paper. They are usable and helpful for wide range
of users bringing them comfort they demand. It helps
them firstly to check their inputs and in case of
misspelling correct terms in relevant way. Secondly, it
brings more documents to be indexed and so bring
more relevant results and finally it helps user with
organizing search results by grouping them to thematic
categories which will save much time to user.
All the components were more or less well
implemented and at this stage, they are tested to be
able to work in production modes.
Note that the source code is placed on the iCamp
project SVN repository at Sourceforce.net.

DISTANCE LEARNING, MULTIMEDIA and VIDEO TECHNOLOGIES

ISSN: 1790-5109 84 ISBN: 978-960-474-005-5

References:

[1] Crossing the Border to the Future of Education
[online]. ICamp, 2004 [cit. 2008-04-17]. Available on
WWW: <http://www.iCamp-project.org/>

[2] Deployed implementation of ObjectSpot available
on WWW: http://teldev.wu-wien.ac.at/mediator-
2/portlet/

 [3] Robert Koblischke, Inside ObjectSpot [online].
ICamp, 2007 [cit. 2008-06-20] Available on WWW:
<http://www.icamp.eu/2007/10/10/inside-objectspot/>

[4] Spell checker [online]. 2001, 15 May 2008
 [cit. 2008-05-16] Available on WWW:
<http://en.wikipedia.org/wiki/Spell_checker>

[5] Source code of Spell-Checker available on WWW:
<https://icamp.svn.sourceforge.net/svnroot/icamp/med
iator-2/trunk>

[6] Bernd Simon, David Massart, Frans van Assche,
Stefaan Ternier, Erik Duval, Simple Query Interface
Specification [online] 2005-04-20
 [cit. 2008-05-16]. Available on WWW:
<http://www.icamp.eu/wp-
content/uploads/2007/05/sqi_v10beta_2005_04_13.pdf
>

[7] Teodor Sigaev, Full-Text Search in PostgreSQL: A
Gentle Introduction [online]. 2007
 [cit. 2008-06-21]. Available on WWW:
<http://www.sai.msu.su/~megera/postgres/fts/doc/fts-
overview.html>

[8] PDF/DOC search engine – deployed at available
on WWW:
<http://zamestnanci.fai.utb.cz/~drbalek/pdfdocsearch>

[9] PDF2HTML project available on WWW:
http://sourceforge.net/projects/pdftohtml/

[10] Hua-Jun Zeng, Qi-Cai He, Zheng Chen, Wei-
Ying Ma,Jinwen Ma, Learning to Cluster Web Search
Results [online]. 2004-09-05
 [cit. 2008-05-26]. Available on WWW:
<http://research.microsoft.com/users/hjzeng/paper/p23
0-zeng.pdf>

[11] Carrot2 project available on WWW:
< http://project.carrot2.org/>

[12] Lingo3D project available on WWW:
< http://company.carrot-search.com/lingo-
applications.html>

DISTANCE LEARNING, MULTIMEDIA and VIDEO TECHNOLOGIES

ISSN: 1790-5109 85 ISBN: 978-960-474-005-5

