
Microprocessor-based Neural Network Controller of a
Stepper Motor for a Manipulator Arm

GEORGE K. ADAM1, GEORGIA GARANI1,

VILEM SROVNAL2, JIRI KOZIOREK2

1Department of Informatics and Telecommunications
Technological Educational Institute of Larissa

41110 Larissa
GREECE

gadam@teilar.gr, http://www.cs.teilar.gr/gadam

2Department of Measurements and Control
VSB Technological University of Ostrava

17. listopadu, 15 708 33 Ostrava
CZECH REPUBLIC

vilem.srovnal@vsb.cz

Abstract: - The development and implementation of an FPGA neural network control system for motion
control is a task that requires techniques and methods from several engineering fields. In this paper is
presented the design of a microprocessor-based neural control system for the realization of the control of a
stepper motor for a manipulator arm. The application circuit developed is a specific design of a low-cost
embedded system. Simulation and analysis tests were carried out to verify the design of the prototype circuit
board. The preliminary results obtained provide the basis for further future research and refinement of the
controller.

Key-Words: - Microprocessor control, Neural network, VHDL Model.

1 Introduction
In modern industrial systems, FPGA-based
intelligent controllers play an important role in
improving the performance of the control system
applications. In addition, the rapid development of
digital techniques and logic synthesis methods that
has been observed the last decade [1], provide more
effective implementation of the control circuits
design. The expansion of these techniques includes
also a number of methods and techniques from
artificial intelligence (AI) field. Expert systems and
neural networks are some of the artificial
intelligence techniques used in computer emulation
of human thinking applied in control [2], [3].
Particularly interesting are also fuzzy systems [4]
which have had rapid growth in the field of
intelligent control (fuzzy control) [5].
 Artificial intelligence has made significant
advances. Interest in artificial neural networks
(ANN) surged in 1985, following the discovery of
an effective learning algorithm (back propagation
algorithm) [6]. A neural network is a system made
up of several basic entities (neurons) which are
interconnected and operate in parallel transmitting

signals to one another in order to achieve a certain
processing task, while back propagation is used to
train the network [7]. This algorithm is a gradient
method aiming to minimize the total operation error
of the neural network by altering the connection
weights. In recent years, neural solutions have been
suggested for many industrial control systems using
mainly feed-forward (or layered) and inverse (or
recurrent) configuration neural networks [8], [9]. In
inverse configuration, the neural network receives
the output of the system under control, and generates
an approximation of the input vector, the difference
(error) of which is minimized during the training. It
can be shown that whatever problems can be solved
by inverse network can also be solved by the
equivalent feed-forward network with proper
external connection. In other words, a neural
controller could be build with an input consisted of
the system’s output plus the output reference, an
approach followed in this work too.
 This paper presents the design work of a hybrid
neural network control system for a manipulator
arm, based on Intel 80C188EB microprocessor (25
MHz, 20bits address bus, 1M address space, 8 bits

9th WSEAS International Conference on NEURAL NETWORKS (NN’08), Sofia, Bulgaria, May 2-4, 2008

ISBN: 978-960-6766-56-5 148 ISSN: 1790-5109

data bus, 16 I/O pins, 3 timers/counters, 5V). The
neural network controller is used in conjunction with
a programmable peripheral interface unit to drive a
stepper motor that controls the position of the end-
tool of the manipulator’s arm. The design of the
neural controller is based upon a new methodology
for implementing neural networks into digital
hardware presented by M. Cirstea et. al. [10], and
applied in current and speed control of induction
motors [11], [12]. This methodology is very
interesting and seems to have the potential for a
variety of future applications in control systems. In
this paper, this neural network implementation
design method is applied in the control of a stepper
motor. Stepper motors that feature unipolar drives
are widely used in applications that require high
torque loads and fast position attainment.
 The controller basically consists of the
80C188EB microprocessor unit, an 82C55
programmable peripheral interface unit (PPI), an
analog-to-digital converter ADC0804, and a neural
network controller of manipulator’s stepper motor,
implemented in a Xilinx XC2018 FPGA (Field
Programmable Gate Array) device. The control
system developed is an open modular architecture,
which allows the incorporation of additional
modules particularly communication modules for
distributed control. Verification of the design is
carried out through simulations in VHDL (IEEE
Standard Hardware Description Language), and real
tests in a machines construction company (Adam
Machines Constructions Co., Volos, Greece).
 The remainder of this paper is organized as
follows. Section 2 provides a brief description of the
manufacturing workcell and the manipulator.
Section 3 describes the methodology used in
designing the neural controller for the stepper motor
of the manipulator under control. Section 4 provides
details of the hardware design implementation
process, including VHDL model generation of the
motor neural controller and FPGA synthesis. In
section 5 is provided a brief performance analysis of
the simulation results obtained for the controller’s
functionality. Conclusions and related future
research are given in Section 6.

2 The Manufacturing Workcell
The initial manufacturing system under investigation
was a robotics workcell that was consisted of an in-
house developed manipulator-arm, the controller
unit (based on Motorola MC68705P3
microcontroller), an operator's control panel
(keyboard & indicators), and various other

mechanical parts and equipment required for the
assembly tasks and experiments performed (e.g., a
working platform and a conveyor belt). The
microcontroller MC68705P3 is a single-chip
integrated circuit designed for embedded industrial
control applications. A simplified block diagram of
the microcontroller-based manipulator controller is
given in Fig.1.

CPU

P
W
M

clock

RAM
112x8

ROM
1084

A/D

Po
rt

B
Po

rt
A

Port C

Timer

A
dd

re
ss

/d
at

a
bu

s

IRQs

Bridges
&

switches

Pr
og

ra
m

m
ab

le
Ti

m
er

s

Keyboard Indicators

M

MCU68705P3

Controller

robot

Fig. 1. Block diagram of the controller.

 The new proposed architecture of the neural
network controller is based upon the 80C188EB
Intel microprocessor, designed for embedded
industrial control applications and the FPGA
implemented neural network. This work is focused
on the control system that drives a single stepper
motor, which in turn defines the angular position of
the manipulator’s end-tool. A configuration of the
control system is shown in Fig. 2.

80C188EB
microprocessor

RAMEEPROM
A/D

D
ar

lin
gt

on
sw

itc
he

s
PPI

M

Controller robot

FPGA neural
controller

Fig. 2. Block diagram of the hybrid control system.

2.1 The Manipulator
The developed in-house manipulator is a joint-arm
mechanical system with three parallel vertical axes
driven by DC servo motors (each for a single axis),
and a roll axis (at the end-tool) driven by a stepper
motor (four degrees of freedom), that allow
rotational and linear movements along the X, Y and
Z axis. The manipulator arm is driven by small
electrical DC motors. The manipulator basically is
designed to perform frequent assembly tasks in a
vertical manner, in other words, execute movements
up and down along the Z-axis, which are servo-
controlled. However, straight linear movements can

9th WSEAS International Conference on NEURAL NETWORKS (NN’08), Sofia, Bulgaria, May 2-4, 2008

ISBN: 978-960-6766-56-5 149 ISSN: 1790-5109

also be programmed and executed, however within a
specified area. In this case, the manipulator can be
programmed to perform coordinate transformation
of the world coordinates (X, Y, Z) of the end-tool
into a number of corresponding joint coordinates (θ1,
θ2 arms, and a end-tool’s rotation angles) of
manipulator's arm.
 Accuracy is required in the manipulation of
materials, for this reason a four-coil stepper motor
(of permanent-magnet type, 12V supply) is used to
drive the end-tool as the acting tool of the
manipulator. A stepper motor is preferred, because
the position of the end-tool (a simple mechanic
gripper) can be controlled precisely (0.9o step). It is
also important to consider that the most optimum
arrangement of the joints for best manipulation of
objects and tasks performance could be calculated
by using the Jacobian matrix, which for every joints
arrangement represents the relation between the
joints displacements and the current position and
orientation of the end-tool. In other words, defines
the linear transformation form joint co-ordinates to
Cartesian co-ordinates.
 Let r = [x y z a]T be the position vector, where [x
y z]T is the position of the of the acting tool and a is
the rotation angle to the z axis. In that case the
Jacobian matrix is:

 (1)
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
+

−−−

=

1011
0100
00
00

12212211

12212211

clclcl
slslsl

J

where l1, l2 are given manipulators arm lengths, s1 is
sin(θ1), s12 is sin(θ1-θ2), c1 is cos(θ1), and c12 is
cos(θ1-θ2).
An estimation of the measurement (bm) for optimum
manipulation is given by the following equation:

 221det sllJbm == (2)

As a result, for given lengths l1, l2, and joint
variables θ1, and θ2, an optimal configuration is
achieved for θ2 = ±90o.
 The positioning of the end-tool is particularly
important for execution of specific assembly tasks.
For this reason, the task of the neural network
controller is to analyze the input data from the
stepper motor driver and generate information
(triggering signals) required for the optimum
operation of the manipulator arm.

3 Neural Network Controller
The architecture of the neural network controller is
basically a parallel input-output system where
computation is performed in a distributed manner.
Such a system is usually ideally implemented using
a FPGA device large enough to implement relatively
complex functions (such as motor rotor angular
position) on a single chip.

3.1 The Stepper Motor
The design of the neural controller is focused in the
control of a stepper motor (Astrosyn, SST0009) that
drives the angular position of the end-tool. The
stepper motor is with a polyphase stator (four-phase
stator winding). The motor does not require a three-
phase supply, but 12V. This motor is designed to
rotate a specific number of degrees for every electric
pulse received by the control unit. In other words, is
like a digital motor because it is moved in discrete
steps as it traverses from 0.9o per step (high-
precision) through 360o.
 The stepper motor is driven by using NPN
Darlington amplifier pairs to provide a large current
to each coil. The operation of the stepper motor is
easily controlled by the voltage applied in the stator
that forces the rotor to rotate [13]. For example, if a
dc voltage is applied to one phase of the stator, this
will cause current to flow in the phase producing a
stator magnetic field that will interact with the rotor
magnetic field inducing a counterclockwise torque
on the rotor, and causing the rotor to line up with the
new position of the magnetic field. By continuing
this pattern with the other phases it is build a table
(stored in a look-up table) showing the rotor as a
function of the voltage applied to the stator of the
motor. In this way a control signal (output voltage)
is produced as a series of control pulses, each one of
which controls the rotor position by advancing the
stepper motor with a certain degree. The number of
mechanical degrees θm moved per step depends on
the number of poles P, and corresponds to given
number of electrical degrees θe given by the
following equation:

em P

θθ 2
=

 (3)

 Using Eq. (3) the speed of the stepper motor can
be related to the number of pulses per unit time into
its neural controller. If we differentiate both sides of
this equation with respect to time, then we obtain the
following relationship between the electrical ωe and
mechanical ωm rotational speed of the motor:

9th WSEAS International Conference on NEURAL NETWORKS (NN’08), Sofia, Bulgaria, May 2-4, 2008

ISBN: 978-960-6766-56-5 150 ISSN: 1790-5109

em P

ωω 2
=

 (4)

In other words, the speed of the motor in revolutions
per unit time is related to the number of pulses.
 This technique simply applies the voltage to each
of the four coils in the proper order to achieve the
desired rotation. When a voltage is applied, the
stepper motor moves a few degrees of rotation with
each pulse of current. One step pulse is required for
every step of the motor shaft.

3.2 The Neural Controller
Based on this voltage-current control strategy a
neural controller of the stepper motor has been
created and implemented in a FPGA unit using a
VHDL model. The neural stepper motor controller
developed uses a FPGA alongside with a
programmable peripheral interface unit 82C55 (PPI)
to control the stator voltage and current induced. A
simplified block diagram of the FPGA neural
controller configuration is shown in Fig. 3.

 The mathematical model of the neural controller
for the stepper motor consists of a set of m x n
matrices containing the parameters of the neurons in
the neural network. Each matrix refers to one neural
layer and each row in a matrix contains the
parameters of a single neuron. Each neuron has
several inputs, where each input is characterized by
a certain weight indicating the influence of the
corresponding signal over the neuron output. The
first elements of a row are the neuron weights while
the last one is the threshold level. For example, the
motor’s matrix is represented by an 8 x 10 matrix of
inputs consisting of logical 0s and 1s that
correspond to the signals that turn on and off the
voltage pulses (current signals) that drive the motor.
Each line in the matrix contains a set of quantities
(currents and voltages) that characterize the stepper

motor operation at a certain moment in time. This
input vector of 80 signals is connected to the
respective 90 neurons at the input layer. In other
words, each neuron accumulates all the input
weighted signals which then passes to the output
through a transfer function of threshold type (output
is +1 if the input exceeds a threshold value). The
number of layers and the number of the neurons in
each layer depends on the complexity of the
problem. In our case, the sum of the network
weights is about 850 altogether.
 The operation of this neural network controller
can be described in terms of logic functions and
operations using basic AND, OR and NOT
interconnected logic gates. The neural controller
actually outputs signals that control the angle of
rotor rotation (given as the number of electrical
degrees θe related to the number of pulses per unit
time, around 400: 360o/0.9o, and the angular speed
of the rotor ωm), required to establish the precise
position of the end-tool.
 As a means of communication and control of the
80C188EB-based overall system controller, an
application control program in Intel 80x86 family
assembly language is provided. The software
module that was implemented in the controller
generates, through the 82C55 programmable
interface adapter, the triggering signals to the drive
(a high-voltage and high current ULN2004 circuit)
of the stepper motor that positions the manipulator’s
end-tool.

Control
unit

Control pulses
generator

A/D unit interface

Look-up
table

in

out

PPI unit interface

Fig. 3. Block scheme of the FPGA neural controller.

4 Hardware Implementation
The hardware development is focused in selecting
the appropriate commercially available components
to build the control system according to the
configuration and specifications of the controller.
Hardware implemented neural networks are
essentially arrays of interconnected digital
processing structures that operate concurrently.
Digital technology provides basic building blocks
for constructing neural networks as ASIC or FPGA
implementations. Actually the overall controller
implementation is a single-board microcomputer
system.

4.1 VHDL Model Generation
The generation of the VHDL model of the digital
artificial neural network, that describes the hardware
implementation, is accomplished in three stages by
using the universal C++ programs provided by M.
Cirstea et. al. at their book [10]. First the
mathematical description (matrix description) of the

9th WSEAS International Conference on NEURAL NETWORKS (NN’08), Sofia, Bulgaria, May 2-4, 2008

ISBN: 978-960-6766-56-5 151 ISSN: 1790-5109

artificial neural network is converted to a netlist
description that contains the circuit nodes and gates.
Then this description is optimized by eliminating the
redundant components and finally converted to
VHDL description of the hardware implemented
neural network. This file contains an architecture
that comprises a number of internal signals and a list
of assignment statements that model several
identical logic gates by associating a logical
expression with an internal or an output signal.
Further details about these software programs could
be found on the above reference.
 A fragment of the VHDL code generated for the
stepper motor neural controller is given below.
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY network1 IS
 PORT(d_in : IN std_logic_vector(-1 DOWNTO 0);
 d_out: OUT std_logic_vector(-1 DOWNTO 0));
END network1;
ARCHITECTURE arch_network1 OF network1 IS
port_id: integer:=1; delay:real:=0.10;
signal step: integer:=1; msb_steps:integer;
variable adc_value:integer:=10; ….
BEGIN
constant p:real:=3.14; ….
END arch_network1;
CONFIGURATION conf_network1 OF network1 IS
 FOR arch_network1
 END FOR;
END conf_network1;
 In the above VHDL neural model the stepper
motor is an entity having an input port (the stator
voltage) and an output port (the rotor angular
position). Simulations were performed using
ModelSim software package (ModelSim SE Plus
5.7d, Model Technology – Mentor Graphics
Corporation) to validate and refine the controller
design.

4.2 Synthesis
Once the simulated VHDL model was corrected and
refined the obtained VHDL file was further
synthesized using Leonardo Spectrum software
package (Mentor Graphics, Inc.), a tool for
synthesis, simulation and testing of FPGA
implemented circuits. A schematic design of the
controller is shown in Fig. 4.
 The specific neural controller was implemented
into a Xilinx XC2018 FPGA unit. FPGA devices are
widely used in embedded systems. The specific
device was chosen for easy development and
upgrade of the previous control system (that was
based on MC68705P3). The compilation of this
controller with the VHDL components required
about 850 logical elements (logic gates) (45% of the

total amount of logical elements of the XC2018
FPGA).

O1

ADC0804
6
7

9

11
12
13
14
15
16
17
18

19

20

4

5
1

2
3

+IN
-IN

VREF/2

DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0

CLKR

VCC/VREF

CLKIN

INTR
CS

RD
WR

MOTOR STEPPER
1
2
3

4 5 6

0.001u

ULN2004A
1
2
3
4
5
6
7

16
15
14
13
12
11
10

9

1B
2B
3B
4B
5B
6B
7B

1C
2C
3C
4C
5C
6C
7C

COM

74LS125

2
3

1

VCC

12VDC

80C188EB

41

44

38
7

4

5
30
29

12
16
11

15

6

40

52

61
66
68
70
72
74
76
78
62
67
69
71
73
75
77
79
80
81
82
83

28
27
26
25
24
21
20
19

58
55

57
50
49

31
32
35

59
56
54

10
9
8

18

14

13
17

51

37
46
48

53

36

45
47

33
34

CLKIN

CLKOUT

RESOUT
RFSH

RD

WR
UCS
LCS

HLDA
DT/R
DEN

LOCK

ALE

OSCOUT

TXD0

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7

A8
A9

A10
A11
A12
A13
A14
A15
A16
A17
A18

A19/ONCE

P1.0/GCS0
P1.1/GCS1
P1.2/GCS2
P1.3/GCS3
P1.4/GCS4
P1.5/GCS5
P1.6/GCS6
P1.7/GCS7

P2.1/TXD1
P2.3/SINT1

P2.0/RXD1
P2.6
P2.7

INT0
INT1
INT4

P2.2/BCLK1
P2.4/CTS1

P2.5/BCLK0

S0
S1
S2

RDY

TEST

HOLD
NMI

CTS0

RESIN
T0I
T1I

RXD0

PDTMR

T0O
T1O

INT2/INTA0
INT3/INTA1

D0-D7
clock in

1K
XC2018/LCC44

17

18
19

38

9
10
11
13
14
15

21
22
30

37

39
40
41
42
43
44

2
3
5
7
6
4

36
35
34
32
31
25
24

20

26
29

16

28

27
8

RTRIG

I/O
I/O

CCLK

I/O
I/O
I/O
I/O
I/O
I/O

I/O
I/O
I/O

DOUT(I/O)

A0(I/O)
A1(I/O)
A2(I/O)
A3(I/O)
A4(I/O)
A5(I/O)
A6(I/O)
A7(I/O)
A8(I/O)
A9(I/O)
A10(I/O)
A11(I/O)

D0(I/O)
D1(I/O)
D2(I/O)
D3(I/O)
D4(I/O)
D6(I/O)
D7(I/O)

LDC(I/O)

XTL2(I/O)
XTL1(I/O)

RDATA

PROG

RST
PRDN

A0-A16

PPI82C55
34
33
32
31
30
29
28
27

4
3
2
1
40
39
38
37

18
19
20
21
22
23
24
25

14
15
16
17
13
12
11
10

5
36

9
8

35

6

D0
D1
D2
D3
D4
D5
D6
D7

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

RD
WR

A0
A1

RESET

CS

Fig. 4. Schematic design of the microprocessor-based
FPGA neural controller.

The ULN2004 Darlington array is used to drive the
stepper motor. The 12 volts are fed to the stepper
motor through an integrated circuit of Darlington
arrays that contains Darlington configurations of
power transistors, which actually switch the 12 volts
supply on and off. The system's synchronization is
accomplished through an external (quartz) pulse
generator (32MHz), in order to ensure high accuracy
and TTL level signal required. For simplification is
not shown the memory units (RAM and EPROM)
and the latch circuits (74HC573) that buffer the data
and addresses from the microprocessor towards the
memory units and the peripheral devices.
 The controller utilizes the 82C55 PPI to perform
the control and realize the generation of control
signals (pulses), through look up tables of values
stored in the computer's EPROM memory, which
are compared to those in the neural controller
(corresponding to the required voltages). The
controller uses the address bits A0-A1 to access the
programmable unit and provide the drive signals to
control the interfaced motor. The 82C55 PPI init can
interface any TTL-compatible I/O device to the
microprocessor and provide a maximum of 4mA of
current at each output.
 Since the FPGA unit does not have an analog to
digital converter to receive the motor current
measurements (voltage pulses) an external
ADC0804 unit was employed. The analog-to-digital
converter (ADC0804) converts the input voltage
from the stepper motor driver into a digital code
sequence. It enables the measurement of the output
voltage in the range from 0 to Vcc. The interrupt
signal (INTR) is connected to an interrupt input of
the 80C188EB microprocessor to signal periodically

9th WSEAS International Conference on NEURAL NETWORKS (NN’08), Sofia, Bulgaria, May 2-4, 2008

ISBN: 978-960-6766-56-5 152 ISSN: 1790-5109

the end of this conversion. This code sequence of
bits (e.g., 11,10,01,00) is used by the neural
controller to estimate the pulses codes generated and
provided to the PPI interface unit. The reference
voltage is generated internally in the microprocessor
and is used to compare the digitized value of the
voltage on the ADC output. Depending on the ADC
calculation an appropriate value is chosen from the
neural look-up table and loaded into the PPI unit.
This scheme in conjunction with the ULN2004
circuit is used to provide the prerequisite amount of
current (voltages) to the windings of the stepper
motor in a predefined sequence of pulses. In this
way, this pulsed switching of the voltage in the four
windings is achieved by providing on and off
periods of voltage supply.

5 Performance Analysis
Simulation results (using ModelSim) of the FPGA
implementation of the neural controller have shown
a satisfactory sequence of controller’s executions. In
Fig. 5 is shown a fragment of the simulation
waveforms obtained during motor control at the four
gate pins of the power transistors in the ULN2004
circuit that drive the stepper motor of the
manipulator’s end-tool.

 In addition a set of experiments was carried out
to verify the control performance of the drive system
based on the entire VHDL model of the controller.
The system has been tested in various operations
and variations of the load. For instance, in most of
the cases the FPGA controller seemed to improve
the response of the drive system (to approximately
0.45s from 0.55s) under constant load and
revolutions per minute.

6 Future Work and Conclusions
This is a preliminary research which is still under
progress, and among other objectives (e.g. improve
high-level control), current work is focused in
refining and extending the implementation of this
hybrid controller to enable distributed processing
and control. For this reason the intention is to use it
in communication with an external module Rabbit
RCM2200, that provides complete full duplex
Ethernet 10Base-T port in order to implement XML-
RPC mechanisms to perform distributed control of
the overall manufacturing workcell.
 The development of the current proprietary
control circuit has eliminated the expenses of high
performance controllers. The design and
development of the microprocessor-based control
system including an FPGA implementation of the
neural controller required significant less time
compared to an application specific integrated
system. In practice, this hybrid control system was
found to be quite applicable in assisting the
operation and control of the manipulator’s arm.
Simulation results have shown that simulation tends
to be more time-consuming and debugging more
difficult.

References:

1

2

3

4

Fig. 5. Full step waveforms in the power transistors.

[1] T. Sasao, Logic Synthesis and Optimization.
Norwell, MA: Kluwer Academic Publishers,
1997.

[2] B.K. Bose, “Expert System, Fuzzy Logic, and
Neural Network Applications in Power
Electronics and Motion Control,” Proc. IEEE
Special Issue on Power Electronics and Motion
Control, vol. 82, pp. 1303-1323, 1994.

[3] A.A. Hopgood, Intelligent Systems for
Engineers, 3rd ed. New York: CRC Press, 2001.

[4] L.A. Zadeh, “Fuzzy Sets,” Information and
Control, vol. 8, pp. 338-353, 1965.

[5] M.J. Er, and N.E. Mastorakis, “Fuzzy Control of
Robotic Manipulators,” Journal of Applied
Mathematics and Computer Science, vol. 7, no.
3, pp. 611-637, 1997.

[6] D.E. Rumelhart, G.E. Hinton, and R.J. Williams,
“Learning Representations by Back-Propagating
Errors,” Nature, vol. 323, pp. 533-536, 1986.

[7] D.A. White, and D.A. Sofge, Handbook of
Intelligent Control: Neural, Fuzzy, and Adaptive
Approaches. New York: Multiscience Press,
1992.

[8] W.T. Miller, R.S. Sutton, and P.J. Werbos,
Neural Networks for Control. Cambridge MA:
MIT Press, 1992.

9th WSEAS International Conference on NEURAL NETWORKS (NN’08), Sofia, Bulgaria, May 2-4, 2008

ISBN: 978-960-6766-56-5 153 ISSN: 1790-5109

[9] G.W. Irwin, K. Warwick, and K.J. Hunt, Neural
Network Applications in Control. London: IEE
Press, 1995.

[10] M.N. Cirstea, A. Dinu, J.G. Khor, and M.
McCormick, Neural and Fuzzy Logic Control of
Drives and Power Systems. Oxford: Newnes,
2002.

[11] A. Dinu, “FPGA Neural Controller for
Three Phase Sensorless Induction Motor Drive
Systems,” PhD Thesis, De Montfort University,
2000.

[12] A. Dinu, M.N. Cirstea, M. McCormick, A.
Ometto, and N. Rotondale, “Sensorless Motor
Control Strategy Optimised for FPGA Hardware
Implementation,” Journal of Electrical
Engineering, vol. 1, no. 1, pp. 26-31, 2001

[13] S.J. Chapman, Electric Machinery
Fundamentals. New York: McGraw-Hill, 1999.

9th WSEAS International Conference on NEURAL NETWORKS (NN’08), Sofia, Bulgaria, May 2-4, 2008

ISBN: 978-960-6766-56-5 154 ISSN: 1790-5109

