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Abstract: - The development and implementation of an FPGA neural network control system for motion 
control is a task that requires techniques and methods from several engineering fields. In this paper is 
presented the design of a microprocessor-based neural control system for the realization of the control of a 
stepper motor for a manipulator arm. The application circuit developed is a specific design of a low-cost 
embedded system. Simulation and analysis tests were carried out to verify the design of the prototype circuit 
board. The preliminary results obtained provide the basis for further future research and refinement of the 
controller. 
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1   Introduction 
In modern industrial systems, FPGA-based 
intelligent controllers play an important role in 
improving the performance of the control system 
applications. In addition, the rapid development of 
digital techniques and logic synthesis methods that 
has been observed the last decade [1], provide more 
effective implementation of the control circuits 
design. The expansion of these techniques includes 
also a number of methods and techniques from 
artificial intelligence (AI) field. Expert systems and 
neural networks are some of the artificial 
intelligence techniques used in computer emulation 
of human thinking applied in control [2], [3]. 
Particularly interesting are also fuzzy systems [4] 
which have had rapid growth in the field of 
intelligent control (fuzzy control) [5]. 
     Artificial intelligence has made significant 
advances. Interest in artificial neural networks 
(ANN) surged in 1985, following the discovery of 
an effective learning algorithm (back propagation 
algorithm) [6]. A neural network is a system made 
up of several basic entities (neurons) which are 
interconnected and operate in parallel transmitting 

signals to one another in order to achieve a certain 
processing task, while back propagation is used to 
train the network [7]. This algorithm is a gradient 
method aiming to minimize the total operation error 
of the neural network by altering the connection 
weights. In recent years, neural solutions have been 
suggested for many industrial control systems using 
mainly feed-forward (or layered) and inverse (or 
recurrent) configuration neural networks [8], [9]. In 
inverse configuration, the neural network receives 
the output of the system under control, and generates 
an approximation of the input vector, the difference 
(error) of which is minimized during the training. It 
can be shown that whatever problems can be solved 
by inverse network can also be solved by the 
equivalent feed-forward network with proper 
external connection. In other words, a neural 
controller could be build with an input consisted of 
the system’s output plus the output reference, an 
approach followed in this work too. 
     This paper presents the design work of a hybrid 
neural network control system for a manipulator 
arm, based on Intel 80C188EB microprocessor (25 
MHz, 20bits address bus, 1M address space, 8 bits 
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data bus, 16 I/O pins, 3 timers/counters, 5V). The 
neural network controller is used in conjunction with 
a programmable peripheral interface unit to drive a 
stepper motor that controls the position of the end-
tool of the manipulator’s arm. The design of the 
neural controller is based upon a new methodology 
for implementing neural networks into digital 
hardware presented by M. Cirstea et. al. [10], and 
applied in current and speed control of induction 
motors [11], [12]. This methodology is very 
interesting and seems to have the potential for a 
variety of future applications in control systems. In 
this paper, this neural network implementation 
design method is applied in the control of a stepper 
motor. Stepper motors that feature unipolar drives 
are widely used in applications that require high 
torque loads and fast position attainment. 
     The controller basically consists of the 
80C188EB microprocessor unit, an 82C55 
programmable peripheral interface unit (PPI), an 
analog-to-digital converter ADC0804, and a neural 
network controller of manipulator’s stepper motor, 
implemented in a Xilinx XC2018 FPGA (Field 
Programmable Gate Array) device. The control 
system developed is an open modular architecture, 
which allows the incorporation of additional 
modules particularly communication modules for 
distributed control. Verification of the design is 
carried out through simulations in VHDL (IEEE 
Standard Hardware Description Language), and real 
tests in a machines construction company (Adam 
Machines Constructions Co., Volos, Greece). 
     The remainder of this paper is organized as 
follows. Section 2 provides a brief description of the 
manufacturing workcell and the manipulator. 
Section 3 describes the methodology used in 
designing the neural controller for the stepper motor 
of the manipulator under control. Section 4 provides 
details of the hardware design implementation 
process, including VHDL model generation of the 
motor neural controller and FPGA synthesis. In 
section 5 is provided a brief performance analysis of 
the simulation results obtained for the controller’s 
functionality. Conclusions and related future 
research are given in Section 6. 
 
 
2   The Manufacturing Workcell 
The initial manufacturing system under investigation 
was a robotics workcell that was consisted of an in-
house developed manipulator-arm, the controller 
unit (based on Motorola MC68705P3 
microcontroller), an operator's control panel 
(keyboard & indicators), and various other 

mechanical parts and equipment required for the 
assembly tasks and experiments performed (e.g., a 
working platform and a conveyor belt). The 
microcontroller MC68705P3 is a single-chip 
integrated circuit designed for embedded industrial 
control applications. A simplified block diagram of 
the microcontroller-based manipulator controller is 
given in Fig.1. 
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Fig. 1.  Block diagram of the controller. 

     The new proposed architecture of the neural 
network controller is based upon the 80C188EB 
Intel microprocessor, designed for embedded 
industrial control applications and the FPGA 
implemented neural network. This work is focused 
on the control system that drives a single stepper 
motor, which in turn defines the angular position of 
the manipulator’s end-tool. A configuration of the 
control system is shown in Fig. 2. 
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Fig. 2.  Block diagram of the hybrid control system. 

2.1 The Manipulator 
The developed in-house manipulator is a joint-arm 
mechanical system with three parallel vertical axes 
driven by DC servo motors (each for a single axis), 
and a roll axis (at the end-tool) driven by a stepper 
motor (four degrees of freedom), that allow 
rotational and linear movements along the X, Y and 
Z axis. The manipulator arm is driven by small 
electrical DC motors. The manipulator basically is 
designed to perform frequent assembly tasks in a 
vertical manner, in other words, execute movements 
up and down along the Z-axis, which are servo-
controlled. However, straight linear movements can 
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also be programmed and executed, however within a 
specified area. In this case, the manipulator can be 
programmed to perform coordinate transformation 
of the world coordinates (X, Y, Z) of the end-tool 
into a number of corresponding joint coordinates (θ1, 
θ2 arms, and a end-tool’s rotation angles) of 
manipulator's arm. 
     Accuracy is required in the manipulation of 
materials, for this reason a four-coil stepper motor 
(of permanent-magnet type, 12V supply) is used to 
drive the end-tool as the acting tool of the 
manipulator. A stepper motor is preferred, because 
the position of the end-tool (a simple mechanic 
gripper) can be controlled precisely (0.9o step). It is 
also important to consider that the most optimum 
arrangement of the joints for best manipulation of 
objects and tasks performance could be calculated 
by using the Jacobian matrix, which for every joints 
arrangement represents the relation between the 
joints displacements and the current position and 
orientation of the end-tool. In other words, defines 
the linear transformation form joint co-ordinates to 
Cartesian co-ordinates. 
     Let r = [x y z a]T be the position vector, where [x 
y z]T is the position of the of the acting tool and a is 
the rotation angle to the z axis. In that case the 
Jacobian matrix is:  
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where l1, l2 are given manipulators arm lengths, s1 is 
sin(θ1), s12 is sin(θ1-θ2), c1 is cos(θ1), and c12 is 
cos(θ1-θ2). 
An estimation of the measurement (bm) for optimum 
manipulation is given by the following equation: 
 

 221det sllJbm ==      (2) 
 
As a result, for given lengths l1, l2, and joint 
variables θ1, and θ2, an optimal configuration is 
achieved for θ2 = ±90o. 
     The positioning of the end-tool is particularly 
important for execution of specific assembly tasks. 
For this reason, the task of the neural network 
controller is to analyze the input data from the 
stepper motor driver and generate information 
(triggering signals) required for the optimum 
operation of the manipulator arm. 
 

 
3   Neural Network Controller 
The architecture of the neural network controller is 
basically a parallel input-output system where 
computation is performed in a distributed manner. 
Such a system is usually ideally implemented using 
a FPGA device large enough to implement relatively 
complex functions (such as motor rotor angular 
position) on a single chip. 
 
3.1 The Stepper Motor 
The design of the neural controller is focused in the 
control of a stepper motor (Astrosyn, SST0009) that 
drives the angular position of the end-tool. The 
stepper motor is with a polyphase stator (four-phase 
stator winding). The motor does not require a three-
phase supply, but 12V. This motor is designed to 
rotate a specific number of degrees for every electric 
pulse received by the control unit. In other words, is 
like a digital motor because it is moved in discrete 
steps as it traverses from 0.9o per step (high-
precision) through 360o. 
     The stepper motor is driven by using NPN 
Darlington amplifier pairs to provide a large current 
to each coil. The operation of the stepper motor is 
easily controlled by the voltage applied in the stator 
that forces the rotor to rotate [13]. For example, if a 
dc voltage is applied to one phase of the stator, this 
will cause current to flow in the phase producing a 
stator magnetic field that will interact with the rotor 
magnetic field inducing a counterclockwise torque 
on the rotor, and causing the rotor to line up with the 
new position of the magnetic field. By continuing 
this pattern with the other phases it is build a table 
(stored in a look-up table) showing the rotor as a 
function of the voltage applied to the stator of the 
motor. In this way a control signal (output voltage) 
is produced as a series of control pulses, each one of 
which controls the rotor position by advancing the 
stepper motor with a certain degree. The number of 
mechanical degrees θm moved per step depends on 
the number of poles P, and corresponds to given 
number of electrical degrees θe given by the 
following equation: 
 

 
em P

θθ 2
=

      (3) 
 
     Using Eq. (3) the speed of the stepper motor can 
be related to the number of pulses per unit time into 
its neural controller. If we differentiate both sides of 
this equation with respect to time, then we obtain the 
following relationship between the electrical ωe and 
mechanical ωm rotational speed of the motor: 
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em P

ωω 2
=

      (4) 
 
In other words, the speed of the motor in revolutions 
per unit time is related to the number of pulses. 
     This technique simply applies the voltage to each 
of the four coils in the proper order to achieve the 
desired rotation. When a voltage is applied, the 
stepper motor moves a few degrees of rotation with 
each pulse of current. One step pulse is required for 
every step of the motor shaft. 
 
3.2 The Neural Controller 
Based on this voltage-current control strategy a 
neural controller of the stepper motor has been 
created and implemented in a FPGA unit using a 
VHDL model. The neural stepper motor controller 
developed uses a FPGA alongside with a 
programmable peripheral interface unit 82C55 (PPI) 
to control the stator voltage and current induced. A 
simplified block diagram of the FPGA neural 
controller configuration is shown in Fig. 3. 

 
     The mathematical model of the neural controller 
for the stepper motor consists of a set of m x n 
matrices containing the parameters of the neurons in 
the neural network. Each matrix refers to one neural 
layer and each row in a matrix contains the 
parameters of a single neuron. Each neuron has 
several inputs, where each input is characterized by 
a certain weight indicating the influence of the 
corresponding signal over the neuron output. The 
first elements of a row are the neuron weights while 
the last one is the threshold level. For example, the 
motor’s matrix is represented by an 8 x 10 matrix of 
inputs consisting of logical 0s and 1s that 
correspond to the signals that turn on and off the 
voltage pulses (current signals) that drive the motor. 
Each line in the matrix contains a set of quantities 
(currents and voltages) that characterize the stepper 

motor operation at a certain moment in time. This 
input vector of 80 signals is connected to the 
respective 90 neurons at the input layer. In other 
words, each neuron accumulates all the input 
weighted signals which then passes to the output 
through a transfer function of threshold type (output 
is +1 if the input exceeds a threshold value). The 
number of layers and the number of the neurons in 
each layer depends on the complexity of the 
problem. In our case, the sum of the network 
weights is about 850 altogether. 
     The operation of this neural network controller 
can be described in terms of logic functions and 
operations using basic AND, OR and NOT 
interconnected logic gates. The neural controller 
actually outputs signals that control the angle of 
rotor rotation (given as the number of electrical 
degrees θe related to the number of pulses per unit 
time, around 400: 360o/0.9o, and the angular speed 
of the rotor ωm), required to establish the precise 
position of the end-tool. 
     As a means of communication and control of the 
80C188EB-based overall system controller, an 
application control program in Intel 80x86 family 
assembly language is provided. The software 
module that was implemented in the controller 
generates, through the 82C55 programmable 
interface adapter, the triggering signals to the drive 
(a high-voltage and high current ULN2004 circuit) 
of the stepper motor that positions the manipulator’s 
end-tool. 

Control
unit

Control pulses
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A/D unit interface
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Fig. 3.  Block scheme of the FPGA neural controller. 

 
 
4   Hardware Implementation 
The hardware development is focused in selecting 
the appropriate commercially available components 
to build the control system according to the 
configuration and specifications of the controller. 
Hardware implemented neural networks are 
essentially arrays of interconnected digital 
processing structures that operate concurrently. 
Digital technology provides basic building blocks 
for constructing neural networks as ASIC or FPGA 
implementations. Actually the overall controller 
implementation is a single-board microcomputer 
system. 
 
4.1 VHDL Model Generation 
The generation of the VHDL model of the digital 
artificial neural network, that describes the hardware 
implementation, is accomplished in three stages by 
using the universal C++ programs provided by M. 
Cirstea et. al. at their book [10]. First the 
mathematical description (matrix description) of the 
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artificial neural network is converted to a netlist 
description that contains the circuit nodes and gates. 
Then this description is optimized by eliminating the 
redundant components and finally converted to 
VHDL description of the hardware implemented 
neural network. This file contains an architecture 
that comprises a number of internal signals and a list 
of assignment statements that model several 
identical logic gates by associating a logical 
expression with an internal or an output signal. 
Further details about these software programs could 
be found on the above reference. 
     A fragment of the VHDL code generated for the 
stepper motor neural controller is given below. 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
ENTITY network1 IS 
  PORT(d_in : IN std_logic_vector(-1 DOWNTO 0); 
        d_out: OUT std_logic_vector(-1 DOWNTO 0)); 
END network1; 
ARCHITECTURE arch_network1 OF network1 IS 
port_id: integer:=1; delay:real:=0.10; 
signal step: integer:=1; msb_steps:integer; 
variable adc_value:integer:=10; …. 
BEGIN 
constant p:real:=3.14; …. 
END arch_network1; 
CONFIGURATION conf_network1 OF network1 IS 
  FOR arch_network1 
  END FOR; 
END conf_network1; 
     In the above VHDL neural model the stepper 
motor is an entity having an input port (the stator 
voltage) and an output port (the rotor angular 
position). Simulations were performed using 
ModelSim software package (ModelSim SE Plus 
5.7d, Model Technology – Mentor Graphics 
Corporation) to validate and refine the controller 
design. 
 
4.2 Synthesis 
Once the simulated VHDL model was corrected and 
refined the obtained VHDL file was further 
synthesized using Leonardo Spectrum software 
package (Mentor Graphics, Inc.), a tool for 
synthesis, simulation and testing of FPGA 
implemented circuits. A schematic design of the 
controller is shown in Fig. 4. 
     The specific neural controller was implemented 
into a Xilinx XC2018 FPGA unit. FPGA devices are 
widely used in embedded systems. The specific 
device was chosen for easy development and 
upgrade of the previous control system (that was 
based on MC68705P3). The compilation of this 
controller with the VHDL components required 
about 850 logical elements (logic gates) (45% of the 

total amount of logical elements of the XC2018 
FPGA). 
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Fig. 4.  Schematic design of the microprocessor-based 
FPGA neural controller. 

The ULN2004 Darlington array is used to drive the 
stepper motor. The 12 volts are fed to the stepper 
motor through an integrated circuit of Darlington 
arrays that contains Darlington configurations of 
power transistors, which actually switch the 12 volts 
supply on and off. The system's synchronization is 
accomplished through an external (quartz) pulse 
generator (32MHz), in order to ensure high accuracy 
and TTL level signal required. For simplification is 
not shown the memory units (RAM and EPROM) 
and the latch circuits (74HC573) that buffer the data 
and addresses from the microprocessor towards the 
memory units and the peripheral devices. 
     The controller utilizes the 82C55 PPI to perform 
the control and realize the generation of control 
signals (pulses), through look up tables of values 
stored in the computer's EPROM memory, which 
are compared to those in the neural controller 
(corresponding to the required voltages). The 
controller uses the address bits A0-A1 to access the 
programmable unit and provide the drive signals to 
control the interfaced motor. The 82C55 PPI init can 
interface any TTL-compatible I/O device to the 
microprocessor and provide a maximum of 4mA of 
current at each output. 
     Since the FPGA unit does not have an analog to 
digital converter to receive the motor current 
measurements (voltage pulses) an external 
ADC0804 unit was employed. The analog-to-digital 
converter (ADC0804) converts the input voltage 
from the stepper motor driver into a digital code 
sequence. It enables the measurement of the output 
voltage in the range from 0 to Vcc. The interrupt 
signal (INTR) is connected to an interrupt input of 
the 80C188EB microprocessor to signal periodically 
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the end of this conversion. This code sequence of 
bits (e.g., 11,10,01,00) is used by the neural 
controller to estimate the pulses codes generated and 
provided to the PPI interface unit. The reference 
voltage is generated internally in the microprocessor 
and is used to compare the digitized value of the 
voltage on the ADC output. Depending on the ADC 
calculation an appropriate value is chosen from the 
neural look-up table and loaded into the PPI unit. 
This scheme in conjunction with the ULN2004 
circuit is used to provide the prerequisite amount of 
current (voltages) to the windings of the stepper 
motor in a predefined sequence of pulses. In this 
way, this pulsed switching of the voltage in the four 
windings is achieved by providing on and off 
periods of voltage supply. 
 
 
5   Performance Analysis 
Simulation results (using ModelSim) of the FPGA 
implementation of the neural controller have shown 
a satisfactory sequence of controller’s executions. In 
Fig. 5 is shown a fragment of the simulation 
waveforms obtained during motor control at the four 
gate pins of the power transistors in the ULN2004 
circuit that drive the stepper motor of the 
manipulator’s end-tool. 

 
     In addition a set of experiments was carried out 
to verify the control performance of the drive system 
based on the entire VHDL model of the controller. 
The system has been tested in various operations 
and variations of the load. For instance, in most of 
the cases the FPGA controller seemed to improve 
the response of the drive system (to approximately 
0.45s from 0.55s) under constant load and 
revolutions per minute. 
 
 

6   Future Work and Conclusions 
This is a preliminary research which is still under 
progress, and among other objectives (e.g. improve 
high-level control), current work is focused in 
refining and extending the implementation of this 
hybrid controller to enable distributed processing 
and control. For this reason the intention is to use it 
in communication with an external module Rabbit 
RCM2200, that provides complete full duplex 
Ethernet 10Base-T port in order to implement XML-
RPC mechanisms to perform distributed control of 
the overall manufacturing workcell. 
     The development of the current proprietary 
control circuit has eliminated the expenses of high 
performance controllers. The design and 
development of the microprocessor-based control 
system including an FPGA implementation of the 
neural controller required significant less time 
compared to an application specific integrated 
system. In practice, this hybrid control system was 
found to be quite applicable in assisting the 
operation and control of the manipulator’s arm. 
Simulation results have shown that simulation tends 
to be more time-consuming and debugging more 
difficult. 
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