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Abstract: - In order to simulate the adaptive systems, we’ve chosen to simulate the adaptive control with 
reference model, also known as Model Reference Adaptive Control – MRAC. The general idea behind Model 
Reference Adaptive Control (MRAC, also know as an MRAS or Model Reference Adaptive System) is to 
create a closed loop controller with parameters that can be updated to change the response of the system. The 
output of the system is compared to a desired response from a reference model. The control parameters are 
updated based on this error. The goal is for the parameters to converge to ideal values that cause the plant 
response to match the response of the reference model.  
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1. Introduction  
The design of a controller that can alter or modify 
the behavior and response of an unknown plant to 
meet certain performance requirements can be a 
tedious and challenging problem in many control 
applications. By plant, we mean any process 
characterized by a certain number of inputs u and 
outputs y, as shown in Figure 1. 

 
 

Fig. 1 - Plant representation 
 
The plant inputs u are processed to produce several 
plant outputs y that represent the measured output 
response of the plant. The control design task is to 
choose the input u so that the output response y(t) 
satisfies certain given performance requirements. 
Because the plant process is usually complex, i.e., it 
may consist of various mechanical, electronic, 
hydraulic parts, etc. The appropriate choice of u is 
in general not straightforward. 
 
2. Theoretical considerations 
The idea behind Model Reference Adaptive Control 
is to create a closed loop controller with parameters 
that can be updated to change the response of the 
system to match a desired model. Model reference 
adaptive control (MRAC) is derived from the model 
following problem or model reference control 
(MRC) problem. In MRC, a good understanding of 

the plant and the performance requirements it has to 
meet allow the designer to come up with a model, 
referred to as the reference model, that describes the 
desired I/O properties of the closed-loop plant. 
The objective of MRC is to find the feedback 
control law that changes the structure and dynamics 
of the plant so that its I/O properties are exactly the 
same as those of the reference model. The structure 
of an MRC scheme for a LTI, SISO plant is shown 
in Fig. 2. The transfer function ( )mW s of the 
reference model is designed so that for a given 
reference input signal ( )r t  the output ( )my t  of the 
reference model represents the desired response the 
plant output ( )y t should follow. The feedback 
controller denoted by *( )cC θ  is designed so that all 
signals are bounded and the closed-loop plan 
transfer function from r to y is equal to ( )mW s . This 
transfer function matching guarantees that for any 
given reference input r(t), the tracking error  

1 me y y− , which represents the deviation of the 
plant output from the desired trajectory my , 
converges to zero with time. The transfer function 
matching is achieved by canceling the zeros of the 
plant transfer function ( )G s and replacing them with 
those of ( )mW s through the use of the feedback 

controller *( )cC θ . The cancellation of the plant 
zeros puts a restriction on the plant to be minimum 
phase, i.e., have stable zeros. If any plant zero is 
unstable, its cancellation may easily lead to 
unbounded signals. 
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The design of *( )cC θ  requires the knowledge of the 

coefficients of the plant transfer function G(s). If *
cθ  

is a vector containing all the coefficients 
of *( ) ( , )cG s G s θ= , then the parameter vector *

cθ  
may be computed by solving an algebraic equation 
of the form  

* *( )    (1)c Fθ θ=  
It is, therefore, clear that for the MRC objective to 
be achieved the plant model has to be minimum 
phase and its parameter vector *

cθ  has to be known 
exactly. 

 

 
 

Fig. 2 - Model reference control 
 

There are many different methods for designing 
such a controller. When designing an MRAC using 
the MIT rule, the designer chooses: the reference 
model, the controller structure and the tuning gains 
for the adjustment mechanism.  
MRAC begins by defining the tracking error, e. This 
is simply the difference between the plant output 
and the reference model output:  
 

modsistem ele y y= −  (2) 
 
From this error a cost function of theta (J(theta)) can 
be formed. J is given as a function of theta, with 
theta being the parameter that will be adapted inside 
the controller. The choice of this cost function will 
later determine how the parameters are updated. 
Below, a typical cost function is displayed. 
 

21( ) ( )
2

J eθ θ=  (2) 

 
To find out how to update the parameter theta, an 
equation needs to be formed for the change in theta. 
If the goal is to minimize this cost related to the 
error, it is sensible to move in the direction of the 
negative gradient of J. This change in J is assumed 
to be proportional to the change in theta. Thus, the 
derivative of theta is equal to the negative change in 
J. The result for the cost function chosen above is: 
 

d J ee
dt
θ δ δγ γ

δθ δθ
= − = −  (4) 

 
This relationship between the change in theta and 
the cost function is known as the MIT rule. The MIT 
rule is central to adaptive nature of the controller. 
Note the term pointed out in the equation above 
labeled "sensitivity derivative". This term is the 
partial derivative of the error with respect to theta. 
This determines how the parameter theta will be 
updated. A controller may contain several different 
parameters that require updating. Some may be 
acting n the input. Others may be acting on the 
output. The sensitivity derivative would need to be 
calculated for each of these parameters. The choice 
above results in all of the sensitivity derivatives 
being multiplied by the error. Another example is 
shown below to contrast the effect of the choice of 
cost function: 
 

( ) ( )

( )
c

J e
d e sign e
dt

θ θ
θ δγ

δθ

=

= −
 (5) 

where, 

1,    0
( ) 0,    0

1,  0

e
sign e e

e

>⎧
⎪= =⎨
⎪− <⎩

 

To see how the MIT rule can be used to form an 
adaptive controller, consider a system with an 
adaptive feed forward gain. The block diagram is 
given below:  

 
 
Fig. 3 – The system model for the adaptive control 
according to the MIT rule 
 

( ) ( )
( )

Y s kG s
U s

=   (6) 

 
The constant k for this plant is unknown. However, 
a reference model can be formed with a desired 
value of k, and through adaptation of a feed forward 
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gain, the response of the plant can be made to match 
this model. The reference model is therefore chosen 
as the plant multiplied by a desired constant k0: 
 

0
( ) ( )
( )C

Y s k G s
U s

=  (7) 

 
The same cost function as above is chosen and the 
derivative is shown: 
 

21 d( ) ( )  
2

eJ e e
dt
θ δθ θ γ

δθ
= ⎯⎯→ = −  (8) 

 
The error is then restated in terms of the transfer 
functions multiplied by their inputs. 
 

0m m c c ce y y kGU G U kG U k GUθ= − = − = −  (9) 
 
As can be seen, this expression for the error contains 
the parameter theta which is to be updated. To 
determine the update rule, the sensitivity derivative 
is calculated and restated in terms of the model 
output:  
 

c m
o

e kkGU y
k

δ
δθ

= =  (10) 

 
Finally, the MIT rule is applied to give an 
expression for updating theta. The constants k and ko 
are combined into gamma. 
 

'
m m

o

d k y e y e
dt k
θ γ γ= − = −  (11) 

 
The block diagram for this system is the same as the 
diagram given at the beginning of this example. To 
tune this system, the values of ko and gamma can be 
varied.  
 
3. An analysis of the results for 
different simulations   
In order to study the adaptive control, the 
following longitudinal dynamics was 
considered as a reference system: 
 

2 2
3.476( 0.0292)( 0.883)( )

( 0.019 0.01)( 0.841 5.29)m
s sG s

s s s s
+ +=

+ + + +
 

 
To analyze the behavior of the adaptive 
control the following model was designed 
in Matlab/Simulink: 
 

 
 

Fig. 4 – The implemented model in 
Simulink 
 

The reference signal is a sine wave, 
which has the amplitude A=1 and the 
frequency f=0.5Hz, with an initial offset 
equal with 0 for k0=0.5 and k=1. The 
Adaptare model executes the operation 

'
m m

o

d k y e y e
dt k
θ γ γ= − = −

. The system 
response and theta θ will be analyzed 
for different amplitude and offset values 
of the reference signal and gamma – γ. 
 

a) offset = 0, γ = 1, A = 1 
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Fig. 5a) – The response for the reference 
model and adapted system and the 
evolution of the theta parameter 

 
The response of the adapted system (green) 
becomes identical with response of the 
reference model (blue). The same interval 
of time is required for the theta parameter to 
stabilize itself around the value of 0.5. 

 
b) offset=0, γ=5, A=1 
 

 

 
 

Fig. 5b) - The response for the reference 
model and adapted system and the 
evolution of the theta parameter 

 
The period for stabilization is decreased if the 
gamma parameter is increased. 
c) offset=0.5, γ=5, A=1 

 

 

 
 

Fig. 5c) - The response for the reference 
model and adapted system and the 
evolution of the theta parameter 
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As the offset value is increased, some 
transitory conditions appear for a period of 
40 seconds. Arbitrary oscillations which 
lead to instability are expected for values 
greater than 1 of the offset. 
d) offset=0, γ=5, A=2.5 

 

 

 
 

Fig. 5d) - The response for the 
reference model and adapted system 

and the evolution of the theta 
parameter 

 
It can be seen that the adaptive system response 

doesn’t follow anymore the reference system, the 
oscillations of the theta parameter have a slow 
damping period, but the adaptation is not done in 
useful time, so the system behavior is unsatisfactory. 

 
 
 
 
 
 

 

4. Conclusions 
The MIT rule by itself does not guarantee 

convergence or stability. An MRAC designed using 
the MIT rule is very sensitive to the amplitudes of the 
signals. For the studied model, the MIT rule provides 
satisfactory results for signal amplitudes which are in 
the  [-1,1] domain. Divergence is obtained for 
negative values of gamma, and instability is obtained 
for values greater than 5. This parameter has to have 
small values. For greater values in absolute value of 
the offset leads also to instability.  
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