
Efficiency of Parallel Genetic Algorithm for Solving N-Queens Problem
on Multicomputer Platform

MILENA LAZAROVA

Department of Computer Systems
Technical University of Sofia

8, Kliment Ohridski St., Sofia 1000
BULGARIA

Abstract: The paper investigates the efficiency of parallel genetic algorithm for solving N-queens problem on a
multicomputer platform. The proposed parallel computational model of the genetic algorithm is based on a parallel
algorithmic paradigm of synchronous iterations. Dynamic migration of randomly selected chromosomes in a
bidirectional circular model is utilized. The algorithm is implemented using both flat (pure MPI) and hybrid
(MPI+OpenMP) programming models. The target parallel multicomputer platform is a cluster of SMPs. Performance
profiling and scalability analyses have been made in respect of both the workload (board size) and the size of the
parallel system.

Key-Words: N-queens problem, parallel genetic algorithm, island model, dynamic migration policy, multicomputer
platform, profiling and performance analysis

1 Introduction
The N-queens problem is formulated as solving the task
to place N queens on a N×N chessboard in such way
that no queens attack each other. This a classical
combinatorial search problem initially considered as
computer toy problem but recently has also found
practical scientific and engineering applications in the
field of parallel memory storage schemes and parallel
optical computing, VLSI testing, traffic control,
deadlock prevention. The difficulty of the problem
arises from the fact that there are (N2!)/((N!(N2–N)!)
possible ways of placing the queens on the board and
only a very small number of them represent actual
solutions [1]. Therefore the search space of the
solutions is incredibly large even for small values of N.

One possible strategy for solving constraint
satisfaction problems, such as N-queens problem,
organizes the solution space into a tree and
systematically searches this tree for the answer [2].
Dynamic programming, heuristic search techniques and
neural networks are some of the approaches applied for
solving N-queens problem [3, 4, 5].

Genetic algorithm (GA) is probabilistic, heuristic-
based method for search of a sub-optimal solution in
large search spaces of complex optimization problems
[6, 7]. GAs are founded on the ideas of evolutionary
processes in the biological individuals and are
successfully applied in solving optimization and
constraint satisfaction problems [8, 9].

There are several parallel genetic approaches that
are used to reduce the large amount of computation
time associated with the serial genetic algorithms [10,
11, 12]. One method of building a parallel genetic

algorithm (PGA) is a global parallelization strategy that
applies the master/workers paradigm [13, 14]. Island
parallel genetic model implies migration between
independently evolving populations on parallel
processes in order to speedup the slowly evolving
subpopulations by introducing chromosomes that are
better than the locally best ones [15, 16].

There are several dynamic migration policies
leading to different speed of distribution of the
migrants between the “islands” [17]. The evidences of a
higher efficiency, larger diversity maintenance,
additional availability of memory/CPU, and their multi-
solution capabilities, reinforce the importance of the
research advances with PGAs [18]. The island genetic
algorithms can easily be implemented on a
multicomputer platform with distributed memory.
Periodic migration of chromosomes can be involved in
order to speedup the subpopulation evolution by
increasing local diversity [19, 20].

The objective of this paper is to investigate the
efficiency of parallel genetic algorithm for solving N-
queens problem on a multicomputer platform. Dynamic
migration of randomly selected chromosomes in a
bidirectional circular model is utilized. The proposed
parallel computational model of the genetic algorithm
is based on a parallel algorithmic paradigm of parallel
synchronous iterations. The algorithm is implemented
using both flat (pure MPI) and hybrid (MPI+OpenMP)
programming models. The target parallel
multicomputer platform is a cluster of SMPs.
Performance profiling, evaluation and analysis have
been made for different workload (board size) and
different sizes of the multicomputer platform.

9th WSEAS International Conference on EVOLUTIONARY COMPUTING (EC’08), Sofia, Bulgaria, May 2-4, 2008

ISBN: 978-960-6766-58-9 51 ISSN: 1790-5109

mailto:milaz@tu-sofia.bg

2 Solving N-Queens Problem with
Genetic Algorithm
The problem addressed requires N queens to be placed
on a N×N chessboard so that no one attacks the others.
The problem is an extension of the 8-queens problem
originally introduced in 1850 by Carl Gauss. The total
number of possible solutions for the 8-queens problem
is 92 and 12 of them are unique, the rest can be derived
by symmetric operations. The complexity of the N-
queens problem is of О(N!) and the problem belong to
the class of NP-complete problems requiring a brute-
force algorithm to guarantee that the solution can be
found for any value of N.

The basic classes of strategy for the N-queens
constraint satisfaction problem are [2]: systematic
search strategies – put one queen onto the board at a
time and make sure that no constraint is violated, until
all eight queens are placed, and repair strategies – put
all eight queens onto the board initially at random and
if any queen threatens another try to move it to a new
place. A depth-first search backtracking algorithm can
solve the N-Queens problem in reasonable time but
only for small values of N.

A number of efforts have been made for efficient
methods for solving the N-queens problem using
various heuristics approaches including iterative local
search, simulated annealing, tabu-search, genetic
algorithm [8, 21, 22, 23, 24]. Synchronous global
parallel genetic algorithm for the N-queens problem is
discussed and evaluated on a single-processor platform
[25].

Genetic algorithms provide search technique in
computer science to find approximate solutions to
optimization and search problems and present a
particular class of evolutionary algorithms [26. A
general sequence of steps for solving the optimization
problem by a genetic algorithm is illustrated on fig.1.

Initial population is usually generated randomly
providing given number of possible solutions to the
problem. In the case of N-queens problem initial
population will comprises randomly generated
placements of the queens on the board represented as
permutations of an N-tuple (1, 2, 3, …, N). A
chromosome i shows the column where the queen in
row i is placed. The fitness of each individual measures
how close it is to the problem solution. Since a solution
to the N-queens problem requires no queens to attack
each other the fitness is calculated as the number of
conflicts between queens. The individuals in the
population are evaluated and sorted according to their
fitness. A crossover process creates new individuals
combining two parents. Mutation involves a random
change of an individual that is exchange of the
positions of two queens. Genetic algorithm finishes the
search either if a solution of the queens’ placement on
the board is found or a predefined number of iterations
is accomplished.

Generation of initial population

Calculation of the fitness of each individual

Population sort and selection of parents

Crossover and offspring generation

Mutation

End of evolution
criterion satisfied

Solution given by the individual with best
fitness

No

Fig.1. Genetic algorithm sequence for solving

optimization problems

3 Parallel Computational Model of GA
for Solving N-Queens problem
The way in which GAs can be parallelised depends on
several elements [27]: evaluation of fitness; application
of mutation; use of single or multiple subpopulations
(demes); way of individuals exchange; global or local
application of selection.

The suggested parallel computational model for
solving N-queens problem (fig.2) utilizes
parallelization method that divides the population into
some number of demes (subpopulations) that are
separated and evolve independently. The parallel
computational model utilizes a parallel algorithmic
paradigm “synchronous iterations”. Each process
evolves a subpopulation performing the genetic
operations selection, crossover and mutation. Iterations
of independent genetic evolution on each of the
processes for certain number of generations are
followed by a communication stage for migration of the
best solutions found so far between the processes.

9th WSEAS International Conference on EVOLUTIONARY COMPUTING (EC’08), Sofia, Bulgaria, May 2-4, 2008

ISBN: 978-960-6766-58-9 52 ISSN: 1790-5109

...
Migration

Process 1
Initial Population

Selection
Crossover
Mutation

Process 2
Initial Population

Selection
Crossover
Mutation

Process i
Initial Population

Selection
Crossover
Mutation

Process N
Initial Population

Selection
Crossover
Mutation

Migration

Migration

Migration

Migration

Found solutionFound solution

Solution is foundSolution is found

threads

threadsthreads

threads

Fig.2. Parallel computational model

There are several parameters that control the migration
of individuals:
- the topology of the connections between the

processes that concurrently evolve the
subpopulations;

- a migration rate that controls how many individuals
migrate between the subpopulations;

- a migration scheme that controls which individuals
from the source subpopulation (best, worst, random)
migrate to another subpopulation and which
individuals are replaced (worst, random, etc.);

- a migration interval that determines the frequency of
migrations.

Commonly used topologies of the connections
between the processes include ring, hypercube, two- or
three-dimensional mesh, torus, etc. A master-slave
policy of migration considers one of the islands as a
dynamic sender of globally selected migrant
chromosomes to all other islands causing “immediate”
migration of individuals via global communication
functions (MPI_Reduce, MPI_Bcast).

In the suggested parallel computational model
“stepping stone” model of migration is utilized. The
processes are organized in a logical ring and the
migration involves bidirectional circular periodic
chromosome movement that is each processor sends
and receives certain amount of migrants to and from
both neighbors in the ring. The advantage of this
limited migration is small communication overhead
introduced by the migration process compared to the
master-slave migration policy. On the other hand the

choice of ring topology with bidirectional migration
paths leads to higher diversity of genetic material that is
distributed over the islands preserving the evolution
from fast convergence to a local optimum and
maintaining better coverage of the search space
throughout the parallel evolution process.
 Because of the task is to find any solution and not
all possible solutions of the N-queens problem when a
process founds a solution it sends a message with a tag
“SOLUTION” to its neighbors in the ring. If any
process receives a message with a tag “SOLUTION” it
sends the same message to its other neighbor and
terminates itself.

Instead of utilization of a master process to
generate and distribute unique initial subpopulations to
the slaves, each process generates its initial
subpopulation. In order to provide a high
diversification of the independent parallel evolutions
that are concurrent searches of different search sub-
spaces, parallel random number generators is utilized
for the generation of initial subpopulation. In the case
of domain decomposition parallel algorithm requires
fixed number of generators, equal to the number of
parallel working processes. The leapfrog method can be
used to generate random sequences that can be
guaranteed not to overlap for a certain period. The
leapfrog method is similar to a cyclic allocation of data
to tasks: starting from one and the same sequential
number generator each process with rank r takes every
pth element of the sequence beginning with xr.

9th WSEAS International Conference on EVOLUTIONARY COMPUTING (EC’08), Sofia, Bulgaria, May 2-4, 2008

ISBN: 978-960-6766-58-9 53 ISSN: 1790-5109

4 Parallelism Profiling and Performance
Analysis
The suggested parallel computational model for solving
N-queens problem using island-based parallel genetic
algorithm with bidirectional migration was
implemented in C++ using Microsoft Visual Studio
2005 compiler, MPICH-2 as an implementation of the
standard for message passing MPI, OpenMP was
utilized to employ fork-join parallelism at a fine-
grained level and Jumpshot v.3.0 is a tool for
communication profiling.

The experiments for estimation of the performance
parameters of solving N-queens problem by parallel
genetic algorithm on a multicomputer platform are
performed on a cluster comprising 10 workstations
(Intel Pentium IV 3.2GHz, 1GB RAM, hyperthreading)
connected by Fast Ethernet 100 Mbps switch. Since
several runs were carried out for each tested case the
total number of experiments conducted was about 100.

The experimental constant genetic parameters are
given in table 1. Experiments were carried out with a
board size 16×16 and 17×17.

Table 1. Genetic parameters

Generations 500
Population size 1000

Subpopulation size population size / number of
processes

Cross-over random single-point
Mutation probability 0.3%
Migration topology bidirectional ring
Migration period 50 generations

Number of migrants 20% of the subpopulation
size

Both flat parallel model utilizing communication

between parallel working processes in the
multicomputer via message passing (MPI) and hybrid
parallel model (MPI+OpenMP) implying multilevel
parallelism: message passing between processes
running concurrent evolution of the subpopulations and
fork-join (multithreading) calculations of the genetic
operations in each process.

Comparison of the results obtained for the speedup
and the efficiency of both flat and hybrid
implementations of the PGA are shown in fig.3 and
fig.4 respectively. The results show good scalability of
the parallel computational model in respect of both the
parallel workload (board size) and the size of the
cluster. The application scales well in respect to the
size of the multicomputer with approximately
proportional speedup and high efficiency of the parallel
system. The speedup increases with the increase of the

parallel machine size and it is 6.9 when 10 processors
are utilized for finding solution on board size 17×17.
Obviously, the hybrid implementation outperforms the
flat implementation in respect to the speedup and
hardware resources utilization – the speedup is further
increased to 8.7 for the hybrid implementation of the
case with 17 queens that is explained by more efficient
utilization of the computational resources and reduction
of the communication overhead due to employment of
the shared memory programming model.

2

4
8

10

16x16
MPI

17x17
MPI

16x16
hybrid

17x17
hybrid

0

1

2

3

4

5

6

7

8

Sp
ee

du
p

Number of processes

Fig.3. Speedup of the parallel flat and hybrid

implementations of the PGA

2

4
8

10

16x16
MPI

17x17
MPI

16x16
hybrid

17x17
hybrid

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ef
fic

ie
nc

y

Number of processes

Fig.4. Efficiency of the parallel flat and hybrid

implementations of the PGA

Gantt’s chart for the parallel genetic computation
on a multicomputer of ten workstations, showing
communication transactions according to the suggested
parallel computational model is given in Fig.5. The
connected states of the communications corresponding
to the behavior during the bidirectional migration
process in a ring topology are presented in Fig.6.

9th WSEAS International Conference on EVOLUTIONARY COMPUTING (EC’08), Sofia, Bulgaria, May 2-4, 2008

ISBN: 978-960-6766-58-9 54 ISSN: 1790-5109

Fig.5. Gantt’s chart of the island-based PGA for

solving N-queens problem using periodic migration

Fig.6. Communication transactions during bi-

directional migration process

 The communication transactions when one of
process has found a solution are given in fig.7. In this
case process 7 has found a solution and therefore it
initiates a termination message exchange by sending
messages to both its neighbors.

Fig.7. Communication transaction for termination of

the genetic search

A histogram of the communication profile of each
process is presented in fig.8 showing the total time
spent for communications carried out by each process.
As can be seen the time spent for data exchange during
periodic chromosome migration and during termination
messages exchange is much less than the computational
time. This explains the values of the speedup obtained
by the parallel computational model of PGA.

Fig.8. Histogram of the communication profile of each

process

5 Conclusion
The paper investigates the efficiency of parallel genetic
algorithm for solving N-queens problem on a
multicomputer platform.

The suggested parallel computational model is
based on a parallel algorithmic paradigm of parallel
synchronous iterations. Island-based parallel genetic
algorithm with bidirectional dynamic migration of
randomly selected chromosomes in a ring topology is
utilized.

The algorithm is implemented using both flat (pure
MPI) and hybrid (MPI+OpenMP) programming
models. The target parallel multicomputer platform is a
cluster of SMPs. Performance profiling, evaluation and
analysis have been made for different workload (board
size) and different size of the multicomputer platform.

The results show good scalability of the parallel
computational model in respect of both the parallel
workload (board size) and the size of the cluster. The
application scales well in respect to the size of the
multicomputer with approximately proportional
speedup and high efficiency of the parallel system.

Performance comparison shows that the hybrid
parallel programming model better utilizes parallel
hardware resources of the target multicomputer
platform.

Future work should involve investigation of
strategies for control of some genetic algorithm
parameters, e.g. mutation rate and migration size, on
the performance of the parallel computational model.

9th WSEAS International Conference on EVOLUTIONARY COMPUTING (EC’08), Sofia, Bulgaria, May 2-4, 2008

ISBN: 978-960-6766-58-9 55 ISSN: 1790-5109

References:
[1] J. Watkins, Across the Board: The Mathematics of

Chessboard Problems, Princeton University Press,
2004.

[2] E. Tsang, A Glimpse of Constraint Satisfaction,
Artificial Intelligence Review, Vol.13, №3, Kluwer
Academic Publishers, 1999, pp.215÷227.

[3] I. Rivin, R. Zabih. A Dynamic Programming
Solution to the N-queens Problem, Information
Processing Letters, Vol.41, 1992, pp.253÷256.

[4] J. Mandziuk, B. Macuk, A Neural Network
Designed to Solve the N-Queens Problem, Journal
Biological Cybernetics, Vol.66, №4, 1992,
pp.375÷379.

[5] I. Silva, A. Souza, M. Bordon, A modified
Hopfield model for solving the N-Queens
problem, Proc. of the IEEE Int. Joint Conference
on Neural Networks, Vol.6, 2000, pp.509÷514.

[6] C. Reeves, J. Rowe, Genetic Algorithms –
Principles and Perspectives: A Guide to GA
Theory, Springer, 2002.

[7] M. Kantardric, Data Minig: Concepts, Models,
Methods and Algorithms, John Wiley & Song,
2003.

[8] A. Eiben, P. Raue, Z. Ruttkay, GA-Easy and GA-
Hard Constraint Satisfaction Problems, M. Meyer,
(ed.), Proc. of European Conference on Artificial
Intelligence, Amsterdam, 1994, pp.267÷283.

[9] A. Eiben, Evolutionary Algorithms and
Constraints Satisfaction: Definitions, Survey,
Methodology, and Research Directions, L. Kallel,
B. Naudts, A. Rogers (eds.), Theoretical Aspects
of Evolutionary Computing, Natural Computing
Series, Springer, 2001, pp.13÷58.

[10] E. Alba, J. Troya, A Survey of Parallel Distributed
Genetic Algorithms, Complexity, Vol.4, №4, John
Wiley & Sons, 1999, pp.1÷22.

[11] A. Chipperfield, P. Fleming, Parallel Genetic
Algorithms, Parallel and Distributed Computing
Handbook, A. Zomaya (ed.), MacGraw-Hill, 1996,
pp.1118÷1143.

[12] R. Shonkwiler, Parallel Genetic Algorithms, S.
Forrest (ed.), Proc. of the Fifth International
Conference on Genetic Algorithms, Morgan
Kaufmann, San Mateo, CA, 1993, pp.199÷205.

[13] E. Cantu-Paz, A Summary of Research on Parallel
Genetic Algorithms, IllGAL Report 95007,
University of Illinois, July 1995.

[14] E. Cantu-Paz, Designing Efficient Master-Slave
Parallel Genetic Algorithms, IllGAL Report
97004, University of Illinois, 1997.

[15] R. Tanese, Distributed Genetic Algorithms, J.
Schaffer (ed.), Proc. of the Third International

Conference on Genetic Algorithms, Morgan
Kaufmann, San Mateo, CA, 1989, pp.434÷439.

[16] E. Cantu-Paz, Designing Scalable Multi-
Population Parallel Genetic Algorithms, IllGAL
Report 98009, University of Illinois, 1998.

[17] P. Borovska, M. Lazarova, Migration Policies for
Island Genetic Models on Multicomputer
Platform, Proc. of IEEE International Workshop
on Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications,
Dortmund, Germany, 2007, pp.143÷148.

[18] E. Alba, J. Troya, Analyzing Synchronous and
Asynchronous Parallel Distributed Genetic
Algorithms, Future Generation Computer
Systems, Vol.17, №4, 2000, pp.451÷465.

[19] L. Wang, A. Maciejewski, H. Siegel, V.
Roychowdhury, B. Eldridge, A Study of Five
Parallel Approaches to a Genetic Algorithm for the
TSP, Intelligent Automation and Soft Computing,
Vol.11, №4, 2005, pp.217÷234.

[20] E. Cantu-Paz, Migration Policies, Selection
Pressure, and Parallel Evolutionary Algorithms,
Journal of Heuristics, Vol.7, №4, 2001,
pp.311÷334.

[21] K. Crawford, Solving the N-Queens problem
Using Genetic Algorithms, Proc. of ACM/SIGAPP
Symposium on Applied Computing, Kansas City,
USA, United States, 1992, pp.1039÷1047.

[22] A. Homaifar, J. Turner, S. Ali, The N-Queens
Problem and Genetic Algorithms, Proc. of the
IEEE Southeast Conference, Vol.1, 1992,
pp.262÷267.

[23] A. Kilic, M. Kaya, A New Local Search
Algorithm Based on Genetic Algorithms for the N-
Queens Problem, Proc. of the 2001 Genetic and
Evolutionary Computation Conference (GECCO
2001), USA, 2001.

[24] I. Martinjak, M. Golub, Comparison of Heuristic
Algorithms for the N-Queen Problem, Proc. of the
29th International Conference on Information
Technology Interfaces (ITI 2007), 2007,
pp.759÷764.

[25] M. Božikovic, M. Golub, L. Budin, Solving N-
Queen Problem Using Global Parallel Genetic
Algorithm, Proc. of International Conf.
EUROCON, Ljubljana, Slovenia, Vol.2, 2003,
pp.104÷107.

[26] R. Haupt, S. Haupt, Practical Genetic Algorithms,
Wiley-Interscience, 2004.

[27] M. Nowostawski, R. Poli, Parallel Genetic
Algorithm Taxonomy, Proc. of the Third
International Conference on Knowledge-Based
Intelligent Information Engineering Systems
(KES'99), IEEE Press, 1999, pp.88÷92.

9th WSEAS International Conference on EVOLUTIONARY COMPUTING (EC’08), Sofia, Bulgaria, May 2-4, 2008

ISBN: 978-960-6766-58-9 56 ISSN: 1790-5109

