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Abstract: The paper investigates the efficiency of parallel genetic algorithm for solving N-queens problem on a 
multicomputer platform. The proposed parallel computational model of the genetic algorithm is based on a parallel 
algorithmic paradigm of synchronous iterations. Dynamic migration of randomly selected chromosomes in a 
bidirectional circular model is utilized. The algorithm is implemented using both flat (pure MPI) and hybrid 
(MPI+OpenMP) programming models. The target parallel multicomputer platform is a cluster of SMPs. Performance 
profiling and scalability analyses have been made in respect of both the workload (board size) and the size of the 
parallel system. 
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1   Introduction 
The N-queens problem is formulated as solving the task 
to place N queens on a N×N chessboard in such way 
that no queens attack each other. This a classical 
combinatorial search problem initially considered as 
computer toy problem but recently has also found 
practical scientific and engineering applications in the 
field of parallel memory storage schemes and parallel 
optical computing, VLSI testing, traffic control, 
deadlock prevention. The difficulty of the problem 
arises from the fact that there are (N2!)/((N!(N2–N )!) 
possible ways of placing the queens on the board and  
only a very small number of them represent actual 
solutions [1]. Therefore the search space of the 
solutions is incredibly large even for small values of N. 

One possible strategy for solving constraint 
satisfaction problems, such as N-queens problem, 
organizes the solution space into a tree and 
systematically searches this tree for the answer [2]. 
Dynamic programming, heuristic search techniques and 
neural networks are some of the approaches applied for 
solving N-queens problem [3, 4, 5]. 

Genetic algorithm (GA) is probabilistic, heuristic-
based method for search of a sub-optimal solution in 
large search spaces of complex optimization problems 
[6, 7]. GAs are founded on the ideas of evolutionary 
processes in the biological individuals and are 
successfully applied in solving optimization and 
constraint satisfaction problems [8, 9].  

There are several parallel genetic approaches that 
are used to reduce the large amount of computation 
time associated with the serial genetic algorithms [10, 
11, 12]. One method of building a parallel genetic 

algorithm (PGA) is a global parallelization strategy that 
applies the master/workers paradigm [13, 14]. Island 
parallel genetic model implies migration between 
independently evolving populations on parallel 
processes in order to speedup the slowly evolving 
subpopulations by introducing chromosomes that are 
better than the locally best ones [15, 16].  

There are several dynamic migration policies 
leading to different speed of distribution of the 
migrants between the “islands” [17]. The evidences of a 
higher efficiency, larger diversity maintenance, 
additional availability of memory/CPU, and their multi-
solution capabilities, reinforce the importance of the 
research advances with PGAs [18]. The island genetic 
algorithms can easily be implemented on a 
multicomputer platform with distributed memory. 
Periodic migration of chromosomes can be involved in 
order to speedup the subpopulation evolution by 
increasing local diversity [19, 20]. 

The objective of this paper is to investigate the 
efficiency of parallel genetic algorithm for solving N-
queens problem on a multicomputer platform. Dynamic 
migration of randomly selected chromosomes in a 
bidirectional circular model is utilized. The proposed 
parallel computational model of the genetic algorithm 
is based on a parallel algorithmic paradigm of parallel 
synchronous iterations. The algorithm is implemented 
using both flat (pure MPI) and hybrid (MPI+OpenMP) 
programming models. The target parallel 
multicomputer platform is a cluster of SMPs. 
Performance profiling, evaluation and analysis have 
been made for different workload (board size) and 
different sizes of the multicomputer platform. 
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2 Solving N-Queens Problem with 
Genetic Algorithm 
The problem addressed requires N queens to be placed 
on a N×N chessboard so that no one attacks the others.  
The problem is an extension of the 8-queens problem 
originally introduced in 1850 by Carl Gauss. The total 
number of possible solutions for the 8-queens problem 
is 92 and 12 of them are unique, the rest can be derived 
by symmetric operations. The complexity of the N-
queens problem is of О(N!) and the problem belong to 
the class of NP-complete problems requiring a brute-
force algorithm to guarantee that the solution can be 
found for any value of N. 

The basic classes of strategy for the N-queens 
constraint satisfaction problem are [2]:  systematic 
search strategies – put one queen onto the board at a 
time and make sure that no constraint is violated, until 
all eight queens are placed, and repair strategies – put 
all eight queens onto the board initially at random and 
if any queen threatens another try to move it to a new 
place. A depth-first search backtracking algorithm can 
solve the N-Queens problem in reasonable time but 
only for small values of N.  

A number of efforts have been made for efficient 
methods for solving the N-queens problem using 
various heuristics approaches including iterative local 
search, simulated annealing, tabu-search, genetic 
algorithm [8, 21, 22, 23, 24]. Synchronous global 
parallel genetic algorithm for the N-queens problem is 
discussed and evaluated on a single-processor platform 
[25].  

Genetic algorithms provide search technique in 
computer science to find approximate solutions to 
optimization and search problems and present a 
particular class of evolutionary algorithms [26. A 
general sequence of steps for solving the optimization 
problem by a genetic algorithm is illustrated on fig.1.  

Initial population is usually generated randomly 
providing given number of possible solutions to the 
problem. In the case of N-queens problem initial 
population will comprises randomly generated 
placements of the queens on the board represented as 
permutations of an N-tuple (1, 2, 3, …, N). A 
chromosome i shows the column where the queen in 
row i is placed. The fitness of each individual measures 
how close it is to the problem solution. Since a solution 
to the N-queens problem requires no queens to attack 
each other the fitness is calculated as the number of 
conflicts between queens. The individuals in the 
population are evaluated and sorted according to their 
fitness. A crossover process creates new individuals 
combining two parents. Mutation involves a random 
change of an individual that is exchange of the 
positions of two queens. Genetic algorithm finishes the 
search either if a solution of the queens’ placement on 
the board is found or a predefined number of iterations 
is accomplished. 

Generation of initial population

Calculation of the fitness of each individual

Population sort and selection of parents

Crossover and offspring generation

Mutation

End of evolution 
criterion satisfied

Solution given by the individual with best 
fitness

No

 
Fig.1. Genetic algorithm sequence for solving 

optimization problems 
 
 
3   Parallel Computational Model of GA 
for Solving N-Queens problem 
The way in which GAs can be parallelised depends on 
several elements [27]: evaluation of fitness; application 
of mutation; use of single or multiple subpopulations 
(demes); way of individuals exchange; global or local 
application of selection. 

The suggested parallel computational model for 
solving N-queens problem (fig.2) utilizes 
parallelization method that divides the population into 
some number of demes (subpopulations) that are 
separated and evolve independently. The parallel 
computational model utilizes a parallel algorithmic 
paradigm “synchronous iterations”. Each process 
evolves a subpopulation performing the genetic 
operations selection, crossover and mutation. Iterations 
of independent genetic evolution on each of the 
processes for certain number of generations are 
followed by a communication stage for migration of the 
best solutions found so far between the processes.  
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Fig.2. Parallel computational model 

 
There are several parameters that control the migration 
of individuals: 
- the topology of the connections between the 

processes that concurrently evolve the 
subpopulations; 

- a migration rate that controls how many individuals 
migrate between the subpopulations; 

- a migration scheme that controls which individuals 
from the source subpopulation (best, worst, random) 
migrate to another subpopulation and which 
individuals are replaced (worst, random, etc.); 

- a migration interval that determines the frequency of 
migrations. 

Commonly used topologies of the connections 
between the processes include ring, hypercube, two- or 
three-dimensional mesh, torus, etc. A master-slave 
policy of migration considers one of the islands as a 
dynamic sender of globally selected migrant 
chromosomes to all other islands causing “immediate” 
migration of individuals via global communication 
functions (MPI_Reduce, MPI_Bcast). 

In the suggested parallel computational model 
“stepping stone” model of migration is utilized. The 
processes are organized in a logical ring and the 
migration involves bidirectional circular periodic 
chromosome movement that is each processor sends 
and receives certain amount of migrants to and from 
both neighbors in the ring. The advantage of this 
limited migration is small communication overhead 
introduced by the migration process compared to the 
master-slave migration policy. On the other hand the 

choice of ring topology with bidirectional migration 
paths leads to higher diversity of genetic material that is 
distributed over the islands preserving the evolution 
from fast convergence to a local optimum and 
maintaining better coverage of the search space 
throughout the parallel evolution process.  
 Because of the task is to find any solution and not 
all possible solutions of the N-queens problem when a 
process founds a solution it sends a message with a tag 
“SOLUTION” to its neighbors in the ring. If any 
process receives a message with a tag “SOLUTION” it 
sends the same message to its other neighbor and 
terminates itself.  

Instead of utilization of a master process to 
generate and distribute unique initial subpopulations to 
the slaves, each process generates its initial 
subpopulation. In order to provide a high 
diversification of the independent parallel evolutions 
that are concurrent searches of different search sub-
spaces, parallel random number generators is utilized 
for the generation of initial subpopulation. In the case 
of domain decomposition parallel algorithm requires 
fixed number of generators, equal to the number of 
parallel working processes. The leapfrog method can be 
used to generate random sequences that can be 
guaranteed not to overlap for a certain period. The 
leapfrog method is similar to a cyclic allocation of data 
to tasks: starting from one and the same sequential 
number generator each process with rank r takes every 
pth element of the sequence beginning with xr.  
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4  Parallelism Profiling and Performance 
Analysis 
The suggested parallel computational model for solving 
N-queens problem using island-based parallel genetic 
algorithm with bidirectional migration was 
implemented in C++ using Microsoft Visual Studio 
2005 compiler, MPICH-2 as an implementation of the 
standard for message passing MPI, OpenMP was 
utilized to employ fork-join parallelism at a fine-
grained level and Jumpshot v.3.0 is a tool for 
communication profiling.  

The experiments for estimation of the performance 
parameters of solving N-queens problem by parallel 
genetic algorithm on a multicomputer platform are 
performed on a cluster comprising 10 workstations 
(Intel Pentium IV 3.2GHz, 1GB RAM, hyperthreading) 
connected by Fast Ethernet 100 Mbps switch. Since 
several runs were carried out for each tested case the 
total number of experiments conducted was about 100. 

The experimental constant genetic parameters are 
given in table 1. Experiments were carried out with a 
board size 16×16 and 17×17.  

 
Table 1. Genetic parameters 

Generations 500 
Population size 1000 

Subpopulation size population size / number of 
processes 

Cross-over random single-point 
Mutation probability 0.3% 
Migration topology bidirectional ring 
Migration period 50 generations 

Number of migrants 20% of the subpopulation 
size 

 
Both flat parallel model utilizing communication 

between parallel working processes in the 
multicomputer via message passing (MPI) and hybrid 
parallel model (MPI+OpenMP) implying multilevel 
parallelism: message passing between processes 
running concurrent evolution of the subpopulations and 
fork-join (multithreading) calculations of the genetic 
operations in each process.  

Comparison of the results obtained for the speedup 
and the efficiency of both flat and hybrid 
implementations of the PGA are shown in fig.3 and 
fig.4 respectively. The results show good scalability of 
the parallel computational model in respect of both the 
parallel workload (board size) and the size of the 
cluster. The application scales well in respect to the 
size of the multicomputer with approximately 
proportional speedup and high efficiency of the parallel 
system. The speedup increases with the increase of the 

parallel machine size and it is 6.9 when 10 processors 
are utilized for finding solution on board size 17×17. 
Obviously, the hybrid implementation outperforms the 
flat implementation in respect to the speedup and 
hardware resources utilization – the speedup is further 
increased to 8.7 for the hybrid implementation of the 
case with 17 queens that is explained by more efficient 
utilization of the computational resources and reduction 
of the communication overhead due to employment of 
the shared memory programming model. 
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Fig.3. Speedup of the parallel flat and hybrid 

implementations of the PGA 
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Fig.4. Efficiency of the parallel flat and hybrid 

implementations of the PGA 
 

Gantt’s chart for the parallel genetic computation 
on a multicomputer of ten workstations, showing 
communication transactions according to the suggested 
parallel computational model is given in Fig.5. The 
connected states of the communications corresponding 
to the behavior during the bidirectional migration 
process in a ring topology are presented in Fig.6.  
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Fig.5. Gantt’s chart of the island-based PGA for 

solving N-queens problem using periodic migration 
 

 
Fig.6. Communication transactions during bi-

directional migration process 
 
 The communication transactions when one of 
process has found a solution are given in fig.7. In this 
case process 7 has found a solution and therefore it 
initiates a termination message exchange by sending 
messages to both its neighbors. 
 

 
Fig.7. Communication transaction for termination of 

the genetic search 
 

A histogram of the communication profile of each 
process is presented in fig.8 showing the total time 
spent for communications carried out by each process. 
As can be seen the time spent for data exchange during 
periodic chromosome migration and during termination 
messages exchange is much less than the computational 
time. This explains the values of the speedup obtained 
by the parallel computational model of PGA.  
 

 
Fig.8. Histogram of the communication profile of each 

process 
 
 
5   Conclusion 
The paper investigates the efficiency of parallel genetic 
algorithm for solving N-queens problem on a 
multicomputer platform.  

The suggested parallel computational model is 
based on a parallel algorithmic paradigm of parallel 
synchronous iterations. Island-based parallel genetic 
algorithm with bidirectional dynamic migration of 
randomly selected chromosomes in a ring topology is 
utilized.  

The algorithm is implemented using both flat (pure 
MPI) and hybrid (MPI+OpenMP) programming 
models. The target parallel multicomputer platform is a 
cluster of SMPs. Performance profiling, evaluation and 
analysis have been made for different workload (board 
size) and different size of the multicomputer platform. 

The results show good scalability of the parallel 
computational model in respect of both the parallel 
workload (board size) and the size of the cluster. The 
application scales well in respect to the size of the 
multicomputer with approximately proportional 
speedup and high efficiency of the parallel system. 

Performance comparison shows that the hybrid 
parallel programming model better utilizes parallel 
hardware resources of the target multicomputer 
platform.  

Future work should involve investigation of 
strategies for control of some genetic algorithm 
parameters, e.g. mutation rate and migration size, on 
the performance of the parallel computational model. 
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