
Remote Monitoring And Diagnosis of a Mechatronic System
 IONUT RESCEANU, MARIUS NICULESCU, NICU GEORGE BIZDOACA, CRISTINA PANA

Department of Mechatronics

University of Craiova

Address Bvd. Decebal Nr. 107

ROMANIA

resceanu@robotics.ucv.ro, toros@rdscv.ro, nicu@robotics.ucv.ro, cristina@robotics.ucv.ro

Abstract: The real time evolution of a system is analyzed and the differences between the mathematical

models describing the system are providing a feedback indicating a possible fault in the monitored process. All

the monitoring activity was done remotely via word wide web using Data Socket Server technology for

transmitting and receiving data through the network. The measurement and control are accomplished and

integrated by using a computerized data acquisition system and a comprehensive virtual instrument, developed

using the LabVIEW application software. In addition, this system allows for easy modification and

enhancement of virtual (software) instrument by modification of the software program.

Key-Words: - Remote Monitoring, Data Socket, Virtual Instrumentation, Real-Time, Internet, Control

1 Introduction
1.Introduction

Having the capability to control and observe

experiments from a remote location has several

benefits, including the ability to track and to assist in

solving a problem that might arise. The best way to

remotely monitor an experiment is via the web with

software that is platform independent.

The National Instruments LabVIEW graphical

development environment is well-known for data

acquisition and instrument control applications. NI

LabVIEW includes comprehensive built-in signal

processing and analysis capabilities that you can

apply to these applications, but also to more general

technical computing tasks such as algorithm

engineering, simulation, and control.

In the quest to develop the remote capability several

options were considered:

The data socket (DS) is a unified end-user

application programming interface (API). It consists

of a data socket server (DSS) and an API. The

advantages of this route are the reliability of the

program, the nice Web interface (all the Labview

graphical user interfaces (GUI) configuration tools

available) and the speed of the data update. The

main disadvantage is that in order to be able to view

the experiment the web user has to download and

install the Run-Time Engine version of Labview

(from NI) plus a small Labview executable program

written at MIBL, or download the entire application

as a self installing program from the MIBL site. The

size of the download of the whole application is

rather large (> 10 MB), making the process a little

difficult for slow computer. In addition, the program

needs to be recompiled on a Macintosh machine to

have it available for Macintosh users.

Web monitoring with the Labview Web Server was

implemented after Labview 6.0 was released. Now

version 7.1 is out and it has even better remote

access features. Starting with the 6.0 version, any

application could be published as a web file rather

easy using a builtin Web Server. The Labview Web

Server approach has very nice security and user

monitoring features, but also some disadvantages.

Like the previous method, it would require the user

to download and install the Labview Run-Time

Engine before the first run. The Labview Web

Server comes with a built-in one-client capability,

limiting the number of users. Additional licenses can

be purchased, but cost could be an issue with this

strategy.

But more important, this alternative is not available

for Macintosh computer users. However, the

simplicity of the approach and the requirement of

very little extra programming besides the main

application make this option really appealing.

With Labview one can connect to other applications

and share data through ActiveX, the Web, DLLs,

shared libraries, TCP/IP etc. In addition to Labview,

the other software package required was Appletview

(Java based), available from Nacimiento Inc.

Appletview assists in publishing the Labview

instrumentation on the web and makes the web

browsers capable of connecting to the applications

running on a local computer. The built-in server

mediates the communication between the local and

the remote computer, as the instruments’ outputs are

8th WSEAS International Conference on APPLIED INFORMATICS AND COMMUNICATIONS (AIC’08)
 Rhodes, Greece, August 20-22, 2008

ISSN: 1790-5109 234 ISBN: 978-960-6766-94-7

made available to a remote client. This is

accomplished by streaming the data from the local

instruments to a Java applet running in a Web

browser. The software enables the programmer to

configure and shape the user interface according to

the needs. The most important advantages of the

Labview/Appletview combination are: the end user

has access to DAQ systems located anywhere, is

language independent and operating system (OS)

independent. Using this protocol, data can be sent

via theWeb between different machines running

Labview.

2 Virtual Instrumentation
Labview is a powerful software package that can be

used to design user interfaces to interactively control

the systems in a graphical environment taking

advantage of many programming tools and by

creating virtual instruments that mirror real ones

allowing remote users to collaborate in real time [1].

This software package is produced by National

Instruments and has world wide acceptance and

presence at this time. It can be found in most of the

research labs and in very many research and

development facilities of private businesses. It

provides a quick and easy access to instrumentation

control and a very large database of drivers for DAQ

cards, various computer interfaces (GPIB, serial etc)

and instrument drivers. Each Labview program

consists of a Front Panel (FP) interface, that contains

the controls and data fields, and a Block Diagram

(BD) where the real programming flow takes place.

Although it is a graphical programming language, its

versatility allows the easy incorporation of modules

written in other languages (C, Basic etc)

A typical data acquisition (DAQ) system may

consist of transducers, signal conditioning hardware,

plug-in DAQ boards, and LabVIEW
®
 application

software, see Figure 1. Examples may include

monitoring and controlling complete measurement

or process system, etc. The plug-in DAQ board

enables computerized measurement and control of

real world analog input-signals (AI, like with an

oscilloscope) and generation of analog output-

signals (AO, like with a function generator), as well

as digital input/output (I/O) signals. The LabVIEW

(Virtual Instrument Engineering Workbench), a

graphical programming language by National

Instruments, is especially suitable for developing

automated instrumentation systems using the PC

plug-in data acquisition (DAQ) boards. It may be

effectively used for engineering data acquisition,

analysis, and presentation. The main LabVIEW

advantage over the classical text/script based

programming is its graphical interface where the

user naturally builds a program by connecting

(wiring) built-in component icons, i.e. by drawing

the program's algorithm. Another LabVIEW

advantage is for use to build computerized or virtual

instrumentation since its input/output interface

mimics the real-instrument front-panels. It is also

full-fledged programming application that integrates

advanced data analysis and presentations.

3 HOW IT WORKS
In order to make the connection to the Web, it is

necessary to build an application with Labview that

would collect the data points of interest from the

main DAQ program. The data objects to be sent out

are only allowed to be of a certain type (string,

integer32, single and Boolean type).

The LabVIEW Data Acquisition VIs are located on

the Data Acquisition palette and the DAQmx – Data

Acqusition palette. The Data Acquisition palette

contains the traditional NI-DAQ VIs. The DAQmx -

Data Acquisition palette contains the VIs for NI-

DAQmx. The DAQmx - Data Acquisition palette

contains all of the VIs necessary to perform analog

I/O, digital I/O, and counter/timer operations. The

VIs are organized so that the most common

operations can be performed using the VIs. You can

configure a task to perform a very specific function

by using the Property Nodes in the palette. Many

applications that do not require advanced timing and

synchronization can be performed by using the DAQ

Assistant Express VI.

 3.1 Remote Operation Using DataSocket

Technology
We implemented remote operation using National

Instruments DataSocket communication protocol.

The DataSocket Server application runs on the local

robot control PC. The DataSocket Server accepts

published data from applications and broadcasts data

to subscribing applications. All data passed between

the remote and local VIs is channeled through the

DataSocket Server.

3.2 Implementing DataSocket

Communication

DataSocket communication relies on the DataSocket

Server, which may or may not run on the same

computer as client applications. With default

permissions on the DataSocket Server, we have

8th WSEAS International Conference on APPLIED INFORMATICS AND COMMUNICATIONS (AIC’08)
 Rhodes, Greece, August 20-22, 2008

ISSN: 1790-5109 235 ISBN: 978-960-6766-94-7

access only to the computer it runs on. To achieve

communication outside that computer, we can use

the DataSocket Server Manager to configure the

Server to accept published data from the computer

or host running a client application, and to allow the

host that is running a subscribing client application

to read data. To use remote communication outside

the local area network (LAN), as in this application,

it is necessary to run the DataSocket Server on a

computer with a static IP address.

DataSocket is a programming tool that enables you

to read, write, and share data between applications

and/or different data sources and targets across the

network. DataSocket can access data in local files

and data on HTTP and FTP servers. If you use

general purpose file I/O functions, TCP/IP

functions, and FTP/HTTP requests to transfer data,

you must write separate code for each protocol.

With DataSocket you need very little or no code to

transmit and receive data over the Internet.

DataSocket is available both for LabVIEW and

Measurement Studio and runs on Linux, Macintosh,

and Windows. The only caveat is the DataSocket

server is still Windows based.

DSTP is an application-layer protocol for

transferring measurement data to and from a dstp

server called a DataSocket server.

It is implemented on top of TCP, and hence provides

connection-oriented communication between the

server and the client.

In other words, clients maintain a session during

communication with the server. During the session

the server keeps track of client-connection

information.

Clients providing the measurement data to a

DataSocket server are referred to as publishers or

writers.

Clients consuming the measurement data provided

by the publishers are referred to as subscribers or

readers.

System participating in a dstp data exchange usually

consists of three components, the DataSocket server,

a publisher, and subscribers.

A publisher acquires data from a local or remote

data acquisition device and sends it to the server.

The server may be located on the same machine

(known as the localhost) or remotely on the Internet.

Subscribers who have an interest in the published

data can subscribe to receive the data from the

server.

Complex applications may require more than one

publisher or more than one server.

DataSocket allows to send data over a network to

and from variety of software platforms without

worrying about the low-level implementation

details.

The “DataSocket” server is an external program that

manages TCP/IP connections , handling different

data types (integers , floats , strings , and Booleans,

as well as arrays of these)

DataSocket has two main pieces that works together:

-The “DataSocket” server; -The “DataSocket” API

for clients.

The DataSocket server is standalone application that

handles client connections.

The DataSocket Server is a lightweight, stand-alone

component with which programs using the

DataSocket API can broadcast live measurement

data at high rates across the Internet to several

remote clients concurrently

DataSocket Server simplifies network TCP

programming by automatically managing

connections to clients.

Broadcasting data with the DataSocket Server

requires three “actors” – a publisher, the DataSocket

Server, and a subscriber. A publishing application

uses the DataSocket API to write data to the server.

A subscribing application uses the DataSocket API

to read data from the server.

Both the publishing and the subscribing applications

are “clients” of the DataSocket Server.

The three actors can reside on the same machine, but

more often the three actors run on different

machines.

The ability to run the DataSocket server on another

machine improves performance and provides

security by isolating network connections from your

measurement application.

The DataSocket API is implemented as an ActiveX

control, a LabWindows/CVI C library, and a set of

LabVIEW VIs, so you can use it in any

programming environment.

The DataSocket API automatically converts the

user’s measurement data into a stream of bytes that

is sent across the network.

The subscribing DataSocket application

automatically converts the stream of bytes back into

its original form.

Learning the DataSocket API is simple. It consists

of four basic actions (open, read, write, and close)

that are similar to standard file I/O calls. You can

use the same DataSocket API in your programs to

read data from:

Data items on HTTP servers ,Data items on FTP

servers ,Local files ,Data items on DSTP servers

8th WSEAS International Conference on APPLIED INFORMATICS AND COMMUNICATIONS (AIC’08)
 Rhodes, Greece, August 20-22, 2008

ISSN: 1790-5109 236 ISBN: 978-960-6766-94-7

4 The concepts of model based fault

detection and isolation

4.1 Residue generation
 A traditional fault detection method is that of limit

verification, comparing process variables with actual

limits. When the variables exceed the limits, a fault

situation is indicated. Although simple, this method

has a major disadvantage: process variables may

change with different operating states. Therefore this

method depends on operating state of the process.

On the other hand, residual signals are quantities

representing the inconsequence between the

variables of the actual system and mathematical

model. They do not depend on operating state of the

system and they only answer to faults, which makes

us prefer limit verification method.

Fig. 1. General structure of a residue generator

 The simplest approaching for residue generation is

using the system duplicate, i.e. a simulator that is

identical with the original is realized. The residue is

the difference between the simulated and the actual

output. The disadvantage of this method is that the

stability of the simulator can not be guaranteed

when monitored system is instable. A direct

extension to simulator based residue generation is

that of placing the simulator on an output estimator,

as you can see in the following figure:

This structure is mathematically expressed as:

() () ()[] ()

()
() () () ()sYsHsUsH

sY

sU
sHsHsr

yu

yu

+=

=







=

 (1)

where ()sHu and ()sH y represent transfer

matrixes which are feasible using stable linear

systems. These can be seen as state estimators that

use input and output, respectively.

 In order to make the residue to become zero for the

faultless case:

() () () () () ()
() () () 0=

+=+

sUsGsH

sUsHsYsHsUsH

y

uyu

(2)

the next condition must be respected:

 () () () 0=+ sGsHsH uyu (3)

 Eq. (2) is a generalized representation of all residue

generators. Residue generator design requires

choosing transfer matrixes ()sHu şi ()sH y . Usual

residues are generated using analytical approaches

like design observers, using parameters estimation

techniques or parity equations based on analytical

redundancy.

 For realizing fault detection the residue generator

must have fault detectability and isolability

properties.

5 Application
Our application uses DataSocket Transport Protocol

(DSTP) for reading and writing data within network.

When using DSTP, DataSocket Server

communicates with any virtual instrument (VI); this

way virtual instrument can publish or subscribe data.

We can identify different types of data through label

names, which appeals URL address.

The server mediates the communication between

local and portable computer; this way the outputs of

the instrument are available for a portable client.

Final user can access DAQ systems, no matter their

location. Using this protocol one can use web for

transmitting data between different computers

running Labview.

Equipment used for monitoring the system: NI USB

6008 acquisition board, for capturing system’s

signals; as monitoring equipment: Labview; as data

transmission instrument: WebServer -DataSocket.

System

()sH u
()sH y

+

Rezidue

Estimator

Input U Output Y

8th WSEAS International Conference on APPLIED INFORMATICS AND COMMUNICATIONS (AIC’08)
 Rhodes, Greece, August 20-22, 2008

ISSN: 1790-5109 237 ISBN: 978-960-6766-94-7

Fig. 2 Operational diagram of the application

A mathematical model is attached to the system. The

main idea is to permanently compare mathematical

model M2 with real process P. We also introduce a

partial mathematical model M1 of the process,

which takes as input function an intermediate

voltage generated by the real process, in order to

allow fault localization.

r(t) vector contains the differences – the residue

between real system P and mathematical model M.

If a certain preset threshold value is exceeded, an

alarm corresponding to the system point where the

difference appeared is generated.

We first monitor the application without considering

any eventual fault.

Reader application receives information from

DataSocket Server. Input voltage of the system, u1,

is visualised, and also intermediate voltage u2 and

output voltage u3 aquisitioned from phisical system.

u3 voltage, resulted from mathematical model is

visualised in simulation chart – u3, and residual

vector r(t), resulted from the difference between real

voltage u3 and the voltage provided by the

mathematical model is visualised in error chart u3-

r(t).

Fault operation: the resistance R2 has been modified

and adjusted to a superior value comparing to R1 –

A3 alarm turns on when a residue that is superior a

0.3V threshold appears – this threshold is considered

maximum limit that is allowed for this system.

A step input signal is applied. The evolution of the

physical system and mathematical model when this

stimulus is applied is obvious. For short periods of

time – we talk about milliseconds – an exceeding of

0.3V imposed threshold for residual vector can be

noticed. The cause is a delay in mathematical model

calculus correlated with sampling rate.

In the following figures results obtained by DS

Writer.vi. şi DS Reader.vi are presented. The first

one takes over the signals from acquisition board,

i.e. the three voltages u1, u2 şi u3 and transmits them

to DataSocketServer. The second one connects itself

to server from where it receives aquisitioned data.

Fig.3 Writer.vi Labview front panel for monitoring

the system

Fig.4 Writer.vi Labview front panel for transmiting

the data through the Data Socket Sever

Reader.vi is the client application and is receiving

themonitored data through the Data Socket Sever.

The real time data is compared with the output of

the mathematical model attached to the system.

WEB

SERVER

DATASOCKET

PC

LABVIEW

WRITER.

VI

DAQ

NI6008

SISTEM

PC

LABVIEW

READ

ER.VI

US

B

u1 u2 u3

CLIENT

IP:

xxx.xxx.xxx

8th WSEAS International Conference on APPLIED INFORMATICS AND COMMUNICATIONS (AIC’08)
 Rhodes, Greece, August 20-22, 2008

ISSN: 1790-5109 238 ISBN: 978-960-6766-94-7

Fig.5 Reader.vi Labview front panel for monitoring

the system

5 Conclusion
One of the objectives of this project is to utilize the

latest powerful, yet inexpensive, technological

developments: sensors and transducers, data

acquisition and control integrated boards, computers

and application software, for research. The designed,

computerized measurement and data acquisition

system, accomplishes the following objectives:

acquire measured data with high speed and

accuracy; interactively process and analyze

measured data for immediate use or future post-

processing; provide interactive and accurate feed-

back process control and interactively displays the

raw/measured and processed/analyzed data in

graphical and/or numerical forms.

 In addition, such a system allows for easy

modification and enhancement of the so called

"virtual (software) instrument" by modification of

the software program. It is important to emphasize

that functionality and quality of a virtual instrument

is practically limited by our creativity.

We studied the real time evolution of the monitored

system and analyzed the differences between the

mathematical model describing the system. All the

monitoring activity was done remotely via word

wide web using Data Socket Server technology for

transmitting and receiving data through the network.

References:

[1]M. Kostic, Data Acquisition and Control

for an Innovative Thermal Conductivity

Apparatus Using LabVIEW Virtual Instrument,

Laboratory Robotics and Automation Journal,

Vol.10, No.2, pp.107-111, Wiley, 1998

[2]Wells, L and J. Travis, "LabVIEW for

Everyone," Prentice Hall PTR, Upper Saddle

River, NJ, 1997.

[3] http://sine.ni.com/ -"Customer Solutions Remote

Control of a Rhino Robot Using LabVIEW 6i

and DataSocket Technology"

[4]DataSocket Overview

http://zone.ni.com/devzone/conceptd.nsf/webmai

n/14F3B2BC11811DC186256A9D0068B2D1?o

pendocument&node=DZ52047_US

[5]Dave BAKER: Remote Panels in LabVIEW 7.1

– Distributed Application Development

LabVIEW Technical Resource

[6]Frank, P. M. (1990) Fault Diagnosis in Dynamic

System Using Analytical and Knowledge Based

Redundancy - A survey and some new results,

Automatica, vol.26, no.3, pag.459 - 474.

[7]Ginn B, Bruel & Kjaer (2000) Practical

applications of intelligent test systems.

Proceedings of the Seventh International

Congress on Sound and Vibration, Vol. VI,

Germany, pp 3221–3228

[8]Tse P, Peng YH, Yam R (2001) Wavelet analysis

and envelope detection for rolling element

bearing fault diagnosis – their effectiveness

8th WSEAS International Conference on APPLIED INFORMATICS AND COMMUNICATIONS (AIC’08)
 Rhodes, Greece, August 20-22, 2008

ISSN: 1790-5109 239 ISBN: 978-960-6766-94-7

	Text1:

