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`Abstract: - This paper presents a new approach to solve the load-flow problem using Tanaka's 
Fuzzy Linear Regression formulation (FLR).  The load-flow model is formulated as a fuzzy 
linear optimization problem, where the objective is to minimize the sum of the spread of the 
states, subject to double inequality constraints on each pre-specified active and reactive power 
to guarantee that the original membership is included in the state membership.  Linear 
programming is employed to obtain the middle and the symmetric spread for every state 
variable.  The estimated middle corresponds to the value of the state.  While the symmetric 
spreads in the membership functions of the state variables represents the uncertainty 
(vagueness) around the state. 
The proposed formulation has been applied to various test systems.  The outcome is very 
encouraging and proves that proposed (FLR) is very applicable and shows reliability, 
accuracy in solving the power-flow problem.   
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1 Introduction 
 
The power flow study of an electric power system is 
also known as “load-flow” study.  In essence, this 
study involves the calculation of line loading given 
the generation and demand level.  Ward and Hall [1] 
are frequently credited for being the first to formulate 
the load-flow problem.  This problem has been 
studied widely and solved with the help of various 
numerical iterative methods such as Gauss-Seidel and 
Newton-Raphson [2-4].   

 
Evolutionary algorithms have the ability to combat 
the above drawbacks.  As an optimization technique, 
genetic algorithms [5, 6] and PSO [7, 8] are much less 
dependent on the start values of the variables in the 
optimization problem when compared with the 
widely used Newton-Raphson or mathematical 
programming techniques such as SQP (Sequential 
Quadratic Programming).  In addition Evolutionary 
algorithms do not rely on the guidance of the gradient 
information, such as the Jacobian matrix, hence they 
are more capable of determining the global optimum 
solution. 
Authors in [9] presented an application of particle 

swarm optimization (PSO) for solving the load flow 
problem as an optimization problem.  The PSO 
algorithm has been strengthened using breeding 
technique similar to that applied in Genetic 
algorithm (GA). The new suggested algorithm has 
been applied to two test systems.  

 
Yin and Germay [10] were the first who applied GAs 
to solve the load-flow problem.  Unfortunately results 
reported were not very near the solution.  It was 
shown in [10] the total mismatch (accuracy) achieved 
for three runs of GAs of the six-bus test system were 
1.0216, 0.5356 and 0.5218.  Apparently, these 
mismatches can only suggest that the solution is quite 
inaccurate and the problem remains to be solved.  
These inaccuracies were probably due to the binary 
representation of candidates, which led to 
discretization errors.  Also, it has been conceded in 
[10] that those GA solutions can only serve as a guide 
within the solution search space.  The GA solution 
could then be used as an initial guess for the 
Newton-Raphson method, which would hopefully 
converge to the exact solution. 
Wong et al. introduced, in [11-13], a constrained GA 
for solving power-flow.  This approach was based on 

2nd WSEAS Int. Conf. on CIRCUITS, SYSTEMS, SIGNAL and TELECOMMUNICATIONS (CISST'08)Acapulco, Mexico, January 25-27, 2008 

ISSN: 1790-5117
Page 17 ISBN: 978-960-6766-34-3



                                                                                           
 

a constraint satisfaction technique to force the 
mismatch of the total power balance equations to 
zero.  By incorporating the concept of dependant 
variables in the formulation [12] and setting the 
mismatch to zero, the power injection equations are 
reorganized to solve for the unknowns (nodal phasor 
voltages).  Using this reformulation of the load-flow 
equations, Wong et al. found that the GA could 
successfully converge to the correct solution.  This 
study intends to solve the load-flow problem with the 
well known Tanaka's fuzzy linear regression model. 
 
2   An overview of Tanaka's Fuzzy 
linear regression 
 
Fuzzy linear regression was introduced by Tanaka et. 
al [14] in 1982.  The general form of Tanaka's 
formulation is given by: 

0 1 1 2 2( ) .... n nY f x A A x A x A x= = + + + + = Ax   (1) 
 
where Y is output (dependant fuzzy variable), 
{ }1 2, ,..... nx x x  is a non fuzzy set of crisp independent 
parameters and { }0 1, ,..., nA A A is a fuzzy set of 
symmetric members, unknowns, needs to be 
estimated.  Each fuzzy element in that set may be 
represented by a symmetrical triangular membership 
function, shown in figure 1, defined by a middle and a 
spread values, ip and ic  respectively.  The middle is 
known as the model value and the spread denotes the 
fuzziness of that model value.  The triangular 
membership function can be expressed as: 
Therefore, since ( , )i i iA p c= , then equation (1) may 
be rewritten as: 
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Therefore, since ( , )i i iA p c= , then equation (1) may 
be rewritten as: 
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The membership function of output Y may be given 
by: 
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Figure 1 membership function of fuzzy coefficient A  

 
Now, by substituting equation (3) in (4), the output 
membership function is given as:  
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The output membership function is depicted in figure 
2.  From regression point of view, equations (1-5) 
may be applied to m samples where the output can be 
either non-fuzzy, (certain or exact), in which no 
assumption of  ambiguity is associated with the 
output or fuzzy (uncertain), where uncertainty in the 
out is involved due to human judgment or meters 
impression [15].  In this study both non fuzzy and 
fuzzy output will be considered. 

 
Figure 2 membership function of output 
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2.1 Non- fuzzy output model [14]: 
 
In this model, Tanaka converted regression model 
into a linear programming problem [14].  In this case 
the objective is to solve for the best parameters, i.e. 

*A , such that the fuzzy output set is associated with a 
membership value grater than h  as in ; 
 ( ) , 1,....,Y jj y h j mμ ≥ =  (6) 

where [ ]0,1h ∈  is the degree of the fuzziness and is 
normally defined by the user.  
Therefore, with equation (6) as a condition, the main 
objective is to find the fuzzy coefficients that 
minimize the spread of all fuzzy output for all data 
set.  Note that the fuzziness in the output is due to 
fuzziness assumed in the system structure *A .   
Thus, given non-fuzzy data ( ),i iy x , the fuzzy 

parameters ( )* ,=A p c may be solve for by the linear 
programming formulation as: 

 
1 1

min( )
m n

non fuzzy i ij
j i

F c x−
= =

= ∑∑  (7) 

Subject to: 
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Note that from in (8) and (9),
1

n
i ij

i
p x

=
∑ , defines the 

middle value and  
1

n
i ij

i
c x

=
∑  defines the sympatric 

spread to the left, constraint (8), and to the right, 
constraint (9), as illustrated in figure 2.  As can be 
seen from the figure 2, as the degree of fuzziness, h , 
increases the spread, ic , increases and therefore the 

uncertainty associated with the ip  would increase 
[16].   
3 The Proposed Formulation 
 
The load-flow rectangular formulation can be 
described as follows.  Consider a network with total 
number of N nodes (buses).  At any bus i, the nodal 
active ( ),θiP V and reactive ( ),θiQ V are given by: 

( ) ( )
1

, cos( ) sin( )θ θ θ θ θ
=

= − + −∑
N

i i j ij i j ij i j
j

P V V V G B

 (10) 

( ) ( )
1

, sin( ) cos( )θ θ θ θ θ
=

= − − −∑
N

i i j ij i j ij i j
j

Q V V V G B

 (11) 

Where 

jV           Voltage magnitude at bus j. 

θ j             Voltage angle at bus j. 
Gij ,  Bij        The (i,j)th element of the admittance 

matrix Y-bus.    
 

At each node the voltage magnitude and the voltage 
angle are unknowns and must be calculated, except 
the slack bus where is known 0θ =slack .  Suppose 
that bus number 1 is the slack bus, therefore the 
unknown state vector may be defined as: 
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 (12) 

 
It is essential to determine the values of the 
unknowns in equation (12) such that:  
 

 (x) 0− =net
i iP P  (13) 

and 
 (x) 0− =net

i iQ Q  (14) 
 

where  net
iP  and net

iQ  are the prespecified active 
and reactive power levels of bus i.  Thus, mismatch 
in equations (13) and (14) must be driven to zero 
(ideally). 
Due to nonlinearity in equations (10) and (11), an 
iterative root finding scheme such as 
Netwon-Raphson (N-R) must be adopted to solving 
nonlinear equations.  By selecting a number of 
equations from (10) and (11) equal to the number to 
the number of unknowns in x , a matrix valued 
function f(x)  as in: 
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Successive approach of x  toward the solution is 
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handled as in: 
 

 1x x x+ = + Δk k  (16) 
 

k denotes the current iteration number of N-R.  The 
non-linear power system model is linearized 
around some operating point ox  using Taylor 
series expansion, retaining the first two terms and 
ignoring higher order terms.  This leads to the 
following relationship where Δx  may be then 
found by solving the set of linear equations: 
 

 (x ). (x )Δ = −Δk kJ x g  (17) 
 
where (x ) f (x ) x= ∂ ∂k kJ  is the Jacobian square 
matrix evaluated at xk and (x)Δg  is the active and 
reactive power mismatches and is computed as 
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The main contribution in this paper is to employ 
Tanaka’s fuzzy linear regression formulation to 
solve forΔx in the linearized model of equation 
(17). 

 
The linearized power system in equation (17) the 
Jth measurement can be rewritten as: 
 

 1 1 2 2 ....Δ = Δ + Δ + + Δj j j n jng x J x J x J  (19) 

 
If we define the change in the system state 
variables, xΔ , to be fuzzy member having a 
middle and a spread values, ip and ic  
respectively.  Then, equation (19) can be expressed 
as: 

1 1 1 2 2 2( , ) ( , ) .... ( , )Δ = + + +j j j n n jng p c J p c J p c J (20) 
 

Note that the modal value ip  (i.e. the middle) for a 
given unknown represents the value of the change 
in the system state variables,  Δ ix , at the current 
iteration of the linearized model.  The spread ic  on 
the other hand, which is symmetric, correspond to 

the incremental confidence interval of that state 
variable.   Therefore,  Δx  can be defined: 

 
 [ ]1 1 2 2( , ), ( , ),....( , )Δ ≡ n nx p c p c p c  (21) 

 
Tanaka’s fuzzy linear regression model, eqs (7)-(9), 
is modified in order to be used to solve for xΔ .  In 
this linear fuzzy formulation, the optimal state 
estimate vector x  may be determined by minimize 
the sum of the spread of all state variables, in this 
case the change in state variables, subject to a 
number of constraint representing the rows of the 
Jacobian can be expressed as: 

 

 
1 1

min( )
= =

= ∑∑
m n

i ij
j i

F c J  (22) 

Subject to: 

 ( )
1 1

1
= =
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n n

j i ij i ij
i i

y p J h c J  (23) 

 ( )
1 1

1
= =

≤ + −∑ ∑
n n

j i ij i ij
i i

y p J h c J  (24) 

 
where h  is the degree of the fuzziness and is 
specified by the decision maker.  The above model 
is a linear programming model and they can be 
solved by any linear programming package. 

 
Upon choosing an appropriate initial guess ox , an 
arbitrary initial guess of considered state variables, 
N-R should iterate until the stopping criterion is 
reached.  Thus the non-linear power-flow problem 
is solved and eventually the states (voltage 
magnitudes and phase angles) are computed by the 
fuzzy linear formulation. 

 
4 Implementation of case studies 

 
This section presents some typical results obtained 
by applying the proposed algorithms to the four-
bus system form [3],  six-bus test system form 
[17],  IEEE 30-bus, IEEE 39-bus, IEEE 57-bus and 
IEEE 118-bus test network data form [18].  A set 
of MATLABTM files has been developed to 
facilitate the computation of all state variables to 
illustrate the concepts.  The fuzzy LP problems 
have been solved by the function linprog() 
incorporated in the MATLABTM optimization 
toolbox [19]. 
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Figure 3 Single Line digram of the six bus test system 
 
Table 1 present typical results obtained by the 
proposed fuzzy linear formulation, when applied to  
the six-bus network form [17] and shown in figure  
3.  For validation purposes, load-flow solution of 
the same test system has been carried by traditional  
technique where inversion of Jacobian is obtained 
and multiplied by (x)Δg  to compute the update 
vector Δx . 
 

TABLE 1:  NORMAL SOLUTION OF SIX-BUS SYSTEM 
 

State Traditional 
Technique 

 Fuzzy-LP 
   (h=0) 

Fuzzy-LP 
  (h=0.5) 

1θ  0    0    0    

2θ      -3.6712    -3.6712    -3.6774

3θ      -4.2733   -4.2733   -4.2820

4θ      -4.1958   -4.1958   -4.2069

5θ      -5.2764   -5.2764   -5.2908

6θ      -5.9475   -5.9475   -5.9641

1V       1.0500     1.0500     1.0480

2V       1.0500    1.0500    1.0480

3V      1.0700    1.0700    1.0680

4V      0.9894    0.9894    0.9872

5V       0.9854     0.9854    0.9833

6V      1.0044     1.0044   1.0022

 
With the fuzziness level h = 0, the proposed fuzzy 
LP technique and the traditional technique produce 
the same load-flow solution, which is expected the 
fuzzy LP technique would produce crisp solution 
with h = 0 (a crisp estimate occurs when its 
corresponding spread or width is 0).  However, 
discrepancies are obvious due to the fairly 
significant noise level associated with higher level 
of fuzziness h=0.5.   
In this test the fuzzy LP and Newton Raphson 
algorithm was found to perform reliably, with 
convergence occurring in 3 iterations.  This is 
consistent with the behavior of the Newton 
Raphson process in solving other types of power 
system load-flow problems.  Furthermore, the 
execution time was found to be 1.0514 sec., see 
table 2.  Table 2, shows the CPU time and number 
of iterations required by both fuzzy LP technique 
and the traditional technique when applied to 
various test systems. 

 
 

 
 
 

TABLE 2: CPU & EXECUTION TIME 

  
 

 
5     Conclusion 
 

An analysis of uncertainty in power system state 
This paper introduces a new approach based on 
Tanaka's Fuzzy linear regression technique to solve 
the load-flow problem.  The problem is formulated 
as a constrained optimization problem.  Linear 
programming and N-R has been employed to solve 
the load-flow problem.  The proposed fuzzy linear 
regression technique has bee applied to various test 
systems.  Results show that the proposed method 
was accurate, reliable, and in efficient method for 
solving the load-flow problem. 

 
 
 

Fuzzy LP Trad. Technique System 
# Itr CPU time # Itr CPU time 

4-bus 5 0.3153 sec 3 0.11000 sec 
six-bus 3 1.0514 sec 3 0.28000 sec 
30-bus 4 1.1498 sec 4 0.23000 sec 
39-bus 4 1.2976 sec 4 0.27158 sec 
57-bus 3 1.7819 sec 3 0.26113 sec 

118-bus 3 2.8449 sec 3 0.36153 sec 
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