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Abstract: - The fast algorithm for calculating the bilinear transform in the optical system is proposed. This 
algorithm is based on the coherent-mode representation of the cross-spectral density function of the illumination. 
The algorithm is computationally efficient when the illumination is partially coherent. Numerical examples are 
studied and compared with theoretical results. 
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1   Introduction 
In consequence of the quadratic relation between the 
optical field and intensity, an incoherent nonlinearity 
exists in almost all optical systems. As well known, 
the output g(y) of any non-linear system can be 
expressed as a functional of the input signal f(x), 
which is represented by the Volterra series [1] 
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where qn denotes the nth-order Volterra kernel of the 
system. Saleh [2] showed that many optical systems 
and processes can be represented either exactly or 
approximately by the third term of this series, i.e., 
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He called the transform described by Eq. (2) a 
bilinear transform (BLT) and gave a comprehensive 
analysis of the properties of its kernel for various 
optical systems. 
     In spite of all its mathematical attractiveness the 
BLT approach has so far limited application for 
numerical simulation of optical systems in view of 
the complexity of the required calculations and, as a 
consequence, the enormous time needed for its 
computer realization. In this connection there is a 
strong need for a computationally efficient method 
for calculating the BLT. Recently we proposed such a 
method for calculating the BLT in partially coherent 
optical imaging system [3]. This method is based on 
the coherent-mode representation of the cross-

spectral density function of the illumination and 
allows to reduce the needed computational effort by a 
factor of two orders in comparison with the direct 
calculation. In this paper, we describe the 
generalization of the proposed method for calculating 
the BLT in an arbitrary optical system and illustrate 
its efficiency by two examples of calculating the 
intensity distribution when optical system meets 
either the condition of image formation or the 
conditions of Fourier spectrum formation. After the 
analogy of the FFT algorithm we refer to the 
proposed method as FBLT algorithm.   
 
 
2 BLT in optics and its computer 
realization 
Let us consider an elementary optical system with a 
single thin converging lens shown in Fig. 1. We will 
assume that an object with the complex amplitude 
transmittance t(x) in a point x = (x,y) is illuminated 
by a stochastic quasi-monochromatic scalar wave 
field V(x) (to keep the notation as simple as possible, 
here and further on, we suppress the explicit 
dependence of the considered quantities on temporal 
frequency v), which can be completely characterized 
by the cross-spectral density function [4] 
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where the angular brackets represent the statistical 
average taken over the ensemble and the asterisk 
denotes the complex conjugate. Then, as it is well 
known [see, e.g., Ref. 5], the intensity distribution of 
the output plane of the system, within the paraxial 
approximation, is given by  
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λ is the mean wavelength, f  is the focal distance of 
the lens, and P(p) is the aperture function of the lens. 
Comparing Eq. (4) with Eq. (2), one can find that this 
equation describes the BLT of the object function t(x) 
with the Volterra kernel 
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     If the geometry in Fig. 1 satisfies the lens law, 
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(the image formation condition), the corresponding 
BLT kernel of the system takes the same form as Eq. 
(6), but with 
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which is known as the amplitude spread function of 
optical system. 
     If z2 = f (the Fourier transform condition), the 
corresponding BLT again has the same form of Eq. 
(6) with 
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Fig. 1. Single lens optical system. 
 

     It is obvious that knowledge of the functions t(x), 
W(x1, x2) and H(u; x) allows to calculate BLT (4) 
with the kernel given by Eqs. (6-8). Let us evaluate 
the computational complexity of such a calculation. 
The dominant portion of calculating the intensity 
distribution from Eq. (4) is the multiplication of four 
4-D functions t(x1), t*(x2), W(x1, x2), H(u; x1) and 
H(u; x2). To realize the numerical multiplication of 
these functions, it is necessary to multiply their 
samples for all possible combinations of sampling 
points taken one by one in each of three planes u, x1 
and x2. Hence, assuming that the illumination field, 
object and amplitude spread function have each been 
adequately represented by NN ×  sampling points, 
one finds that the total number of operations required 
to compute I(u) is proportional to 
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The magnitude of this number can easily result in an 
unacceptably long computation time. Thus, for 
example, when N = 100 and the computational speed 
is 106 operations per second, the computer run time 
needed for calculation of I(u) is about 300 h. Clearly, 
an alternative approach to the calculation of intensity 
distribution is desired as a way to reduce the 
computational effort. 
 
 
3   FBLT algorithm 
According to Wolf’s theory of partial coherence in 
the space-frequency domain [4], the cross-spectral 
density function W(x1, x2) of a wide class of sources 
may be represented in the form of the Mercer  
expansion, i,e., 
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where λn are the eigenvalues and φn (x) are the 
orthonormal eigenfunctions of the homogenous 
Fredholm integral equation 
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The expansion (11) represents the cross-spectral 
density function of the illumination field as a 
superposition of spatially coherent mutually 
uncorrelated elementary modes. 
     Substituting for W(x1, x2) from Eq. (10) into Eq. 
(4), after a straightforward calculation we obtain 
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represents the intensity distribution formed by n-th 
coherent mode of illumination field with the weight 
λn. The eigenvalues λn may be arranged in a 
converging sequence  
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and hence it is possible to truncate the summation in 
Eq. (12) to a finite number M of expansion terms 
which ensures the admissible value of the relative 
error of approximation, 
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It is evident that this error decreases with increase of 
number M. In Ref. 6 the concept of the effective 
number ℵof uncorrelated modes needed to represent 
the illumination field is introduced, and its upper 
bound is defined by the following inequality: 
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It is also noted there that this number may be used to 
establish an optimal point for truncating the 
orthogonal representation of the intensity distribution. 
     Now, let us evaluate the computational complexity 
of intensity calculation in accordance with the 
proposed method. The dominant portion of the 
intensity calculation from Eqs. (12) and (13) is the 
consecutive multiplication of 4-D function H(u; x) by 
2-D function (λn)½ t(x) φn(x), followed by the 
calculation of a square absolute value of the product  

for every n-th expansion term. To realize the 
numerical calculation of every expansion term in Eq. 
(12), it is necessary to multiply the samples of this 
functions for all possible combinations of sampling 
points taken one by one in each of the planes u and x, 
and then to multiply the obtained product by its 
conjugate value. Hence, again using NN × sampling 
points and truncating the summation in Eq. (12) to 
the effective number ℵ  of uncorrelated modes, one 
finds that the number of operations needed to 
compute I(u) by the proposed algorithm is 
proportional to 
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or, for rather large N, 
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     As shown in Ref. 7, the value of ℵ  increases with 
the decrease in the degree of coherence of the 
illumination field. For a completely coherent 
illumination, ℵ=1, and the computational effort C 
decreases to N4. For a partially coherent illumination, 
C increases linearly with ℵ , i,e., the computational 
effort is larger the more incoherent the illumination. 
For sufficiently large values of ℵ , the illumination 
may be generally considered to be completely 
incoherent. In this case, Eq. (4) reduces to [5]: 
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where I0 is a constant. By analogy with the foregoing, 
it is straightforward matter to show that this time the 
number of operations needed to compute I(u) reduces 
again to N4. 
     Comparison of the computational efficiency of the 
direct calculation and the proposed algorithm for 
different values of ℵ is illustrated by a schematic 
picture in Fig. 2. It is evident from this figure that the 
FBLT algorithm can be efficiently employed to 
calculate the intensity distribution when ℵ≤ N. For 
the same values of N and the computational speed 
that are in the example of the previous section, the 
computer run time needed for calculation of I(u) from 
Eqs. (12) and (13) takes from 2 min to 3 h, depending 
on the degree of coherence of the illumination. 
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Fig. 2. Estimation of the computational effort C as a 
function of coherence (effective number ℵ of uncorrelated 
modes of illumination): 1- the direct method in accordance 
with Eq. (4); 2- the FBLT algorithm; 3- the direct method 
in accordance with Eq. (19). 
 
 
4   Examples of FBLT calculations 
To illustrate the application of the proposed 
algorithm, let us consider two examples of 
calculating the intensity distribution (4) in the output 
plane of the optical system shown in Fig. 1 for to 
specific cases, i.e., formation of the image of an 
object and formation of the Fourier spectrum of an 
object. 
     As an object we choose the 1-D Dirac comb 
function, i.e., 
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This object was studied for the following two 
reasons. First, both the ideal image and the exact 
Fourier spectrum of such an object have the same 
form of the Dirac comb function. Secondly, the 
choice of this object allows the result of integrating in 
Eq. (4) to be obtained in an explicit analytic form, a 
fact that give us a chance to evaluate the accuracy of 
the proposed algorithm. 
     Taking into account the 1-D character of our 
object, and for sake of simplicity, as an illumination 
field, we consider the secondary 1-D Gaussian 
Schell-model source [7] that is characterized by a 
cross-spectral density function of the form 
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where I0, σI 

2 and σμ 
2 are positive constants. This type 

of source was chosen because it exhibits the essential 
features of many sources encountered in practice and 

yet it can be analyzed mathematically with relative 
easy. For this source 
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where 
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and Hn is the Hermite polynomial of order n. As 
shown in Ref. 6, for this source the effective number 
of uncorrelated modes is determined by the inequality 
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where β = σμ / σI  is a measure of the global coherence 
of the source. 
     At last, we consider that the lens in Fig. 1 is free 
of aberrations and has a circular aperture of radius R. 
The amplitude spread function of such an optical 
system under certain conditions [5] is given by 
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where ρ = (u2 + v2)½, J1 is the first-order Bessel 
function, and α, here and further on, is a 
dimensionless coefficient. 
     At first we suppose that the optical system forms 
the image of an object without magnification ( z1 = z2 
= 2f ). Then, substituting for t(x), W(x1, x2), H(u; x) 
from Eqs. (20), (21) and (26) into the 1-D version of 
Eq. (4) and making use of the sifting property of the 
Dirac function, it is straightforward matter to obtain 
the following expression for the theoretical image 
intensity distribution: 
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where  
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     By analogy, but this time using the FBLT 
algorithm with due regard for the truncation of 
summation in Eq. (12), we obtain the following 
approximation of the image intensity distribution 
(27):  
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     Now we suppose that the optical system realizes 
the Fourier transform of an object ( z1 = z2 = f ). For 
the sake of simplicity we neglect the vignetting effect 
i.e., the limitation of the effective object size by the 
finite lens aperture. In this case, making use of Eqs. 
(8), (20) and (21), by analogy with the foregoing, one 
cal find the intensity distribution (4) takes the form 
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and Aml are the same as in Eq. (28). 
     Using the FBLT algorithm, we obtain the 
following approximation of the intensity distribution 
(32): 
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and Bn is the same as in Eq. (30). 
     To evaluate the quality of our approximation, we 
realized numerical calculations of the intensity 
distribution I(u) in accordance with Eqs. (27), (29), 
(32) and (33). When calculating we put x0 = 2.44λf / 
R, which is twice greater than the Rayleigh limit of 
resolution for our optical system, and σI = 2σμ = 10x0, 
which corresponds to the case of the true partial 
coherence (β = 0.5). We truncated the summation 
over indexes k, m, l to nine central Dirac impulses in 
the object and varied the number M of the terms in 
the modal expansion. 
     The results of calculations are shown in Fig. 3 and 
Fig. 4. As can be seen in these figures, with the 
increase of the number M the approximate intensity 
distributions come closer to the theoretical curves. 
When the number M is equal to the effective number 
ℵ  of uncorrelated modes of illumination (in our 
example ℵ= 4), the relative error of the FBLT 
algorithm makes up approximately 1% and, when M 
= 2ℵ , it becomes negligible. 
 
 
5   Concluding remarks 
The FBLT algorithm allows to reduce considerably 
the computational effort needed for calculating the 
intensity distribution at the output of a partially 
coherent optical system and its efficiency is larger the 
more coherent the illumination in a global sense. It 
must be noted that the application of this algorithm 
requires the knowledge of the coherent-mode 
representation of illuminating field (eigenvalues λn 
and eigenfuctions φn). Unfortunately, the analytical 
expression of the coherent modes is known for a 
small number of cases such as Gaussian Schell-model 
sources [7], twisted Gaussian Schell-model source [8] 
and Bessel-correlated Schell-model sources [9]. In 
general case, the evaluation of coherent modes entails 
the numerical solution of the integral equation (11) 
that is not an easier computational task than the 
proper calculation of the BLT. However, it should be 
taken into account that once λn and φn have been 
calculated for the given illumination, they can be 
stored and applied to the calculation of BLT for any 
object and any optical system. Thus, the FBLT 
algorithm can be considered as an indispensable tool 
for the analysis and computer simulating of the 
optical systems with partially coherent illumination. 
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Fig. 3. Results of calculating the image intensity distribution in accordance with Eq. (29) for: (a) M=1; (b) M=4. Theoretical 
intensity distribution, obtained according to Eq. (27), is shown by solid curves. 
 

 
 
Fig. 4. Results of calculating the intensity distribution of Fourier spectrum in accordance with Eq. (34) for (a) M=1; (b) 
M=4. Theoretical intensity distribution, obtained according to Eq. (32), is shown by solid curves. 
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