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Plaza de Ciencias 3, 28040–Madrid

SPAIN
angel@mat.ucm.es
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Abstract: This paper deals with an inverse problem concerning the identification of the heat exchange coefficient
H (assumed depending on the temperature) between a certain material with the external environment (see, e.g., [2],
[4] for real applications modelled with equations involving this coefficient). Only experimental measurements of
the temperature are supposed to be known. The goal is to identify H in order to get a solution for the corresponding
model, approximating same given temperature measurements. We begin by setting several scenarios for the inverse
problem. For each scenario, we know the initial and ambient temperatures, identify function H through different
methods and obtain error bounds in adequate norms (uniform and square integrable). Finally, we study the inverse
problem in the framework of the classical theory for Hilbert spaces. Several methods are used (Tikhonov, Morozov,
Landweber,. . . ) and the approximations obtained, as well as the one provided by the previous algorithm, are shown.

Key–Words: Model identification, Heat exchange, Regularization strategies.

1 Description of the inverse problem
and their physical motivation.

Let us suppose we have a homogeneous sample of
a material that is getting warm (respectively, cool)
due to heat exchange with the external environment.
For simplicity, let us suppose that the sample is small
enough to be able to assume that the temperature gra-
dient inside it is negligible. The Newton Cooling Law
provides a simple mathematical model describing this
phenomenon through the following initial value prob-
lem (direct problem):

{
T ′(t) = H(T (t))(T e − T (t)), t ≥ t0
T (t0) = T0,

(1)

where T (t) is the temperature of the sample at time t,
T e is the external environment temperature, T0 is the
temperature at the initial time t0 and H is the temper-
ature dependent heat exchange coefficient. To solve
problem (1) we need to know the model data: con-
stants T0, T

e ∈ R and function H(·) : (Ta, Tb) → R,
where (Ta, Tb) is a range of temperatures suitable for
the problem we are considering.

In real cases, the values of T0 and T e can be ob-
tained through simple devices measuring temperature.
However, obtaining function H(·) is not so easy by
experimental methods. The goal of this work is to
solve the inverse problem of identify H(·), knowing
just certain experimental measurements of tempera-
ture.

In certain contexts, and under certain conditions,
it can be assumed that H has a known expression (e.g.,
H constant or a function with a few real parameters to
identify). The challenge that we face in this work is
to identify function H when continuity and positivity
are the only information available about H .

2 Scenarios of the inverse problem.

The model is not very sensitive to changes in H(s) for
s close to T e in the following sense: if for some tµ,
T (tµ) = T e − µ then, monotonicity of T implies that
T remains in the interval [T e−µ, T e] for every t ≥ tµ
and arbitrary values of H. For this reason, it is unreal-
istic (and unnecessary) pretend to identify H near T e.
These considerations lead us to pose the problem of
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identifying function H as follows:

i) A threshold µ > 0, depending on the admissible
error in the approximation of the temperature, is
fixed so that the identification of H in the inter-
val [T e−µ, T e] is not part of our goal. From this
threshold, a time tf = tf (µ, T0, T

e,H) is deter-
mined (by arguments explained later) such that

|T e − T (t)| < µ, t ≥ tf .

Thus, the error in the temperature will be smaller
than µ for t ≥ tf .

ii) We use model (1) in [t0, tf ] and identify H in
[T0, T (tf )] ⊃ [T0, T

e − µ].

According to the available information about T (t) in
[t0, tf ] we set the inverse problem in several scenarios:

• The trivial (and unrealistic) case is to suppose
that functions T (t) and T ′(t) are known in
[t0, tf ]. Then, assuming H ∈ C([T0, T (tf )]) and
positive, we can identify H in a direct way from

H(s) =
T ′(T−1(s))

T e − s
. (2)

• If function T can be evaluated without error
in a finite number of arbitrary instants t ∈
[t0, tf ], the identification of H in [T0, T (tf )] be-
comes a standard problem of numerical differen-
tiation (in order to approximate T ′(t) from data).

• Next scenario arises when a function T̃ , repre-
senting an approximate value of the tempera-
ture in every instant, is supposed to be known.

• However, in a realistic context, only discrete val-
ues of T̃k approximating the temperature are
available.

Last two scenarios need a “stable” method to ap-
proach T ′(t) from data. Then, formula (2) provides
discrete values approximating H in points of interval
[T0, T (tf )].

Let us see how to determine tf in the non trivial
situations described before:

a) In the second scenario, given p + 1 exact val-
ues {T0, T1, . . . , Tp} of the temperature at instants
{τ0 =t0, τ1, . . . , τp}, we consider µk = T e − Tk.
Then µ is chosen as one of the values µk or any
number smaller than them. We take tf = τm,
where

m =





p, if µ < µk for all k.

min
k
{µ = µk}, otherwise.

(3)

b) The assumptions in the third scenario are that func-
tion T̃ is known in some interval [t0, t∗] and

∣∣∣
∣∣∣T − T̃

∣∣∣
∣∣∣
C([t0,t∗])

< δ,

where δ < µ (if µ ≤ δ it is necessary to increase
the value of µ). Then, we consider tf as

tf =





t∗, if T̃ (t) < T e − µ + δ for all t ≤ t∗

min
t
{T̃ (t) = T e − µ + δ}, otherwise.

(4)

c) Finally, in the fourth scenario, tf is defined in a
more sophisticated way. Measurements {T̂k}p

k=0

such that |T (τk)− T̂k| < δ̂, with δ̂ > 0, are avail-
able. Let T̃ be an interpolation function of val-
ues {T̂0, T̂1, . . . , T̂p} in {τ0, τ1, . . . , τp}, let δ > 0
such that

∣∣∣
∣∣∣T − T̃

∣∣∣
∣∣∣
C([τ0,τp])

< δ

and take µk = T e − T̂k + δ for k = 1, 2, . . . , p.
Now, we assume that µ > 3δ (otherwise, the value
of µ will be increased) and that µ is lower or equal
than all previous values µk. Then, taking m as in
(3), we define

tf = τm. (5)

3 A first approach to the inverse
problem.

3.1 Identifying from a finite amount of exact
values of temperature.

Given n ∈ N, the values of the temperature T at tk =
t0+kh for k = 0, 1, . . . , n, are supposed to be known,

where h =
tf − t0

n
. Lets denote Tk = T (tk), k =

0, 1, . . . , n. The differential equation of problem (1)
can be rewritten as

T ′(t)
T e − T (t)

= H(T (t)), t0 < t < tf . (6)

Therefore, our goal is to find, for k = 0, 1, . . . , n, an
approximation H̃k of

T ′(tk)
T e − T (tk)

,

which is also an approximation of H(Tk). Consider-
ing the first order approximate differentiation operator
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Rh : C([t0, tf ]) → C([t0, tf ]) given by

Rh(v)(t) =





Φh(v)(t), t ∈ [t0, t̂]

Ψh(v) + Φh(v)(t− h), t ∈ [t̂, tf ]

where t̂ = tf − h,

Φh(v)(t) =
v(t + h)− v(t)

h

and

Ψh(v) =
v(tf )− 2v(tf − h) + v(tf − 2h)

h
.

Let us denote by ||·|| the norm in C([t0, tf ]). The fol-
lowing result holds:

Lemma 1 If v ∈ C2([t0, tf ]) then

∣∣∣∣v′ −Rh(v)
∣∣∣∣ ≤ 7h

2

∣∣∣∣v′′∣∣∣∣ .

In order to approach H(Tk) we take

H̃k =
Rh(T )(tk)
T e − Tk

,

for k = 0, 1, . . . , n. Thus, the following bound for the
error is obtained:

Proposition 2 If T ∈ C2([t0, tf ]) then

max
k=0,1,...,n

∣∣∣H(Tk)− H̃k

∣∣∣ ≤ 7M2

2µ
h, (7)

where M2 = ||T ′′||C([t0,tf ]) .

Remark 3 Note that this estimate for the error in H
has the same order as the approximate differentiation
method used. Thus, if an upper order method is cho-
sen, the estimate (7) will be better. 2

Remark 4 As noted at the beginning of Section 2, tf
is fixed, a priori, from the value of µ. Then, the bound
in estimate (7) does not blow up. 2

3.2 Identifying from a function that approx-
imates the temperature.

In this context, we suppose to know a function
T̃ ∈ C([t0, tf ]), where tf is chosen according (4)
and ∣∣∣

∣∣∣T − T̃
∣∣∣
∣∣∣ < δ (8)

for 0 < δ < µ. For the sake of simplicity and con-
sistency with the properties of T, we assume that
T̃ (t) ≥ T0, t ∈ [t0, tf ]. From (6), we define

u(t) =
T ′(t)

T e − T (t)
, t0 < t < tf

and the approximation

ũh(t) =
Rh(T̃ )(t)

T e − T̃ (t)
, t0 < t < tf .

Next, an error estimate is obtained:

Proposition 5 If T ∈ C2([t0, tf ]) and T̃ ∈ C([t0, tf ])
satisfies (8) with 0 < δ <

µ

3
, then

||u− ũh|| ≤ 1
µ− 2δ

(
7M2

2
h

+
3δ

h

T e − T0 + µ− 2δ

µ− 3δ

)
.

(9)

The following result determines how to optimize
the above estimate by choosing a suitable step time h:

Proposition 6 Under the assumptions of Proposi-
tion 5, the minimum value for the right hand side in (9)
is obtained for

h∗ =

√
6(T e − T0 + µ− 2δ)

7(µ− 3δ)M2
δ. (10)

In this case, estimate (9) becomes

||u− ũh∗ || ≤ 1
µ− 2δ

√
42M2(T e − T0 + µ− 2δ)

µ− 3δ
δ.

From Proposition 6, choosing h∗ as in (10), taking

n as the entire part of
tf − t0

h∗
, denoting tk = t0+kh∗,

T̃k = T̃ (tk) and

H̃k = ũh∗(tk) =
Rh∗(T̃ )(tk)

T e − T̃k

(11)

for k = 0, 1, . . . , n, we obtain the main result of this
section:

Theorem 7 If H ∈ C1([T0, T
e]) and T̃ ∈ C([t0, tf ])

satisfies (8) with 0 < δ <
µ

3
, then

max
k=0,1,...,n

∣∣∣H(T̃k)− H̃k

∣∣∣ ≤ δ
∣∣∣∣H ′∣∣∣∣

C([T0,T e])

+
1

µ− 2δ

√
42M2(T e − T0 + µ− 2δ)

µ− 3δ
δ = O(

√
δ).
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The above result can be rewrite in terms of the
second derivative of T and the extreme values of H in
[T0, T

e]:

Corollary 8 The assumptions of Theorem 7 imply

max
k=0,1,...,n

∣∣∣H(T̃k)− H̃k

∣∣∣

≤
(

M2

m(µ− 3δ)
+ M

)
δ

µ− 3δ

+
1

µ− 2δ

√
42M2(T e − T0 + µ− 2δ)

µ− 3δ
δ,

where m = min
z∈[T0,T e]

H(z) and M = max
z∈[T0,T e]

H(z).

3.3 Identifying from a finite number of val-
ues of the temperature.

We assume that the interpolation method used is such
that the error δ between T and T̃ , and the measure-
ment error δ̂, are of the same order, i.e., δ = Cδ̂.

For example, if T̃ is the piecewise linear interpo-
lation of measurements {T̂0, T̂1, . . . , T̂p} and we de-
note Tint the piecewise linear interpolation of values
of T at points τk, the monotonicity of T provides
∣∣∣
∣∣∣T − T̃

∣∣∣
∣∣∣ ≤ ||T − Tint||+

∣∣∣
∣∣∣Tint − T̃

∣∣∣
∣∣∣

≤ max
1≤k≤p

|T (τk)− T (τk−1)|+ δ̂

≤ max
1≤k≤p

(
|T̃ (τk)− T̃ (τk−1)|+ 2δ̂

)
+ δ̂

= max
1≤k≤p

|T̂k − T̂k−1|+ 3δ̂.

Therefore, when the interpolation considered is the
piecewise linear interpolation, if the difference be-
tween consecutive measurements is of order δ̂, then
δ and δ̂ are of the same order. The number of mea-
surements will be increased if needed.

3.3.1 Algorithm for determining H

The input data are: {T̂k}p
k=0, δ̂ > 0 and the admissible

threshold µ > 0. First of all, we construct a function
T̃ (t) interpolating {T̂k}p

k=0. Then, we estimate the er-
ror δ > 0 due to the interpolation. Next, tf is fixed
from δ and µ.

The algorithm is based on an iterative process be-
ginning from an initial guest Λ2 for M2. From this
value, the time step is calculated by

h =

√
6(T e − T0 + µ− 2δ)

7(µ− 3δ)Λ2
δ, (12)

according to (10). With this election of h, the corre-
sponding values H̃k are obtained. Approximating T ′′
by (13) in nodes tk and taking the absolute maximum,
a new Λ2 (and a new h) is obtained, and so on. This
iterative process finishes when h stabilizes. Since

T ′′ =
(

H ′(T )(T e − T )−H(T )
)

H(T )(T e − T ),

we approximate T ′′(tk) as:




(
H̃k+1 − H̃k

T̃k+1 − T̃k

(T e − T̃k)− H̃k

)
H̃k(T e − T̃k),

k = 0, 1, . . . , n− 1(
H̃n − H̃n−1

T̃n − T̃n−1

(T e − T̃n)− H̃n

)
H̃n(T e − T̃n).

(13)

Algorithm

DATA {T̂k}p
k=0: measurements of T (tk).

δ̂ > 0: bound for the measurement errors.
µ > 0: threshold.
ε: stopping test precision.
Λ2: initial guest for M2.

Step 1: Determine δ according to δ̂.
Step 2: Fix tf from (5) adapting µ if needed.
Step 3: Initialize h using (12).
Step 4: While the relative error in h is bigger than ε:

a) Calculate H̃k from (11).
b) Set Λ2 as the maximum of the absolute

value of (13).
c) Set h using (12).

4 Functional framework of the in-
verse problem. Classical theory.

Suppose the fourth scenario (the more general one).
Once tf is determined, we consider the initial value
problem (1) over the interval [t0, tf ]. By denoting
u(t) = H(T (t)), t ∈ [t0, tf ], we have that
∫ t

t0

u(s) ds =
∫ t

t0

T ′(s)
T e − T (s)

ds = − ln
(

T e − T (t)
T e − T0

)
.

Thus, for suitable functional spaces X and Y , by
defining the operator K : X → Y as

Kx(t) =
∫ t

t0

x(s) ds,

our problem can be write Ku = y, where

y(t) = − ln
(

T e − T (t)
T e − T0

)
, t ∈ [t0, tf ].
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Note that function y is well defined and it is positive.
In order to apply the Classical Regularization Theory
in Hilbert spaces (see, e.g., [1], [3]), we choose X =
Y = L2(t0, tf ).

Proposition 9 K : L2(t0, tf ) → L2(t0, tf ) is a lin-
ear and compact operator. Moreover:

a) Kx ∈ H1(t0, tf ) and (Kx)′ = x in L2(t0, tf ) for
every x ∈ L2(t0, tf ).

b) K is an injective operator and has dense rank in
L2(t0, tf ).

c) The adjoint operator K∗ : L2(t0, tf ) → L2(t0, tf )

is given by K∗y(t) =
∫ tf

t
y(s) ds.

In our problem we have measurements T̂k verify-
ing |T (τk)− T̂k| < δ̂, and an interpolation function T̃

such that
∣∣∣
∣∣∣T − T̃

∣∣∣
∣∣∣
C([τ0,τp])

< δ. This provides a right

hand term

yδ(t) = − ln

(
T e − T̃ (t)
T e − T0

)

and the approximate problem Kuδ = yδ. Next propo-
sition estimates the error between yδ and y in terms of
error between T̃ and T (given by δ).

Proposition 10 Lets denote e(δ) =

√
tf − t0

µ− 3δ
δ.

Then ||y − yδ||L2(t0,tf ) ≤ e(δ).

4.1 Tikhonov’s method

The Tikhonov’s strategy to solve Kuδ = yδ, consists
of minimizing the Tikhonov functional

Jα(x) = ||Kx− yδ||2L2(t0,tf ) +α ||x||2L2(t0,tf ) , (14)

where α = α(δ) > 0. Theorem 2.11 of [3], guaran-
tees uniqueness of the minimum uα,δ of (14), which
is also the unique solution of the normal equation

(α + K∗K)x = K∗yδ. (15)

The regularization strategy is given for the linear op-
erators Rα : L2(t0, tf ) → L2(t0, tf ) defined by

Rαy = (α + K∗K)−1K∗y.

For α = 0 this becomes the normal equation of K.
Since minimizing operator J0 is an ill–posed problem
(see [3], Lemma 2.1), a penalty term is added.

Proposition 11 The solution uα,δ of (15) is the solu-
tion of the boundary problem

{ −αx′′(t) + x(t) = y′δ(t), t ∈ (t0, tf )
x′(t0) = 0, x(tf ) = 0.

Moreover, denoting γ(r) =
tf − r√

α
, the solution is

uα,δ(t) =
1√
α

(ϕα,δ(t) cosh γ(t) + ψα,δ(t) sinh γ(t))

where

ϕα,δ(t) =
∫ tf

t
y′δ(s) sinh γ(s) ds

and

ψα,δ(t) =
∫ t

t0

y′δ(s) cosh γ(s) ds−tanh γ(t0)ϕα,δ(t0).

Remark 12 Theorem 2.12 of [3] states that if one
chooses α = α(δ) such that lim

δ→0
α(δ) = 0 and

lim
δ→0

δ2

α(δ)
= 0, then the Tikhonov regularization strat-

egy is admissible, i.e.,

lim
δ→0

∣∣∣∣uα(δ),δ − u
∣∣∣∣

L2(t0,tf )
= 0,

since ||y − yδ||L2(t0,tf ) ≤ e(δ) (see Proposition 10). 2

4.1.1 Morozov’s discrepancy principle.

This principle provides a way to choose the parameter
α = α(δ) for the Tikhonov’s regularization strategy:
it is chosen so that the solution uα(δ),δ of (15) satisfies

∣∣∣∣Kuα(δ),δ − yδ

∣∣∣∣
L2(t0,tf )

= e(δ),

supposing that

||y − yδ||L2(t0,tf ) ≤ e(δ) < ||yδ||L2(t0,tf ) .

Theorem 2.17 of [3] assures that regularization strat-
egy associated to this choice of α(δ) is admissible.

4.2 Landweber’s iterative method.

Landweber’s iterative method is defined as{
x0 = 0
xm = (I − aK∗K)xm−1 + aK∗y, m = 1, 2, . . . ,

where a > 0. Using Theorem 2.19 of [3], we choose a
such that 0 < a < 1

||K||2 and we consider the stopping
test

||Kxm − yδ||2L2(t0,tf ) ≤ r(e(δ))2

for some r > 0 satisfying

||yδ|| ≥ re(δ), δ ∈ (0, δ0).
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4.3 Comparison between the methods.

Consider the test problem
{

T ′(t) =
(
2 + sin(14T (t))

)(
1− T (t)

)
, t ∈ (0, 0.48)

T (0) = 0.

We take tf = 0.48 corresponding to the threshold
µ = 0.4. The goal is to identify H(s) = 2 + sin(14s)
in (0, T (tf )) ' (0, 0.6). We consider a uniform parti-
tion of (0, 0.48) with step h = 0.01. At these instants,
approximate measurements of temperature with error
δ = 0.001 are supposed to be known. We use lin-
ear piecewise interpolation for T̃ . Every definite inte-
gral is approximated by means of the trapezoidal rule
by using only points at which measurements of the
temperature are available. Thus, these calculations
are “independent” of the interpolation method used to
compute T̃ .

First, we consider the algorithm described in Sec-
tion 3.3 and obtain the results shown in Figure 1.

0 0.1 0.2 0.3 0.4 0.5 0.6
0.5

1

1.5

2

2.5

3

3.5 h=0.011   error=0.168
H identified
H exact

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

Temperature

T from identified H
T from exact H

Figure 1: Algorithm of Section 3.3.1.

Computing uα,δ as states in Proposition 11 for
α(δ) = δγ , with 0 < γ < 2, the exponent with lower
error in L2–norm is attained when γ = 1.05, which
corresponds to α(δ) = 7.0795 × 10−4. For this α,
Figure 2 shows the computed approximations for H
and T .

0 0.1 0.2 0.3 0.4 0.5 0.6
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3.5 error=0.422
H exact
H identified

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

Temperature

T from identified H
T from exact H

Figure 2: Tikhonov’s method with the best exponent.

Figure 3 shows the results for the Morozov’s dis-
crepancy principle by applying secant method to

F (α) = ||Kuα,δ − yδ||2L2(t0,tf ) − (e(δ))2.

The obtained value is α = 0.001.
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H exact
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0
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0.6

Temperature

T from identified H
T from exact H

Figure 3: Morozov’s discrepancy principle.

Finally, Landweber’s iterative method with a =
10 and the stopping criterium of Section 4.2 for r = 1,
after 620 iterations provides a residual norm of 0.0017
and the results are shown in Figure 4.
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Temperature

T from identified H
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Figure 4: Landweber’s iterative method.

5 Conclusions.

The bad behavior obtained with the Classical Theory
for function H near tf (see Figures 2, 3 and 4) is due
to the x(tf ) = 0 condition needed with the square in-
tegrable approximation. This problem is corrected in
Figure 1 by the uniform approach because the regular-
ization has been chosen in order to express the quali-
tative behavior of the direct problem solution.
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