
Parallelism in Finite Element Programs

ION CÂRSTEA
Department of Computer Engineering and Communication

University of Craiova
Str. Doljului nr. 14, bl. C8c, sc.1, apt.7, Craiova

ROMANIA
DANIELA CÂRSTEA

High-School Group of Railways, Craiova
ROMANIA

ALEXANDRU ADRIAN CÂRSTEA
University of Craiova

ROMANIA
ion_crst@yahoo.com

Abstract: –In this paper we present the parallelism facets in the numerical simulation of the distributed-
parameter systems using the finite element method. As a parallel implementation of the finite element (FE)
programs, the domain decomposition method is the best among three possible decomposition strategies for the
parallel solution of partial derivative equations (PDE), namely, operator decomposition, function-space
decomposition and domain decomposition. This is one of the motivations to present the inherent parallelism in
finite element programs.
 The principal objective of the paper is to describe some computational aspects for parallel computers in
computer-aided design of the electromagnetic devices using the finite element method. For each stage of FE
program there is an inherent parallelism of the algorithm that can be exploited on the new architectures.

Key-Words: - Parallel computing; Finite element method.

1 Introduction
The physical systems have the mathematical
models a set of partial-derivatives equations and
only in a first approximation we use lumped-
parameter models [4]. Although a tremendous
variety of parallel numerical methods have been
proposed for simulation of these systems, the most
recently invented parallel computational strategies
are largely based on the finite element (FE) and
multigrid methods [3]. The programs for the
simulation of the distributed-parameter systems
have an inherent parallelism when FE method is
used [6].

The technique of dividing a large physical
system into a system of components is very old and
is still used extensively ([1], [2], [13]). In this way
different components are designed in parallel by
different groups of researchers or companies. It is
obviously that this traditional approach can be used
with parallel computers if the complete finite
element system is subdivided so that each group of
elements within a small domain is assigned to one
processor.

In this paper we present several parallel
computational strategies for the FE applications
[8]. The fact that the finite element method is
central to many modern engineering simulations
constitutes a real motivation for its consideration in
this work. Another motivation is based upon some
of the algorithmic issues raised by the FE method
in comparison with other methods like the
difference finite methods. The FE method can
handle discrete meshes with an irregular or
complicated distribution of points. The matrix of
linear equation coefficients has not a regular,
predictable structure characteristic of the finite
difference method. Another main motivation to
consider the FE method is the existence of a large
amount of software developed for conventional
computers based on it. The justification of this
large amount of software products in this area
consists in the facility with which the FE method
can be used to handle many physical problems
described by partial differential derivative
equations.

FE methods for the solution of elliptic partial
differential equations using unstructured meshes

FINITE DIFFERENCES - FINITE ELEMENTS - FINITE VOLUMES - BOUNDARY ELEMENTS (F-and-B'08)
 Malta, September 11-13, 2008

ISSN:1790-2769 96 ISBN: 978-960-474-004-8

have been in use for a large number of physics
problems [4]. We shall limit our discussion to the
parallel solution of elliptic partial differential
equations (PDE) in 2D space using a distributed
unstructured mesh of triangles with linear
approximations within an element (piecewise linear
elements), although the ideas presented here do
extend to higher order elements [17].

Problems vary widely in the degree to which
parallelism is evident in the problem itself [14].
Thus, we can have some categories of parallelism:
obvious, discovered and implicit parallelism.

 Obvious parallelism is evident in the problem
by its nature and it is encountered in the problems
involving large regular data spaces. If the problem
is inherently parallel, it is simpler and more natural
to follow the parallelism in its solution.

Discovered parallelism. In other problems we
must seek the parallelism in an approach to a
solution. Typically, the algorithm for problem
solution is chosen for specific computer
architecture.

The implicit parallelism is detected and
extracted automatically by the compilers. The user
programs are developed in a language without
explicit parallel features. The advantage of this type
is the portability.

In the multiprocessor systems, the performance
of the computation is influenced by some factors
as:

• type of problem parallelism;
• methods used for decomposing a problem

into tasks;
• allocation of tasks to microprocessors;
• granularity of the tasks;
• possibility of overlapping communication

with processing;
• data-access method;
• architecture of the host system;
• speed of processors, memories and

interconnection work.
 The performance of a computer program

depends both on the method used to solve a
specific problem - known as the algorithm and on
the skill with which the algorithm is implemented
on the computer by the programmer or compiler
during the operation of coding [11]. The best way
to obtain high-performance code is obtained if the
parallelism in the algorithm matches the
parallelism of the architecture so that the details of
programming for any particular architecture are
issues that must be considered in an efficient
algorithm [5].

In many engineering problems we identify an
obvious parallelism so that the use the new
architectures is a natural approach [10]. More, in
the context of the finite element method there is a
natural parallelism so that we do no effort to
discover it. These are some main motivations to
discuss the parallelism in finite element programs.

2 Finite element programs
The FE program may be divided into three distinct
stages [4] :

• pre-processing
• solution (or processing)
• post-processing.

The complexity of each phase lead to a
modular development of the FE programs. In the
first stage the spatial domain is divided in elements
(subdomains) of a desired form. The result of this
stage is a database for the next stages. This
database contains a large amount of data with
respect to geometrical and the physical properties
of the elements. Interactive programs can do it with
a graphical interface for a control of the mesh
topology.
 In the second stage, called solution, a system
of equations is obtained by approximation of the
unknowns in each element, system that is solved
approximately. This stage involves some phases
like: the selection of interpolation functions for
each element, computation of the element
equations, assembling the element equations in a
global system and the solution of the global system
by direct or iterative methods.

The third stage has a single goal: to transform
the abstract results of the processing stage in data
with engineering meanings. It is obviously that
there is a limited parallelism in this stage so that we
limit our discussion to the first stages.

3 Parallelism facets in FE programs
Parallelism is obviously in every stage of the FE
program and these parallelism facets we present in
brief.

3.1.Parallelism facets in pre-processing
The pre-processing stage can be done in parallel
although the unstructured meshes arise some
problems in the parallel implementation of this
stage. Mesh generation can be done in parallel
using different algorithms [4]. The general
principle consists in the division of the original

FINITE DIFFERENCES - FINITE ELEMENTS - FINITE VOLUMES - BOUNDARY ELEMENTS (F-and-B'08)
 Malta, September 11-13, 2008

ISSN:1790-2769 97 ISBN: 978-960-474-004-8

spatial domain in a number of regions that are
assigned at different processors. Each processor
generates a submesh (using an algorithm as
Delaunay algorithm), and finally the global mesh is
obtained by joining the submeshes. Parallel
generation of a mesh is a constrained problem. A
requirement of the generation algorithm is to
minimise the number of generated nodes that lie on
the boundary between regions on different
processors. A generation algorithm is influenced by
the approach used in the solution phase of FE
program.

 Many software products in this area use the
adaptive mesh generators. In the first step, a coarse
mesh is generated and the problem is solved with
this mesh. Afterwards, an error estimator is run in
order to estimate the errors over each element and,
if it is the case, a new mesh is generated by a
refinement technique. In this direction the
following strategies are used: h-strategy (when
elements are refined); p-strategy (when the order of
the polynomial approximations of the unknowns is
increased); h-p strategy (a combination of the
previous strategies).

The parallel refinement techniques consists in
the following steps [4] :
• Partitioning the coarse mesh using an efficient

algorithm
• Distribution of the mesh partitions to the

processors. It is possible that each processor to
have a number of subregions to deal with.

• Independent refinement of the submeshes by
each processor.
In this refinement technique, each processor

needs a list of local vertices, which are shared with
neighbouring subdomains. The requirement of
keeping a constraint join between the different
regions, which are meshed independently, is the
main constraint.

As a final conclusion, the FE mesh itself can be
generated in parallel, with each processor
generating a portion of the mesh, which it was
allocated during the partitioning phase. Refinement
techniques can be used if it is necessary.

3.2.Paralelism facets in the solution stage
For the solution of FE problems, typical processing
involve the following model of computation [7]:
• computation of local system of equations

(elemental matrices)
• assembly into global matrix
• solution of the global equations system.

 The operations involved in calculating the
elemental systems for the different elements are
independent, and therefore can be done
simultaneously. In the global assembly only minor
utilisation of parallelism is feasible but with the
conjugate-gradient (CG) methods, there is no need
for a global assembly step.

In the parallel implementation of FE solution, a
large number of efficient solvers were developed,
especially for specific problem classes. These
solvers essentially rely on a set of basic kernel
procedures (or routines) that consists of matrix-
vector product, scalar product of two vectors and
preconditioning operations. The key to
performance of these solvers is the efficiency of the
kernel procedures and the communication it
requires.

An important problem of any implementation
is the database structure and the management of
this database [12]. Typical serial FE applications
lead to the equations systems with a sparse matrix.
This matrix can be stored in one of two general
ways: in an element-by-element scheme or, as fully
summed equations. In the first approach, each
element matrix is stored separately and is not
summed with contributions from neighbouring
elements. In this way all matrix-vector operations
are performed with elemental matrices and the
global vector is obtained only after summing over
all elements. In a parallel implementation this
scheme can be efficient but increases the required
storage and floating point operations. The second
approach sums the elemental matrices at the
beginning of the linear solver so that the drawbacks
of the first approach are eliminated.

 There are a lot of schemes to storage a sparse
matrix, each of them having advantages and
drawbacks. These schemes are influenced by the
architecture of the host system [4]. In a parallel
application on distributed-memory MIMD
machines, the matrix may be partitioned [6]. The
goal of partitioning is to produce load-balancing
partitions. The methods used in this area can be
included into one of the following classes:
geometric methods and graph methods. Geometric
methods use information about the geometric
distribution of vertices or elements of meshes that
are being partitioned. Graph-based methods are
based on the interconnectivity of the vertices and
elements to realise partitioning. Both classes of
methods can be subdivides in local or global
methods. Global methods use information from the
entire geometric domain or graph to produce
partitions, whereas local methods use only a small

FINITE DIFFERENCES - FINITE ELEMENTS - FINITE VOLUMES - BOUNDARY ELEMENTS (F-and-B'08)
 Malta, September 11-13, 2008

ISSN:1790-2769 98 ISBN: 978-960-474-004-8

neighbourhood of the vertex under consideration to
produce the next candidate partition.

To measure the performance of the partitioning
strategy it is necessary to introduce adequate
metrics [18]. In accordance with the above
classification, the metrics can be local or global.
Some possible local metrics are the number of
messages per boundary exchanged by the
processors and the size of these messages. In a
graph-based method the size of message is directly
proportional to the number of edges cut by the
inter-processor boundary in the connectivity graph.
A global metrics can be the total amount of data
transmitted between the processors. This sum can
be obtained by the number of edges cut by inter-
processor boundaries in the graph partition. If the
processors are not connected directly, the global
metrics can be obtained by the number of data
transmitted weighted by the number of links they
traverse.

3.2.1.The equations solvers

In the solution of FE equations we can use either
direct methods (like Gauss method, LU
decomposition, Choleski method etc.), either
iterative methods (like the gradient methods).
These methods are presented in many books of
numerical analysis so that it is not the case to
present them in detail [4]. We limit our discussion
at a particular one for each class ([6], [12]).

A. Iterative equation solvers

When solving large sparse systems of equations, it
is usual to use iterative techniques. These
techniques can yield solution in less time than the
direct methods. Because there is large amount
software based on CG method we present in brief
this method. We consider our target example that
leads to solving a system Ax=b where A is a n X n
matrix. The global matrix A and the right -hand
side b are assumed to have been constructed, and
will remain unchanged by the algorithm. The
iteration number will be indicated by a subscript.
By r we denote the residual vector and p the
conjugate search direction.

The sequential algorithm in pseudo-code based
on CG method is as follows [6]:
1.Set initial approximation vector x0

2.Calculate initial residual r0=b-A.x0 .

3.Set initial search direction p0=r0

4.For i=0 to n-1 do

calculate coefficient

α i i
T

i i
T

ip r p Ap= (.) / (.)

set new estimate xi+1=xi+ αi (A.pI)

evaluate new residual ri+1=ri-α i (A.pi)

calculate coefficient

βI =-(ri+1 . A pi)/(p
T
i .A.pi)

determine new direction pi+1=ri+1+β i pI

Convergence test

 In this method the direction pi and pj are
conjugated, that is

p A p i j

r r i j

i
T

j

i
T

j

. . ,

. ,

= ≠

= ≠

0

0

By the superscript “T” is denoted the transpose
of a vector and by “.” is denoted the scalar product
of two vectors.

The iterations are terminated when xi has
converged within desired accuracy, as determined
by the magnitude of residuals vector r. The CG
method requires the matrix A to be symmetric and
positive definite and these conditions are satisfied
by the FE matrix of our target example. The main
loop of a sequential program for CG method, using
procedures and functions for the basic operations
is:

repeat

multiply_matrix_vector(A,p,y)

suma:=scalar_product(p,y);

alpha:=scalar_product(p,y);

update_x(alpha,p,x);

update_r(alpha,y,r);

beta:=-scalar_product(r,y)/suma;

update_p(beta,r,p);

test_convergence(value_test);

until value_test

If we examine the above algorithm, we can

identify a number of potentially parallel arithmetic
operations. These operations refer to the product of
a matrix A and vector p, the scalar product of two
vectors and the updating of the vector components
for x and r. Note that in CG algorithm the matrix A
appears in a matrix-vector product. In order to
perform this product it is not necessary to generate
the global matrix A since the element contributions
to any such product may be computed separately
and summed afterward. In the sequential variant
this fact is not so important but in a parallel
implementation it becomes vital. A given processor
may need access to parts of A residing in another
processor.

A parallel implementation of a CG to solve the
equation can be obtained easily. We can assign at
every processor the computations of the entries of

FINITE DIFFERENCES - FINITE ELEMENTS - FINITE VOLUMES - BOUNDARY ELEMENTS (F-and-B'08)
 Malta, September 11-13, 2008

ISSN:1790-2769 99 ISBN: 978-960-474-004-8

the matrix belonging to an element (a fine-grain
parallelism), or a subdomain (more elements) in a
coarse-grain parallelism. In each iteration it is
necessary to exchange information only when
global scalar quantities are computed.

In the steps of CG algorithm we meet two basic
operations: the vector inner product and the matrix-
vector product. In the case of vector inner product,
the parallel implementation is easily. Each
processor is given responsibility for a subset of the
elements which comprises a vector such r or p.
Each processor calculates its contribution to the
inner product and the final result is obtained by
summing the processors contributions via a
combination phase. For load balancing, the
processors are given equal numbers of elements.

Let us consider the computation of the product
A.p. A given row (or column) of the matrix A
contains nonzero entries only for the points that
share a common element. Consequently, a given
entry of the vector A.p makes use of the
information that is spatially local to the
corresponding mesh point. Therefore it must group
the elements in processors according to spatial
grouping of elements. In the computation of the
matrix-vector product it is not necessary to
assemble the matrix A in its global form but it is
necessary to exchange data between processors that
contain points on the boundary of a processor’s
subdomain. So that the calculation of the A.p
product involves two steps:
• computations for all elements internal to a

given processor
• communication which brings in the boundary

A.p contributions
 The communication must be designed in such

a way to additively accumulate all element
contributions to a given point and to distribute the
result to all processors, which share that nodal
point. In order to obtain an efficient
implementation, the communicating processors
must agree on the number and kind of shared
boundary nodes along their common boundaries.

The design of the procedures, which
incorporate the inter-processor communication
step, is very important for the efficiency of the
algorithm [18]. These procedures refer to the inner
product of two vectors and the procedure that
combines neighbouring processor parts of A.p.

B.Direct equation solvers - Gauss algorithm

The Gauss algorithm is well-known in the solution
of the FE equations among the direct methods [16].
It is useful to start by briefly describing the basic

approach of Gauss method before detailing a
particular one. Let A.x=b be a linear system of
equations, where A is a dense square matrix of
order n, and b a vector with N components. For
simplicity of discussion we consider the matrix A
augmented with the right-hand side b, that is, we let
A:=(A, b) be a matrix of dimension n × (n+1).

The Gauss algorithm involves two phases:
forward reduction and backward substitution. The
initial system is transformed into an equivalent
triangular system T.x=c (this is the forward
reduction). This transformation consists in n-1
steps. At each step k, we zero out the elements of
column k, which are below the main diagonal. For
this we add multiple of row k to each row i,
k+1≤i≤n. In the backward substitution, we solve
the triangular system, starting with the last
component of x and terminating with the first
component.

In the following discussion we consider only
the forward reduction. The generic formulation of
the Gauss algorithm is

 For k:=1 to n-1 do
 For i:=k+1 to n do

 aik:= aik /akk

 For j:=k+1 to n+1 do

 aij:=aij - aik*akj

 If we examine the above algorithm for a
parallel implementation, we find a number of
potentially parallel arithmetic operations. The first
of these operations is the dividing all elements of
the column elements aik by the pivot element akk.

On a given entry there are m<n operations implied
in this transformation so that if we have p
processors available and p>m, all these operations
can take place simultaneously. The second
operation that candidates at parallelism is the
updating of the matrix columns.

A practical implementation of the Gauss
algorithm depends by the communication network
of the host computer so that we limit our discussion
to general aspects. There is a rich literature for
particular implementations of the algorithm on a
specific architecture ([3], [16]).

3.3. A parallel implementation based on domain

decomposition

As we have mentioned above, the FE method
includes several phases, such as generation of the
input data, direct or iterative solution of system of
equations and post-processing, each of them having
an inherent parallelism, and can be implemented on
SIMD or MIMD platforms.

FINITE DIFFERENCES - FINITE ELEMENTS - FINITE VOLUMES - BOUNDARY ELEMENTS (F-and-B'08)
 Malta, September 11-13, 2008

ISSN:1790-2769 100 ISBN: 978-960-474-004-8

 The first stage in developing algorithms for
parallel systems is to identify the source of
potential parallelism in problem. In most cases this
task is the responsibility of the programmer. The
parallel algorithm must include mechanisms for
performing the division of processing, allocating
the sub-problems to the available processors and
the collecting the results in order to obtain the final
results.

For the advanced architectures, new
algorithms must be developed and the domain
decomposition techniques are powerful iterative
methods that are promising for parallel
computation ([9], [10], [15]). Ideal numerical
models are those that can be divided into
independent tasks, each of which can be executed
independently on a processor. Obviously, it is
impossible to define totally independent tasks
because the tasks are so inter-coupled that it is not
known how to break them apart. However,
algorithmic skeletons were developed in this
direction that enables the problem to be
decomposed among different processors. The
mathematical relationship between the computed
sub-domain solutions and the global solution is
difficult to be defined in a general approach.

4 Conclusions
There is no general design method for developing
the parallel algorithms to any specific problem. The
act of algorithm design is considered an art and
may never be fully automated. Every possible
algorithm provides a clear specification of the
architecture used, the data structures chosen and the
mode of synchronisation and communication as
well as the computation and communication
complexities.

In principle each stage of FE has an inherent
parallelism and might require different parallel
architectures for optimal efficiency. The various
existing parallel computers differ with respect a lot
of elements (the number of processors, network
topology, memory management), so that the choice
of the architecture is a difficult task. The
communication in a parallel computer plays an
important role for the global performance of the
system. Which the architecture is good for a
specific problem is an open problem.

Problem size and complexity, architecture and
algorithm designs are also interrelated and do this
choice a main problem. For this reason we limited
our discussion to architectures MIMD. The
algorithms depend on the communication network

topology so that we present the general aspects of
the parallelism for the two stages of a FE program:
pre-processing and processing.

References:

[1]. Alonso, A., Valli, A. “A domain decomposition
approach for heterogeneous time harmonic
Maxwell equations.” In: Computer methods in
applied mechanics and engineering, 143 (1997),
pg. 97-112

[2]. Adeli H. (Editor), Parallel Processing in

Computational Mechanics, Marcel Dekker
Inc.,N.Y.

[3]. Bertsekas D.P., Tsitsiklis J.N., Parallel and

Distributed computation. Numerical Methods.
Prentice-Hall Inc., New Jersey 1989.

[4]. Cârstea, D., Cârstea, I. “CAD of the

electromagnetic devices. The finite element

method.” Editor: Sitech, 2000. Romania.
[5]. Cole M. Algorithmic Skeletons: Structured

Management of Parallel Computation , MIT Press
, 1989.

[6]. Fox, G., Johnson, M., Solving problems on

concurrent processors , Prentice Hall, 1988.
[7]. Golub G., Ortega M.J., Scientific Computing. An

Introduction with Parallel Computing. Academic
Press Inc., 1993.

[8]. Hinton, E., Jowen, D.R., An introduction to finite
element computations. Pineridge Press Limited,
Swansea, 1980, UK.

[9]. Hodgson, D.C., Jimack, P.K., “A domain
decomposition preconditioner for a parallel finite
element solver on distributed unstructured grids”.
Parallel Computing (23), 1997 1157-1181. NH
Elsevier.

[10]. Jaja, J., An introduction to parallel algorithms.
Addison-Wesley Publishing Company, Inc., 1992.

[11]. Krishnamurthy, E.V., Parallel Processing,
Addison Wesley Pub. Company, 1988.

[12]. Ortega, J.M., Introduction to parallel and vector
solution of linear systems. Plenum Press, New
York, 1988.

[13]. Paglieri, L., and others, “Parallel computation for
shallow water flow: A domain decomposition
approach”. Parallel computing 23 (1997) 1261-
1277, NH Elsevier.

[14]. Perrot R.H. (Editor), Software for Parallel

Computers, Chapman & Hall, London, 1992.
[15]. Quarteroni, A., Valli, A. “Domain Decomposition

Methods for Partial Differential Equations”.
Oxford Science Publication. 1999

[16]. Robert, Y., The impact of vector and parallel
architectures on the Gaussian elimination

algorithm. Halstad Press, 1992.

FINITE DIFFERENCES - FINITE ELEMENTS - FINITE VOLUMES - BOUNDARY ELEMENTS (F-and-B'08)
 Malta, September 11-13, 2008

ISSN:1790-2769 101 ISBN: 978-960-474-004-8

[17]. Segerlind.L.J., Applied Element Analysis, John
Wiley and Sons, 1984, USA.

[18]. Tabak, D., Multiprocessors , Prentice Hall Inc.
1990.

FINITE DIFFERENCES - FINITE ELEMENTS - FINITE VOLUMES - BOUNDARY ELEMENTS (F-and-B'08)
 Malta, September 11-13, 2008

ISSN:1790-2769 102 ISBN: 978-960-474-004-8

	Text1:

