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Abstract: –In this paper we present the parallelism facets in the numerical simulation of the distributed-
parameter systems using the finite element method. As a parallel implementation of the finite element (FE) 
programs, the domain decomposition method is the best among three possible decomposition strategies for the 
parallel solution of partial derivative equations (PDE), namely, operator decomposition, function-space 
decomposition and domain decomposition. This is one of the motivations to present the inherent parallelism in 
finite element programs. 
 The principal objective of the paper is to describe some computational aspects for parallel computers in 
computer-aided design of the electromagnetic devices using the finite element method. For each stage of FE 
program there is an inherent parallelism of the algorithm that can be exploited on the new architectures. 
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1 Introduction 
The physical systems have the mathematical 
models a set of partial-derivatives equations and 
only in a first approximation we use lumped-
parameter models [4]. Although a tremendous 
variety of parallel numerical methods have been 
proposed for simulation of these systems, the most 
recently invented parallel computational strategies 
are largely based on the finite element (FE) and 
multigrid methods [3]. The programs for the 
simulation of the distributed-parameter systems 
have an inherent parallelism when FE method is 
used [6]. 

The technique of dividing a large physical 
system into a system of components is very old and 
is still used extensively ([1], [2], [13]). In this way 
different components are designed in parallel by 
different groups of researchers or companies. It is 
obviously that this traditional approach can be used 
with parallel computers if the complete finite 
element system is subdivided so that each group of 
elements within a small domain is assigned to one 
processor. 

In this paper we present several parallel 
computational strategies for the FE applications 
[8]. The fact that the finite element method is 
central to many modern engineering simulations 
constitutes a real motivation for its consideration in 
this work.  Another motivation is based upon some 
of the algorithmic issues raised by the FE method 
in comparison with other methods like the 
difference finite methods. The FE method can 
handle discrete meshes with an irregular or 
complicated distribution of points. The matrix of 
linear equation coefficients has not a regular, 
predictable structure characteristic of the finite 
difference method. Another main motivation to 
consider the FE method is the existence of a large 
amount of software developed for conventional 
computers based on it.  The justification of this 
large amount of software products in this area 
consists in the facility with which the FE method 
can be used to handle many physical problems 
described by partial differential derivative 
equations. 

FE methods for the solution of elliptic partial 
differential equations using unstructured meshes 

FINITE DIFFERENCES - FINITE ELEMENTS - FINITE VOLUMES - BOUNDARY ELEMENTS (F-and-B'08) 
                                                         Malta, September 11-13, 2008

ISSN:1790-2769 96 ISBN: 978-960-474-004-8



have been in use for a large number of physics 
problems [4]. We shall limit our discussion to the 
parallel solution of elliptic partial differential 
equations (PDE) in 2D space using a distributed 
unstructured mesh of triangles with linear 
approximations within an element (piecewise linear 
elements), although the ideas presented here do 
extend to higher order elements [17].  

Problems vary widely in the degree to which 
parallelism is evident in the problem itself [14]. 
Thus, we can have some categories of parallelism: 
obvious, discovered and implicit parallelism. 

 Obvious parallelism is evident in the problem 
by its nature and it is encountered in the problems 
involving large regular data spaces. If the problem 
is inherently parallel, it is simpler and more natural 
to follow the parallelism in its solution. 

Discovered parallelism. In other problems we 
must seek the parallelism in an approach to a 
solution. Typically, the algorithm for problem 
solution is chosen for specific computer 
architecture. 

The implicit parallelism is detected and 
extracted automatically by the compilers. The user 
programs are developed in a language without 
explicit parallel features. The advantage of this type 
is the portability. 

In the multiprocessor systems, the performance 
of the computation is influenced by some factors 
as: 

• type of problem parallelism; 
• methods used for decomposing a problem 

into tasks; 
• allocation of tasks to microprocessors; 
• granularity of the tasks; 
• possibility of overlapping communication 

with processing; 
• data-access method; 
• architecture of the host system; 
• speed of processors, memories and 

interconnection work. 
 The performance of a computer program 

depends both on the method used to solve a 
specific problem - known as the algorithm and on 
the skill with which the algorithm is implemented 
on the computer by the programmer or compiler 
during the operation of coding [11]. The best way 
to obtain high-performance code is obtained if the 
parallelism in the algorithm matches the 
parallelism of the architecture so that the details of 
programming for any particular architecture are 
issues that must be considered in an efficient 
algorithm [5]. 

In many engineering problems we identify an 
obvious parallelism so that the use the new 
architectures is a natural approach [10]. More, in 
the context of the finite element method there is a 
natural parallelism so that we do no effort to 
discover it.  These are some main motivations to 
discuss the parallelism in finite element programs. 

 
 

2 Finite element programs 
The FE program may be divided into three distinct 
stages [4] :  

• pre-processing 
• solution (or processing) 
• post-processing. 

The complexity of each phase lead to a 
modular development of the FE programs. In the 
first stage the spatial domain is divided in elements 
(subdomains) of a desired form. The result of this 
stage is a database for the next stages. This 
database contains a large amount of data with 
respect to geometrical and the physical properties 
of the elements. Interactive programs can do it with 
a graphical interface for a control of the mesh 
topology. 
 In the second stage, called solution, a system 
of equations is obtained by approximation of the 
unknowns in each element, system that is solved 
approximately. This stage involves some phases 
like: the selection of interpolation functions for 
each element, computation of the element 
equations, assembling the element equations in a 
global system and the solution of the global system 
by direct or iterative methods. 

The third stage has a single goal: to transform 
the abstract results of the processing stage in data 
with engineering meanings. It is obviously that 
there is a limited parallelism in this stage so that we 
limit our discussion to the first stages. 
 
 

3 Parallelism facets in FE programs 
Parallelism is obviously in every stage of the FE 
program and these parallelism facets we present in 
brief.  

 
 

3.1.Parallelism facets in pre-processing 
The pre-processing stage can be done in parallel 
although the unstructured meshes arise some 
problems in the parallel implementation of this 
stage. Mesh generation can be done in parallel 
using different algorithms [4]. The general 
principle consists in the division of the original 
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spatial domain in a number of regions that are 
assigned at different processors. Each processor 
generates a submesh (using an algorithm as 
Delaunay algorithm), and finally the global mesh is 
obtained by joining the submeshes. Parallel 
generation of a mesh is a constrained problem. A 
requirement of the generation algorithm is to 
minimise the number of generated nodes that lie on 
the boundary between regions on different 
processors. A generation algorithm is influenced by 
the approach used in the solution phase of FE 
program. 

 Many software products in this area use the 
adaptive mesh generators. In the first step, a coarse 
mesh is generated and the problem is solved with 
this mesh. Afterwards, an error estimator is run in 
order to estimate the errors over each element and, 
if it is the case, a new mesh is generated by a 
refinement technique. In this direction the 
following strategies are used: h-strategy (when 
elements are refined); p-strategy (when the order of 
the polynomial approximations of the unknowns is 
increased); h-p strategy (a combination of the 
previous strategies). 

The parallel refinement techniques consists in 
the following steps [4] : 
• Partitioning the coarse mesh using an efficient 

algorithm 
• Distribution of the mesh partitions to the 

processors. It is possible that each processor to 
have a number of subregions to deal with. 

• Independent refinement of the submeshes by 
each processor. 
In this refinement technique, each processor 

needs a list of local vertices, which are shared with 
neighbouring subdomains. The requirement of 
keeping a constraint join between the different 
regions, which are meshed independently, is the 
main constraint. 

As a final conclusion, the FE mesh itself can be 
generated in parallel, with each processor 
generating a portion of the mesh, which it was 
allocated during the partitioning phase. Refinement 
techniques can be used if it is necessary.  

  
 

3.2.Paralelism facets in the solution stage 
For the solution of FE problems, typical processing 
involve the following model of computation [7]: 
• computation of local system of equations 

(elemental matrices) 
• assembly into global matrix 
• solution of the global equations system. 

 The operations involved in calculating the 
elemental systems for the different elements are 
independent, and therefore can be done 
simultaneously. In the global assembly only minor 
utilisation of parallelism is feasible but with the 
conjugate-gradient (CG) methods, there is no need 
for a global assembly step. 

In the parallel implementation of FE solution, a 
large number of efficient solvers were developed, 
especially for specific problem classes. These 
solvers essentially rely on a set of basic kernel 
procedures (or routines) that consists of matrix-
vector product, scalar product of two vectors and 
preconditioning operations. The key to 
performance of these solvers is the efficiency of the 
kernel procedures and the communication it 
requires. 

An important problem of any implementation 
is the database structure and the management of 
this database [12]. Typical serial FE applications 
lead to the equations systems with a sparse matrix. 
This matrix can be stored in one of two general 
ways: in an element-by-element scheme or, as fully 
summed equations.  In the first approach, each 
element matrix is stored separately and is not 
summed with contributions from neighbouring 
elements. In this way all matrix-vector operations 
are performed with elemental matrices and the 
global vector is obtained only after summing over 
all elements.  In a parallel implementation this 
scheme can be efficient but increases the required 
storage and floating point operations. The second 
approach sums the elemental matrices at the 
beginning of the linear solver so that the drawbacks 
of the first approach are eliminated.  

 There are a lot of schemes to storage a sparse 
matrix, each of them having advantages and 
drawbacks. These schemes are influenced by the 
architecture of the host system [4]. In a parallel 
application on distributed-memory MIMD 
machines, the matrix may be partitioned [6]. The 
goal of partitioning is to produce load-balancing 
partitions. The methods used in this area can be 
included into one of the following classes: 
geometric methods and graph methods. Geometric 
methods use information about the geometric 
distribution of vertices or elements of meshes that 
are being partitioned. Graph-based methods are 
based on the interconnectivity of the vertices and 
elements to realise partitioning. Both classes of 
methods can be subdivides in local or global 
methods. Global methods use information from the 
entire geometric domain or graph to produce 
partitions, whereas local methods use only a small 
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neighbourhood of the vertex under consideration to 
produce the next candidate partition.  

To measure the performance of the partitioning 
strategy it is necessary to introduce adequate 
metrics [18]. In accordance with the above 
classification, the metrics can be local or global. 
Some possible local metrics are the number of 
messages per boundary exchanged by the 
processors and the size of these messages. In a 
graph-based method the size of message is directly 
proportional to the number of edges cut by the 
inter-processor boundary in the connectivity graph. 
A global metrics can be the total amount of data 
transmitted between the processors. This sum can 
be obtained by the number of edges cut by inter-
processor boundaries in the graph partition. If the 
processors are not connected directly, the global 
metrics can be obtained by the number of data 
transmitted weighted by the number of links they 
traverse. 

 
 

3.2.1.The equations solvers 

In the solution of FE equations we can use either 
direct methods (like Gauss method, LU 
decomposition, Choleski method etc.), either 
iterative methods (like the gradient methods). 
These methods are presented in many books of 
numerical analysis so that it is not the case to 
present them in detail  [4]. We limit our discussion 
at a particular one for each class ([6], [12]). 

 
 

A. Iterative equation solvers 

When solving large sparse systems of equations, it 
is usual to use iterative techniques. These 
techniques can yield solution in less time than the 
direct methods. Because there is large amount 
software based on CG method we present in brief 
this method. We consider our target example that 
leads to solving a system Ax=b where A is a n X n 
matrix. The global matrix A and the right -hand 
side b are assumed to have been constructed, and 
will remain unchanged by the algorithm. The 
iteration number will be indicated by a subscript. 
By r we denote the residual vector and p the 
conjugate search direction. 

The sequential algorithm in pseudo-code based 
on CG method is as follows [6]: 
1.Set initial approximation vector x0 

2.Calculate initial residual r0=b-A.x0 .  

3.Set initial search direction p0=r0 

4.For i=0 to n-1 do 

calculate coefficient 

α i i
T

i i
T

ip r p Ap= ( . ) / ( . )  

set new estimate xi+1=xi+ αi (A.pI) 

evaluate new residual ri+1=ri-α i (A.pi) 

calculate coefficient   

βI =-(ri+1 . A pi)/(p
T
i .A.pi) 

determine new direction pi+1=ri+1+β i pI 

Convergence test 

 In this method the direction pi and pj are 
conjugated, that is 

p A p i j

r r i j

i
T

j

i
T

j

. . ,

. ,

= ≠

= ≠

0

0
 

By the superscript “T” is denoted the transpose 
of a vector and by “.” is denoted the scalar product 
of two vectors. 

The iterations are terminated when xi has 
converged within desired accuracy, as determined 
by the magnitude of residuals vector r. The CG 
method requires the matrix A to be symmetric and 
positive definite and these conditions are satisfied 
by the FE matrix of our target example. The main 
loop of a sequential program for CG method, using 
procedures and functions for the basic operations 
is: 

repeat 

multiply_matrix_vector(A,p,y) 

suma:=scalar_product(p,y); 

alpha:=scalar_product(p,y); 

update_x(alpha,p,x); 

update_r(alpha,y,r); 

beta:=-scalar_product(r,y)/suma; 

update_p(beta,r,p); 

test_convergence(value_test); 

until value_test 

 
If we examine the above algorithm, we can 

identify a number of potentially parallel arithmetic 
operations. These operations refer to the product of 
a matrix A and vector p, the scalar product of two 
vectors and the updating of the vector components 
for x and r. Note that in CG algorithm the matrix A 
appears in a matrix-vector product. In order to 
perform this product it is not necessary to generate 
the global matrix A since the element contributions 
to any such product may be computed separately 
and summed afterward. In the sequential variant 
this fact is not so important but in a parallel 
implementation it becomes vital. A given processor 
may need access to parts of A residing in another 
processor. 

A parallel implementation of a CG to solve the 
equation can be obtained easily. We can assign at 
every processor the computations of the entries of 
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the matrix belonging to an element (a fine-grain 
parallelism), or a subdomain (more elements) in a 
coarse-grain parallelism. In each iteration it is 
necessary to exchange information only when 
global scalar quantities are computed.  

In the steps of CG algorithm we meet two basic 
operations: the vector inner product and the matrix-
vector product. In the case of vector inner product, 
the parallel implementation is easily. Each 
processor is given responsibility for a subset of the 
elements which comprises a vector such r or p. 
Each processor calculates its contribution to the 
inner product and the final result is obtained by 
summing the processors contributions via a 
combination phase. For load balancing, the 
processors are given equal numbers of elements. 

Let us consider the computation of the product 
A.p. A given row (or column) of the matrix A 
contains nonzero entries only for the points that 
share a common element. Consequently, a given 
entry of the vector A.p makes use of the 
information that is spatially local to the 
corresponding mesh point. Therefore it must group 
the elements in processors according to spatial 
grouping of elements. In the computation of the 
matrix-vector product it is not necessary to 
assemble the matrix A in its global form but it is 
necessary to exchange data between processors that 
contain points on the boundary of a processor’s 
subdomain. So that the calculation of the A.p 
product involves two steps: 
• computations for all elements internal to a 

given processor 
• communication which brings in the boundary 

A.p contributions 
 The communication must be designed in such 

a way to additively accumulate all element 
contributions to a given point and to distribute the 
result to all processors, which share that nodal 
point. In order to obtain an efficient 
implementation, the communicating processors 
must agree on the number and kind of shared 
boundary nodes along their common boundaries. 

The design of the procedures, which 
incorporate the inter-processor communication 
step, is very important for the efficiency of the 
algorithm [18]. These procedures refer to the inner 
product of two vectors and the procedure that 
combines neighbouring processor parts of A.p.  

 
 

B.Direct equation solvers - Gauss algorithm 

The Gauss algorithm is well-known in the solution 
of the FE equations among the direct methods [16]. 
It is useful to start by briefly describing the basic 

approach of Gauss method before detailing a 
particular one. Let A.x=b be a linear system of 
equations, where A is a dense square matrix of 
order n, and b a vector with N components. For 
simplicity of discussion we consider the matrix A 
augmented with the right-hand side b, that is, we let 
A:=(A, b) be a matrix of dimension  n × (n+1). 

The Gauss algorithm involves two phases: 
forward reduction and backward substitution.  The 
initial system is transformed into an equivalent 
triangular system T.x=c (this is the forward 
reduction). This transformation consists in n-1 
steps. At each step k, we zero out the elements of 
column k, which are below the main diagonal. For 
this we add multiple of row k to each row i, 
k+1≤i≤n. In the backward substitution, we solve 
the triangular system, starting with the last 
component of x and terminating with the first 
component.   

In the following discussion we consider only 
the forward reduction. The generic formulation of 
the Gauss algorithm is 

 For k:=1 to n-1 do 
  For i:=k+1 to n do 

   aik:= aik /akk 

   For j:=k+1 to n+1 do 

    aij:=aij - aik*akj 

 If we examine the above algorithm for a 
parallel implementation, we find a number of 
potentially parallel arithmetic operations. The first 
of these operations is the dividing all elements of 
the column elements aik by the pivot element akk. 

On a given entry there are m<n operations implied 
in this transformation so that if we have p 
processors available and p>m, all these operations 
can take place simultaneously. The second 
operation that candidates at parallelism is the 
updating of the matrix columns. 

A practical implementation of the Gauss 
algorithm depends by the communication network 
of the host computer so that we limit our discussion 
to general aspects.  There is a rich literature for 
particular implementations of the algorithm on a 
specific architecture ([3], [16]).  

 
 

3.3. A parallel implementation based on domain 

decomposition 

As we have mentioned above, the FE method 
includes several phases, such as generation of the 
input data, direct or iterative solution of system of 
equations and post-processing, each of them having 
an inherent parallelism, and can be implemented on 
SIMD or MIMD platforms.  
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 The first stage in developing algorithms for 
parallel systems is to identify the source of 
potential parallelism in problem. In most cases this 
task is the responsibility of the programmer. The 
parallel algorithm must include mechanisms for 
performing the division of processing, allocating 
the sub-problems to the available processors and 
the collecting the results in order to obtain the final 
results. 

For the advanced architectures, new 
algorithms must be developed and the domain 
decomposition techniques are powerful iterative 
methods that are promising for parallel 
computation ([9], [10], [15]). Ideal numerical 
models are those that can be divided into 
independent tasks, each of which can be executed 
independently on a processor. Obviously, it is 
impossible to define totally independent tasks 
because the tasks are so inter-coupled that it is not 
known how to break them apart. However, 
algorithmic skeletons were developed in this 
direction that enables the problem to be 
decomposed among different processors. The 
mathematical relationship between the computed 
sub-domain solutions and the global solution is 
difficult to be defined in a general approach. 

 
 

4 Conclusions 
There is no general design method for developing 
the parallel algorithms to any specific problem. The 
act of algorithm design is considered an art and 
may never be fully automated. Every possible 
algorithm provides a clear specification of the 
architecture used, the data structures chosen and the 
mode of synchronisation and communication as 
well as the computation and communication 
complexities.  

In principle each stage of FE has an inherent 
parallelism and might require different parallel 
architectures for optimal efficiency. The various 
existing parallel computers differ with respect a lot 
of elements (the number of processors, network 
topology, memory management), so that the choice 
of the architecture is a difficult task. The 
communication in a parallel computer plays an 
important role for the global performance of the 
system. Which the architecture is good for a 
specific problem is an open problem. 

Problem size and complexity, architecture and 
algorithm designs are also interrelated and do this 
choice a main problem. For this reason we limited 
our discussion to architectures MIMD. The 
algorithms depend on the communication network 

topology so that we present the general aspects of 
the parallelism for the two stages of a FE program: 
pre-processing and processing. 
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