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Abstract: - The developed technique involves numerical determination of bifurcation points of the nonlinear Maxwell 

equations complemented by the  Landau-Lifshitz equation with the exchange term taking into account the 

electrodynamical boundary conditions  for 3D magnetic nanodevices. A special computational algorithm has been 

developed for determination of bifurcation points of the nonlinear Maxwell operator including the Landau-Lifshitz 

equation. The bifurcation points are found from the eigenvalues of the characteristic equation of the linearized Maxwell 

operator via the use of necessary and sufficient conditions for the existence of a bifurcation point. The original 

computational algorithm is improved by combining it with a qualitative method of analysis, based on Lyapunov stability 

theory. The instabilities of parametric excitation process of  magnetostatic dipole-dipole waves (MSW)  and  dipole-

exchange spin waves (SW) in periodic bandgap  structures  of nano-sized magnetic particles is simulated using 

bifurcation-analysis technique. 
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1   Introduction 
Up to now, the bifurcation analysis has been performed to 

study nonlinear systems with lumped parameters that are 

described by ordinary differential equations (DEs). 

Investigation of nonlinear electrodynamic systems that are 

characterized by distributed parameters and described by 

partial DEs has certain peculiarities and encounters 

substantial mathematical difficulties. The first the 

bifurcation-analysis technique for 3D nonlinear magnetic 

nanoparticle devices is developed. This technique, based on 

the bifurcation theory [1,2] and is a pioneering approach in 

nanoelectrodynamics taking into account the constrained 

geometries.  

 

2 Solution of 3D Nonlinear Diffraction 

Problem  
The mathematical simulation of magnetic nanoparticle 

devices is based on the solution of  boundary problems for 

nonlinear Maxwell's equations 
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complemented by the Landau-Lifshitz equation of motion of 

magnetization vector in ferromagnet [1] 
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where E ,H  are the electric- and magnetic-field 

intensity vectors, respectively; )(HB  is the magnetic 

induction vector; ε  is the relative permittivity; 0ε , 0µ are 

the where M
r

 is the magnetization vector, γ is the 

gyromagnetic ratio, α is the damping constant, 

eff exH H H= +
r r r

is the effective field, H
r
is the external 

magnetic field, ex 0(2 )s MH A Mµ= ∆
rr

 is the exchange 

field, A is the exchange constant of the ferrite, Ms  is the 

saturation magnetization. 

Let us reduce nonstationary nonlinear Maxwell’s 

equations (1) combined with the Landau-Lifshitz 

equation (2) to systems of stationary equations.  

Assuming that the electromagnetic fields of transmitters 

having frequencies n21 ω,..,ω,ω  are harmonic, the fields 

(t)E , ( )tH  and  the  magnetization (t)M were 

represented in the form of series in terms of the 

combination frequencies mω : 
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Substituting these series (3) into (1) and (2), we obtain 

the following systems of stationary nonlinear equations 

for each combination frequency: 
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where m=0,1,2,…,q, q – number of frequencies 

taken into account. 

Let us consider the nonlinear diffraction boundary problem 

for the electromagnetic waves propagating in waveguiding 

structures (WGS) containing a nonlinear gyromagnetic 

ferromagnet discontinuity, placed between cross-sections 

2S,1S . 

A few monochromatic waves, having frequencies 

n21 ω,..,ω,ω , are incident on the input cross-sections 1S  . 

The waves are the fundamental and higher-order modes of 

the WGS, having known magnitudes )ωC nβ)k(
(

+
 ( β

 
is the 

index of cross-sections, k are the indices of eigenwaves of 

WGS). The magnitudes )(ωC mβ)k(

−
 of reflected modes vs. 

combination frequencies mω  are determined by the 

numerical method of autonomous blocks with Floquet 

channels (FABs) [4]. (The local co-ordinate systems are used 

on cross-sections 2S,1S  ). 

The approximate solution of the diffraction boundary 

problem can be found in the form of reduced series: 
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where m=0,1,2,…,q, N is the number of accounted 

eigenwaves of WGS; ( )m

t
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n are the unknown functions of the 

longitudinal coordinate variable z; ( )mω t

n e ,
 ( )m

t
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n ωe , ( )m

z

n ωh  are the transverse and longitudinal 

components of eigenwaves in WGS filled by a medium 

having a dielectric constant ( )m1 ωε and magnetic 

permeability )(ωµ m1 .  

Substituting (5) into the Landau-Lifshitz equation  (2) and 

projecting, using the basis functions ( )mω t

n e ,
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, a system of ordinary nonlinear DEs is 

obtained: 
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Equations (6) are solved jointly with the system of 

nonlinear algebraic equations: 

∑ =−
=

N

1n
m(

t

nm

z

knm

z

nm

z

kn 0))ωb)(ωA)(ωa)(ω(B ,            (7) 

∑ =−−
=

N

1n
m

z

nm

z

knm

z

nm

t

nm

z

kn 0))(ωb)(ωD))(ωd)(ω)(a(ω(C ,            

∑ =−
=

N

1n
m

z
nm

z
knrm

z
nm

z
knr 0))(ωd)(ωCβ)(ωb)(ωD(α ,                     

∑ −−
=

N

1n
m

t
nm

t
knrm

t
nm

t
knr )(ωd)(ωCβ)(ωb)(ωD(α

∑ ∑ ⋅⋅
−= −=

−
q

qi

q

qj
j

z

ni

t

njiknij )(ωb)(ωd)ω,(ω(Xγγ +

0)(ωb)(ωd)ω,(ωY )j

t

ni

z

njikn =⋅⋅+                                 

where m = 0, 1, 2,…, q;  k, n = 1, 2,…, N;  

0

0

µ
χω

α r

r = , mrr iωωβ += , ( )mк ωГ  are the 

propagation constants of eigenwaves of WGS; rω  is 

the relaxation frequency; and
000 HM=χ is the static 

magnetic susceptibility. 

Let us formulate the boundary conditions for stationary 

nonlinear Maxwell’s equations (4). Defining conditions 

of non-asymptotic radiation [5], and taking into account 

the electrodynamical boundary conditions for the 

tangential components ( ) ( )mτmτ
ωH,ωE  on the cross-

sections 21 S,S , we obtain the following boundary 

conditions: 

( ) ( ) ( )m)k(
t

m)(km)k( ωaωCωC βββ =−++
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t
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where β =1, 2; k, n = 1, 2,…, N; m = 0, 1, 2,…, q. 

The algorithm for the solution of nonlinear diffraction 

boundary problem was developed using the cross-

sections method [5]. It reduces the nonlinear boundary 

problem to the system  of nonlinear DEs (6) with 

boundary conditions (8), solved together with the 

system (7). A short-cut numerical method allows to 

transform this boundary problem for the system  of 

nonlinear algebraic equations (7) to the Cauchy   

problems with variable initial conditions relative to  

( )m)k( ωC β
−

 ( β =1, 2; k = 1, 2,…, N; m = 0, 1, 

2,…,q).  
 

3 Numerical Approach for Determining 

Bifurcation Points of Nonlinear Maxwell 

Operator Including Landau-Lifshitz 

Equation 
Branching points of the nonlinear Maxwell equations 

are analyzed under the assumption that one solution in 

the neighborhood of a singularity point is known [1]. A 
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decomposition computational algorithm can be used to 

find this solution [4]. However, a situation is possible 

when second solution y exists in the neighborhood of a 

branching point and is very close to first solution. 

When nonlinear boundary problems of 

electromagnetics are solved with the use of traditional 

computational algorithms, such branching points may 

be missed. Therefore, the computational algorithm 

should be improved via its combination with a 

qualitative method of analysis of branching points [2]. 

Let us construct an algorithm that implements 

numerical analysis of bifurcation points of the 

nonlinear Maxwell operator. 

Let’s write the system of nonlinear DEs (6) with the system 

of the nonlinear algebraic equations (7) in a symbolic form, 

as: 
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where i=1,2…,m; j=m+1, m+2,…n; )(zyy ii =  are the 

unknown functions of coordinate z, compiled on functions, 

obtained by the cross-section method [5]. 

To obtain the solutions iy
~r

 of system (9), the nonlinear 

diffraction boundary problem was solved using the 

decomposition computational algorithm by the numerical  

FABs method [5]. But using this algorithm alone, there is a 

probability to miss a second unknown solution iy , appearing 

at the bifurcation point. That’s why it is necessary to use a 

special numerical method to determine and analyze the 

bifurcation points of nonlinear Maxwell’s operator for the 

3D boundary problems. This numerical approach consists in 

the following. 

System (9) is transformed by substitution iii yyx ~−=  into: 
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Then functions iΦ  and jΨ  identically vanish for 0=ix , 

consequently, the solution  0=ix  of system (10) is a fixed 

point, stationary relative to variable z (coordinate z is the 

longitudinal WGS axis). 

As the first approximation, let’s reduce the system of 

nonlinear DEs (10) to a system of linear DEs. For this 

purpose it is necessary to represent functions iΦ  and jΨ  by 

their generalized Taylor's series in the neighborhood of fixed 

points 0=ix , and to take into account the first order partial 

derivatives. 

For this purpose, we develop functions iΦ  and jΨ  as a 

generalized Taylor series in the neighborhood of the 

stationary point 0=ix  and take into account zero- and 

first-order partial derivatives. Then, we obtain the 

system of linear  DEs 
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Equations (11) can be represented in an expanded form as 
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where coefficients )(zaij  ,...,n),i,j 21( = are 

constructed from the partial derivatives entering (11). 

Equations (12) can be represented in the matrix form. 

This procedure results a system of linear ordinary DEs, 

written in a matrix form as: 
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Note that the function iii yyx ~−=  is the difference between 

unknown solution iy  and known solution iy
~r

 .(System of 

nonlinear DEs (10) is linearized in the neighborhood of iy
~r

.) 

Function iy
~r

is a solution obtained with the use of a standard 

computational method, for example, the method of cross 

sections [6] that is based on the decomposition approach  

using the FABs [4]. 

System of linear ordinary DEs (13) has the trivial 

solution 0=ix  ( 0~ =− ii yy ).It is necessary to determine 

nontrivial solutions to system (13). If such solutions exist, 

the values of parameters determine the branching points. We 

find the solution of matrix equation (13) in the form of its 

Fourier series: 
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where pα
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 is a vector having components mp,..,α
p

,α
p

α
21 , 

and l  is the length of the nonlinear  ferromagnet 

discontinuity  placed in the WGS between cross-sections z = 

0 and  z = l.  

Vector function (z)x
r

 from (14) satisfies the boundary 

conditions (l)x)(x
rr

=0 , which are fulfilled only in 

theneighborhood of a branching point where the 

quantity yyx
~rrr

−=  is determined approximately by the 

zeroth term of the Taylor series. 

Substituting (14) into (13) we obtain the matrix equation: 

p
α)

l

πp
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p
αA(z)

rr 2
= ,      

where p = 0, ±1, ±2, … , ±m.  

If system of linear DEs (13) has a nonzero solution, 

eigenvalues λ (at least one eigenvalue) of matrix A(z) 

coincide with the values lpi /2π  (p = 0, ±1, ±2, …, ±m) for 

any z from [0, l] [2]. The converse is not always valid. 

Matrix A(z) for any z from [0, l] may have 

eigenvaluesλ coinciding with lpi /2π , but branching points 

do not necessarily exist [2]. 

The behavior of a solution near a branching point is 

analyzed numerically under the assumption that one 

solution iy
~

 in the neighborhood of a bifurcation point is 

known. In contrast to the definition of a branching 

point, the definition of a bifurcation point assumes that 

one solution of the family of solutions 

),...,2,1(~ niyi =  defined at all of the values of the 

calculation parameter is known a priori. Note that we 

are dealing with the discrepancy of solutions iy
  from 

specified family ),...,2,1(~ niyi =  . 

The bifurcation points exist when the necessary and 

sufficient conditions for their existence are satisfied [2]. 

The necessary condition consists in that the eigenvalues 

of matrix A(z) for any z on [0, l] are equal lpi /2π ; the 

sufficient condition is that each of odd-multiple, simple 

eigenvalues of matrix A(z) for any z = lpi /2π  are the 

bifurcation points [2]. Using the auxiliary computing 

algorithm, the necessary and sufficient conditions in the 

neighborhood of the given value of calculation 

parameter are examined. If both conditions are 

satisfied, then at this bifurcation point the new 

solution iy , describing the onset of self-oscillations, 

exists at the given value of the bifurcation parameters.  

 

4 Numerical Technique of Bifurcation 

Analysis of Nonlinear Phenomena 

(Parametric Instabilities) in Magnetic 

Nanoparticle Devices 
 

To solve the 3D nonlinear diffraction boundary 

problem for magnetic nanoparticle devices at the 

electrodynamic accuracy level a computational 

algorithm was developed based on the decomposition 

approach by FABs [5]. The FAB method is computing 

efficient in solving the problems of diffraction of TEM-

wave in periodic  bandgap  structures of nano-sized 

ferromagnetic particles . 

However, in general, it is not easy to see the physical 

meaning of numerical solutions. That’s why for the 

analysis of nonlinear phenomena, related to the 

parametric instability, a special computational 

algorithm to determine the bifurcation points, 

developed by us, is used.  

The numerical technique to investigate the nonlinear 

effects involves finding the bifurcation points of the 

nonlinear Maxwell operator including the Landau-

Lifshitz with the exchange term. Our original 

computational algorithm  was improved by combining 

it with a qualitative method of analysis, based on 

Lyapunov stability theory [7]. 

According to the linearization principle [2] the 

detection of the bifurcation points of the nonlinear 
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operator is reduced to determining the eigenvalues of 

the linearized operator. 

Earlier the nonlinear Maxwell’s operator (the full 

Maxwell's equations (1) complemented by the Landau-

Lifshitz equation (2)) for WGS, containing the nonlinear 

ferromagnet discontunity, was reduced to the linearized 

Maxwell’s operator (13).  

The partial solutions of the system of linear ODEs (13) 

are the exponential functions: 

,eαx
zλ

mm
m ⋅⋅=

              (15) 

Substituting (2) into (1), we obtain the following matrix 

equation: 

αλα
rr

⋅=⋅A       (16)  

where α
r

 is a vector having components m21 α,...,α,α ;  

λ and α
r
 are the eigenvalues and eigenvectors of matrix A . 

The eigenvalues λm are the propagation constants of 

“weakly” nonlinear waves in WGS (or the eigenfrequencies 

of “weakly” nonlinear oscillations in resonator structures); 

the components of eigenvectors α
r
 are the components of the 

electromagnetic fields of these waves. 

Using numerical methods (e.g. QR-algorithm) to solve the 

matrix equation (13)  the eigenvalues λm  and eigenvectors 

α
r
 of matrix A  are determined.  

According to the Lyapunov method [7] if the real parts of  

complex eigenvalues λm of matrixA are negative, then the  

solution of a system of linear ODEs (13) is asymptotically 

stable. If at least one of the real parts of λm  is positive, then 

the solution of system (13) is unstable. The change of the 

sign of the real part of λm occurs in the bifurcation points; 

therefore it is essential to determine the bifurcation values of 

parameters where parametric instabilities occur. 

Hence, it is necessary to find the bifurcation points of 

the nonlinear Maxwell’s operator for the 3D nonlinear 

magnetic nanodevices, and to monitor the bifurcation 

points depending on the control parameters by using 

our algorithm. 

Accurate modeling of nonlinear propagating of 

ectromagnetic waves in periodic bandgap  structures of 

nano-sized ferromagnetic particles, embedded in a 

nonmagnetic matrix, and their interactions with dipole-

dipole MSW and “short” dipole-exchange SW were 

made by using  FABs numerical  method [4]. A bias 

magnetic field  is applied normal to the direction of the 

propagating ectromagnetic wave (TEM-wave, 

C
+
1(1)(ωH) magnitude, frequency ω). 

 

 

The instability regions of parametric generation of 

MSW and SW in the periodic bandgap structures of 

ferromagnetic nanospheres depending on the magnitude 

C
+
1(1)(ωH) of the incident pumping wave and 

normalized frequency are simulated, when the sizes of  

magnetic particles are  reduced to the order of exchange 

length. The threshold magnitudes of  

the pumping EMW C
+
1(1)(ωH), where the nonlinear 

processes and the parametric instability excitation of 

MSW and SW occur, are determined by computing the 

bifurcation points of  

the nonlinear Maxwell’s operator.  

The results for the first order processes of the 

parametric excitation [3] in case of transverse pumping 

in periodic bandgap structures of ferromagnetic 

Fig. 1. The threshold of parametric instability of MSW and 

SW in the periodic bandgap structures of ferromagnetic 

spheres: the radius R=0.1 mm, the separation of  spheres h ----

- h= 0.55 mm, …….- h=0.35 mm; —— h=0.215 mm. Curve 1 

– f0 = 9.330 GHz; 2 – 8.125 GHz; 3 – 9.946 GHz, H0=3330 Oe, 

C
+
1(1)(ωH) - magnitude of the incident pumping wave; ω0 =2π 

f0 - frequency of the signal wave, ωH - frequency of the 

pumping wave. 

75 

0 

0.15 2 2

0 Hω ω  

mmAC H /),()1(1 ω+
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0.25 0.35 0.15 0.25 0.35 0.15 0.25 0.35 

1. 

 

2 

2 3

10
3

10
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0 0 1. 0 2. 0 3. 0.4 0 5. 0.6 2 2

0 Hω ω

mmAC H /),()1(1 ω+

Fig. 2. The threshold of parametric instability of MSW 

and SW in the periodic bandgap structures of ferrite 

nanospheres: the radius R=250 nm; the separation of  

spheres h 1- h=3000 mm; 2 - h=750 nm; 3 - h=600 nm;, 

H0=3330 Oe, ω0 =2πf0 - frequency of the signal wave, f0 

= 9.330 GHz, ωH  - frequency of the pumping wave; 

C
+
1(1)(ωH) - magnitude of the incident pumping wave. 
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nanospheres, are shown in Figs. 1 and 2. According to 

the Lyapunov stability theory [7] the curves in Figs. 1 

and 2 divide the instability regions  

for the parametric generation of MSW and SW from the 

stable regions. 

The thresholds were calculated at microwave and 

photonics frequencies for different shapes (nanospheres 

and nanowires) and various separations of ferromagnetic 

nanoparticles in the periodic bandgap structures, taking 

into account constrained geometries. The results of 

computing by using the bifurcation points of the 

nonlinear Maxwell’s operator permit to analyze and 

optimize geometries, sizes of  magnetic nanoparticles  in 

bandgap  structures and  parameters  of magnetic 

nanomaterials at microwaves and photonics.   

 

 

 

 

4 Conclusions 
The bifurcation-analysis technique, developed in this paper, 

permits to determine the new solutions of nonlinear 

Maxwell’s equations in the neighborhood of bifurcation 

points; to follow the changes of branching points depending 

on the values of control parameters and to determine the 

bifurcation values of parameters and their sensitivity to the 

transition regimes of nonlinear nanodevices.  

With this algorithm, substantial computational difficulties 

caused by the ambiguity of computation parameters in the 

neighborhoods of singularity points can be overcome.  

Using these mathematical models it will be possible to 

estimate the efficiency of nonlinear effects: nonlinear 

diffraction, parametric interactions, multistability, generation 

of higher order time harmonics, solitons, dynamic chaos,  

taking into account the constrained geometries in 2D or 3D 

microwave and photonics devices, based on magnetic 

nanoparticles or magnetophotonic crystals. 

Using this technique   the reliable engineering methods 

applicable in CAD for the numerical computation of 

electromagnetic properties of magnetic nanocomposite 

materials, applied in the modern high nanotechnology, and   

3D nanodevices may be developed. 
 

*The work of G. S. Makeeva and O. A. Golovanov was 

supported by THE RUSSIAN FOUNDATION FOR BASIC 

RESEARCH, Grant N 05-08-33503-a. 
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