
Modeling UML Software Design Patterns Using Fundamental
Modeling Concepts (FMC)

Anthony Spiteri Staines
Department of Computer Information Systems

University of Malta
Msida, MSD 15

MALTA

Abstract: - Software design patterns mainly serve to design and develop software efficiently and effectively. Patterns
are traditionally represented using UML notations and formal models. These are not always sufficient to analyze
behavior. There are various problems related to visualization, abstracting, design to implementation mapping
problems, etc. This paper promotes the use of Fundamental Modeling Concepts to support design patterns which offer
better visualization and simplicity over the mainstream approaches. Some examples are presented.

Key-Words: - Software Engineering, Design Patterns, UML, Fundamental Modeling Concepts (FMC)

1 Introduction
Software design patterns presented in [8]–[15] explain
how to resolve software design problems from both the
i) system and ii) programming point of view. Design
patterns propose to implement efficient and effective
inexpensive solutions for recurring problems. They
prevent having to re-invent a solution. A well defined
design pattern should be implemented regardless of the
software platform used. Thinking in terms of patterns
simplifies problem solving. Patterns can communicate
knowledge and architectural design. This requires that
patterns are easily visualized and specified.

2 The UML and Design Patterns
The UML is the de facto standard used to describe
recurrent design patterns [8],[12]-[13] for various
reasons. UML diagrams are based visual notations.
Design patterns can be classified into three
subcategories [10],[14]-[15]. These are a) behavioral b)
creational and c) structural. Behavioral Design Patterns
describe behavior. Some behavioral patterns are i) chain
of responsibility, ii) command, iii) interpreter, iv)
iterator, v) visitor, etc. Creational design patterns focus
on using abstract classes to create objects that are
managed independently from the originator requesting
their use. Some common creational design patterns are i)
abstract factory, ii) builder, iii) prototype and iv)
singleton. Structural design patterns focus on the
interaction structure from the system point of view.
These patterns describe the components of a system.
Some structural design patterns are i) adapter, ii) bridge ,
iii) composite, iv) proxy, etc.

Some findings about design patterns and the UML are
presented below:

 UML patterns can be implemented as packages
 Patterns are composed of several classes
 Patterns should exist at a higher level of

abstraction than the actual class!
 Patterns should be independent of the

implementation, technologies and programming
languages used

 In the mindset of the software engineer thinking
in terms of ‘patterns’ simplifies the solution to a
particular problem

 Conceptual thinking is a different way of
abstracting a problem

3 Design Patterns and Granularity
Fine granularity describes a system in detail, very close
to the actual implementation. Conversely coarse
granularity depicts a system at a higher level of
abstraction. Depending on the application being
developed, different levels of granularity are considered.
E.g. for a simple application with no more than five
classes a fine grain approach is suitable. On the other
hand for complex applications exhibiting different types
of behavior, a coarse grained approach is preferred.
 Design Patterns also describe complex system
interaction. Patterns can describe packages, clusters etc.
[8]. Design Patterns can be linked to coarse granularity.
A ‘class’ might actually be too small to model complex
behavior. The UML is well suited to describing fine
granularity, because it actually represents the
implementation. Design Patterns abstracted at a high
level require a different treatment.

2nd EUROPEAN COMPUTING CONFERENCE (ECC’08)
 Malta, September 11-13, 2008

ISSN:1790-5109 192 ISBN: 978-960-474-002-4

3 Issues and Problems
Developing information systems for large organizations
is a complex task. It is not easy to visualize the complete
information system complete with functionality.
Systems are composed of several viewpoints. The
application domain influences these views. Most system
stakeholders are non technical persons. It is possible to
create a business model that will be used to develop a
system model. Well defined design patterns can support
software modeling.
 To encourage the use of design patterns these should
be well understood. Understanding system functionality
implies that: i) the problem statement and ii) the solution
are separate issues. Different approaches have been
formulated to represent design patterns. These are i)
formal models [8]-[11], ii) visual notations. Formal
notations are not comprehended by many stakeholders.
Consequently they are unsuitable for visualization and
any small change requires re-specification. Visual
notations are found in the UML and other methods
supporting natural languages.
 Unfortunately the UML does not clearly specify how
to represent these patterns, lacking precise semantics.
The UML has a set of notations for specifying both the
i) Static Composition and ii) Dynamic behavior of
systems. Another issue is that pattern binding to the
actual physical software implementation is difficult task
to achieve [8].
 The UML uses different notations for describing
similar system activities, creating a dilemma as which to
select. Consistency between different notations involves
a lot of work and resolving structural clashes. The UML
is designed to communicate at the class level not at the
pattern level.

4 A Fundamental Modeling Concept
Solution
A solution for these issues is to use Fundamental
Modeling Concepts (FMC) developed at Hasso-Plattner-
Institute Potsdam and presented in [1]-[7]. FMC and
FMC-visualization guidelines are useful to create more
comprehensible and constructible models. FMC are
composed of three main notations: i) Compositional
Structures, ii) Dynamic Structures and iii) Value Range
Structures. The UML design patterns can be represented
as compositional structures. The compositional
structures are supported using dynamic structures which
are place transition Petri nets. These diagrams focus on
system structures making them suitable to describe ‘a
larger granule of organization’. Recurring patterns can
be easily identified. The FMC dynamic structures
clearly identify and capture the behavior of the design
pattern. FMC notations have evolved over a number of

years. The diagram notations like the dynamic structures
are based on place transition Petri nets that have over
three decades of coverage and vast literature. FMC
diagrams are more practical to use when describing
systems at a high level. They support communication
between technical people and system stakeholders for
different system requirements. FMC are based on
important principles which are i) abstraction, ii)
simplicity, iii) universality, iv) separation of concerns, v)
aesthetics and secondary notation [1].

5 Examples
Some different examples of common design patterns
have been selected and modeled using both UML class
diagrams and FMC notations for comparison. The
design patterns presented range from simple client
server behavior to the abstract factory.

5.1 Singleton Pattern
The singleton pattern in fig. 1 represents one of the
simplest methods of interaction between a client and
another object entity or class. The singleton pattern is
used in remote method invocation server applications.
Only a single instance of the invoked object can exist no
matter how many times it is invoked.
 The singleton FMC composite structure in fig. 1 and
the dynamic structure in fig. 2 indicate very simple
client-server interaction pattern. Both the composite
structure and the Petri net can be refined and
decomposed as required. A software example of the
singleton pattern is simple remote method invocation.

Fig. 1 Singleton Class Diagram and FMC Composite Structure

2nd EUROPEAN COMPUTING CONFERENCE (ECC’08)
 Malta, September 11-13, 2008

ISSN:1790-5109 193 ISBN: 978-960-474-002-4

5.2 Proxy Pattern
The proxy pattern presented in fig. 3 uses a server proxy
as an interface to connect to the actual object. It is
classified as a structural pattern. The responsibility for
connecting to the object is the work of the proxy server
not of the client. This pattern is useful for connecting to
network distributed components. The proxy pattern
describes remote object interaction protocols where a
local object requests a remote component in a distributed
information system.
 The proxy pattern composite structure in fig. 4 and 5
indicates three different levels of abstraction. The basic
process steps are i) a client issues a request to the server
proxy. ii) the server proxy issues a request to the server.
The client is not responsible for invoking the server.
 The Petri net clearly indicates that the server is
controlled only via the server proxy. Client interaction is
with the server proxy. The server proxy issues the
requests to the server and receives the reply which in
turn is forwarded to the client.

5.3 Command Pattern
The command pattern in fig. 6 models command and
control like behavior. A client can request data from a
number of other objects. This pattern uses a neatly well
defined command interface that processes the client’s
requests connecting to the objects it requires. The client
communication is managed via the interface and the

Fig. 2 Singleton Dynamic FMC Structure

Fig. 3 Proxy Pattern Class Diagram

Fig. 4 Proxy Pattern Composite Structure

Fig. 5 Proxy Pattern Dynamic Structure

2nd EUROPEAN COMPUTING CONFERENCE (ECC’08)
 Malta, September 11-13, 2008

ISSN:1790-5109 194 ISBN: 978-960-474-002-4

command processor. There are other patterns like the
iterator that seem to be variants of this pattern.
 The command pattern behavior shown in fig. 8 closely
resembles real time command and control systems. E.g.
of this pattern are production control systems, possible
point of sale terminals connected to software, etc. At the
interface level the behavior is similar to that of the
server proxy. The interface invokes the command
processor which in turn manages the objects and the
relative data. At the command processor level it is
possible to include as many objects to be controlled as
necessary, this is a repeating sub pattern. If required the
command processor activity can be further decomposed.

5.4 Abstract Factory Pattern
The pattern in fig. 9 specifies how to use abstract classes
to create related objects without specifying the concrete
classes. i.e. The abstract factory defines an interface
having operations or methods for creating abstract
objects. A software example is an order processing
system having a client that has concrete classes derived
from an abstract financial tools factory class to calculate
the appropriate order fees. The factory method is a
simplified version of the abstract factory pattern.

Fig. 6 Command Pattern Class Diagram

Fig. 7 Command Pattern Composite Structure

Fig. 8 Command Pattern Dynamic Structure

Fig. 9 Abstract Factory Class Diagram

2nd EUROPEAN COMPUTING CONFERENCE (ECC’08)
 Malta, September 11-13, 2008

ISSN:1790-5109 195 ISBN: 978-960-474-002-4

Compared to other patterns the abstract factory pattern is
complex. The product class depends on the abstract
factory class which in turn depends on the concrete
factory class for control. The FMC composite diagram
in fig. 10 explains the relationships and communication
channels between the client, abstract classes and
concrete classes. The Petri net in fig. 11 explains that the

client request initially invokes the abstract product A
and B and the abstract factory. The abstract factory is
responsible for managing the concrete classes. The
abstract factory thus uses the concrete factory methods
to create concrete products (objects). The reply is sent to
the abstract product A and B which act as interfaces to
the client. The abstract factory is critical for managing
the concrete factory. From the Petri net we identify at
least two repeating behavior sub patterns. These are i)
concrete factory process and ii) abstract product process.
These repeated patterns can serve to develop and refine
the model.
 The composite structure in fig. 10 indicates that more
concrete factories and products can be added to this
structure repeatedly.

6 Related Work
Most of the work for design patterns is based on UML
notations. In [8] the UML is used to create a library for
repeating patterns. There is a problem between the
actual pattern representation and its application. This is
resolvable using parameterized collaborations. Although
this is feasible a lot of work using the OCL is required.
Many new notations have to be introduced unnecessarily
complicating the scenario. In [16] it is suggested that the
UML be used to guide design pattern reuse. In [12]-[13]
a UML meta modeling language approach is presented.
Although this is a valid approach it can become quite
complex for large systems.

Design patterns from the Gof can be formalized in
the B language [9]. Other valid approaches are using
UML-B. These are more valuable for formal verification
than visualization. In [10] a better solution is proposed
where Le PUS3 / Class-Z are combined to model design
patterns. Interesting diagrams which are easily readable
are presented but these are still too close to the
implementation, hence a fine grained approach. Design
patterns are again formalized in [11] using the Disco
approach considering the subject vs observer
viewpoints.

The FMC notations presented in this paper offer
simpler solutions. FMC notations have been used in
industry. Some of the techniques discussed above can be
used in conjunction with FMC notations.

7 Conclusion
This work can be extended to all of the UML design
patterns. These patterns are applicable to other scenarios
and system structures not necessarily involving software
but other systems e.g. production, command and control,
network patterns, etc. Simple patterns can be useful to
generate more complex patterns.

Fig. 10 Abstract Factory Composite Structure

Fig. 11 Abstract Factory Dynamic Structure

2nd EUROPEAN COMPUTING CONFERENCE (ECC’08)
 Malta, September 11-13, 2008

ISSN:1790-5109 196 ISBN: 978-960-474-002-4

 The patterns described here can be refined or
simplified as required. The FMC dynamic structures are
based on Petri nets. Petri net theory has rules for
reduction, preservation of tokens, liveness, boundness
and reversibility. The dynamic structures can be
evaluated from a complexity point of view and by
introducing the time dimension, i.e. the Petri nets can be
converted into time Petri nets and analyzed. Critical and
strongly connected components in the diagrams can be
identified. This would be useful for creating error
recovery mechanisms and fault tolerance.
 FMC focus on system related structures implying that
it is possible to play about with models according to the
user’s needs and find those most suitable. FMC focus
on fundamental building blocks thus modeling both
behavior and structure.
 FMC diagrams will serve to capture problem solving
experience and knowledge for different domains at a
high level. This could easily be shared with different
system stakeholders to come up with functional models
offering optimized solutions and better system
comprehension. FMC offer simple solutions and are
practical for use in the software development industry
better than more complex approaches.

References:
[1]A. Knöpfel, B. Gröne, P. Tabeling, Fundamental

Modeling Concepts, Wiley, West Sussex UK, 2005,
pp. 1-321.

[2]B. Gröne, A. Knöpfel, R. Kugel, O. Schmidt,“ The
Apache Modeling Project. Technical Report 5”,
Hasso-Plattner-Institute, Potsdam, 2004.
http://www.f-m-c.org.

[3]B. Gröne, P. Tabeling, “ A System of Conceptual
 Architecture Patterns for Concurrent Request
 Processing Servers”, Proc. of 2nd Nordic
 Conference on Pattern Languages of Programs,
 2003, Bergen, Norway, 2003.
[4]B. Gröne, “Conceptual Patterns”, Proc. of 13th
 IEEE International Symposium and Workshop on
 Engineering of Computer Based Systems, ECBS,
 Potsdam, Germany, Mar 2006, pp. 241-246.
[5]P. Tabeling, “Architectural Description with
 Integrated Data Consistency Models”, Proc. of
 the 11th IEEE International Symposium and
 Workshop on Engineering of Computer Based
 Systems, ECBS, May 2004, pp. 178- 185.
[6]P. Tabeling, B. Gröne, “ Integrative Architectural
 Elicitation for Large Scale Computer Based
 Systems” ,Proc. of the 12th IEEE International
 Symposium and Workshop on Engineering of
 Computer Based Systems, ECBS, Apr 2005, pp.
 51-61.

[7]P. Tabeling, “Multi Level Modeling of
Concurrent and Distributed Systems.” Proc. of the
International Conference on Software Engineering
Research and Practice. CSREA Press, Jun 2002.
http://www.fmc-
modeling.org/download/publications/tabeling_2002m
ultilevel_modeling_of_concurrent_and_distributed_sy
stems.pdf

[8]G. Sunyĕ, A. Le Guennec, J.M. Jĕzequĕl, “
Design Patterns Application in UML”, Proc. 14th
European Conf. Object-Oriented Programming—
ECOOP. Lecture Notes in Computer Science 1850.
Berlin: Springer, 2000.

[9]S. Blazy, F. Gervais, R. Laleau. "Reuse of
 Specification Patterns with the B Method." Proc.
 ZB 2003. Lecture Notes in Computer Science
 2651, pp. 40–57. Berlin: Springer, 2003.
[10]A. H. Eden, E. Gasparis, J. Nicholson. "The
 'Gang of Four' Companion: Formal specification
 of design patterns in LePUS3 and Class-Z."
 Department of Computer Science, University of
 Essex, Tech. Rep. CSM-472, ISSN 1744-8050
 (2007)
[11]T. Mikkonen. "Formalizing Design Patterns".
 Proc. 20th Int'l Conf. Software Engineering—
 ICSE (1998), pp. 115–124.
[12]K. Dae-Kyoo, R. France, S. Ghosh, E. Song, “ A
 UML-Based Metamodeling Language to Specify
 Design Patterns”, Journal of Visual Languages
 & Computing – Science Direct, Volume 15,
 Issues 3-4, June-August 2004, Pages 265-289.
[13]R. B. France, K. Dae-kyoo, S. Ghosh, E. Song,
 “A UML-Based Pattern Specification
 Technique”, IEEE transactions on Software
 Engineering , Vol 30 No. 3, Mar 2004, pp.
 193-206.
[14]Using Design Patterns in UML,
 http://www.developer.com/design/article.php/3309461
[15] Gang of Four Desing Patterns,
 http://www.tml.tkk.fi/~pnr/GoF-models/html/

[16] N. Bouassida, H. Ben-Abdillah, “Extending UML
 to Guide Design Pattern Reuse”, Int. Conf. on
 Computer Systems and Applications, Mar 2006, pp.
 1331-1138.

2nd EUROPEAN COMPUTING CONFERENCE (ECC’08)
 Malta, September 11-13, 2008

ISSN:1790-5109 197 ISBN: 978-960-474-002-4

