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Abstract:The main purpose of this work is to construct transformations which map the nodes created by the in-
dividual matrix representationsN independent variables to the hypegrid nodes where the values of anN variate
functions are given. Recent works of the Demiralp’s group show that the matrix representation of a multivariate
function can be approximated by the image of its independent variable matrix representations under that func-
tion at the fluctuationlessness limit. This brings the possibility of using onlyN dimensional cartesian space
points which are characterized byN–tuples whose elements are the eigenvalues of the matrix representations
of those independent variable. However, these points may not match the points where the values of the function
under consideration are given. Hence,N–dimensional shifts of the eigenvalue based points to data given points
is requiered. This can be done by using certain polynomial interpolations. This work aims at the evaluation of
those polynomials.

Key–Words:Multivariate Functions, High Dimensional Model Representation, Approximation, Fluctuationless-
ness Approximation.

1 Introduction
High dimensional model representation (HDMR)
[1-6] was proposed to approximate the multivariate
functions by the functions having less number of inde-
pendent variables. The equation of the High Dimen-
sional Model Representation for a given multivariate
functionf(x1, · · · , xN ) is as follows

f(x1, ..., xN ) = f0 +
N∑

i1=1

fi1 (xi1)

+
N∑

i1,i2=1
i1<i2

fi1,i2 (xi1 , xi2) + · · ·

+f12···N (x1, ..., xN ) (1)

The sum of the right hand side terms of HDMR ex-
pansion represents the given multivariate function ex-
actly. The HDMR components of the given multivari-
ate function are the right hand side terms of this ex-
pansion. These terms are the constant term, univari-
ate terms, bivariate terms and the other high-variate
terms. The following vanishing conditions are used to
obtain the right hand side components of the expan-
sion.∫ b1

a1

dx1 · · ·

∫ bN

aN

dxNW (x1, ..., xN )fi(xi) = 0,

1 ≤ i ≤ N (2)

Here, the weight function is assumed as a product of
given univariate functions each of which depends on
a different independent variable.

W (x1, . . . , xN ) ≡
N∏

j=1

Wi(xi),

xi ∈ [ ai , bi ] , 1 ≤ i ≤ N (3)

The abovementioned vanishing conditions correspond
to the following orthogonality conditions over HDMR
components through an inner product as can be proven
without any remarkable difficulty.

(fi1...ik , fi1...il) = 0, 1 ≤ k, l ≤ N

{i1, . . . , ik} �≡ {i1, . . . , il} (4)

If we assume thatu(x1, . . . , xN ) andv(x1, . . . , xN )
are two arbitrary square integrable multivariate func-
tions in the space of square integrable functions over
the hyperprism defined by the intervalsai ≤ xi ≤ bi

then the orthogonality conditions’ inner product can
be explicitly defined as follows

(u, v) ≡

∫ b1

a1

dx1W1(x1) . . .

∫ bN

aN

dxNWN (xN )

× u(x1, . . . , xN )v(x1, . . . , xN ) (5)
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The orthogonality condition and the vanishing condi-
tion help us to calculate HDMR terms. The constant
term f0 and univariate termsfi(xi) are given as fol-
lows.

f0 =
∫ b1

a1

dx1W1(x1) . . .

∫ bN

aN

dxNWN (xN )

× f(x1, . . . , xN ) (6)

fi(xi) =
∫ b1

a1

dx1W1(x1) . . .

∫ bi−1

ai−1

dxi−1

× Wi−1(xi−1)
∫ bi+1

ai+1

dxi+1Wi+1(xi+1)

. . .

∫ bN

aN

dxNWN (xN )f(x1, . . . , xN ) − f0

1 ≤ i ≤ N (7)

Other components can be calculated similarly. If we
truncate the equation (1) at some level we obtain the
HDMR approximants as given below

s0(x1, ..., xN ) = f0

s1(x1, ..., xN ) = s0(x1, ..., xN ) +
N∑

i=1

fi(xi)

...

sk(x1, ..., xN ) = sk−1(x1, ..., xN )

+
N∑

i1,...,ik=1
i1<···<ik

fi1...ik(xi1 , ..., xik )

1 ≤ k ≤ N (8)

If we assume thatf(x1, . . . , xN ) given in (1) is square
integrable then we can write the following equation

||f ||2 = ||f0||
2 +

N∑
i=1

||fi||
2 +

N∑
i,j=1
i<j

||fi,j ||
2

+ · · · ||f12···N ||2 (9)

The last equation implies that the following relation is
valid.

||f0||
2

||f ||2
+

N∑
i=1

||fi||
2

||f ||2
+

N∑
i,j=1
i<j

||fi,j||
2

||f ||2

+ · · ·
||f12···N ||2

||f ||2
= 1 (10)

which us to make the definitions given below.

σ0 ≡
1

‖f‖2 ‖f0‖
2

σ1 ≡
1

‖f‖2

N∑
i=1

‖fi‖
2 + σ0

...

σN ≡
1

‖f‖2 ‖f12...N‖2 + σN−1 (11)

These entities are called “Additivity Measurers” and
they can hold a value between zero and one

0 ≤ σ0 < · · · < σN = 1 (12)

The best approximation quality for theith approxima-
tion is obtained as theσi value gets closer to 1.

The rest of the paper is organized as follows. The
next section is about Fluctuationlessness Approxima-
tion. The third section presents the basic idea under-
lying grid construction. The fourth section contains
simple illustrative applications for this new method
and the fifth section finalizes the paper with conclud-
ing remarks.

2 Fluctuationlessness Approximation

In this section, a new method which is called Fluctua-
tionlessness Approximation [6-9] and related theorem
are given. We assumeHn as finite dimensional sub-
space of Hilbert spaceH spanned byw1(x),...,wn(x).
The difference between the unit matrix ofH andHn is
called “Fluctuation Operator ”in the proof of the fol-
lowing theorem whose proof was given in Demiralp’s
paper [9].

Theorem : The matrix representation of an alge-
braic multiplication operator multiplying its operand
byf(x), a univariate function which is analytic on the
interval [a, b], overHn is the image of the matrix rep-
resentation of the independent variable overHn un-
der the functionf at the fluctuationlessness limit[9].

F(n) ≈ f
(
X(n)

)
(13)

HereX(n) which is given as follows is the matrix rep-
resentation of the multiplication operator which mul-
tiplies its operand by the independent variable,x

X(n) ≡




X
(n)
11 · · · X

(n)
1n

...
. . .

...

X
(n)
n1 · · · X

(n)
nn


 ,

X
(n)
jk ≡ (wj , x̂wk) , 1 ≤ j, k ≤ n (14)
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and the matrix representation of the functionf(x), de-
noted byF(n) here, can be given as follows

F(n) ≡




F
(n)
11 · · · F

(n)
1n

...
.. .

...

F
(n)
n1 · · · F

(n)
nn


 ,

F
(n)
jk ≡

(
wj , f̂wk

)
, 1 ≤ j, k ≤ n (15)

Heref̂ stands for the algebraic multiplication operator
which multiplies its operand by the functionf(x).

The multivariate counterpart of this theorem is
also existing and proven but not published yet. There
we can replace the single independent variablex by
N number of indpendent variables,x1,...,xN and the
function f(x) should be replaced by itsN–variate
counterpart,f (x1, ..., xN ). Then, we can write

F(n) ≈ f
(
X(n1)

1 , ...,X(nN )
N

)
(16)

which is based on certain ideas and manipulations us-
ing matrix theoretical direct products.

3 Grid Construction At No Fluctua-
tion Limit

HDMR can be used over a data located at he nodes
of a finite orthogonal prismatic grid inN dimen-
sion if the values of function under consideration are
given all nodes by using either Dirac’s delta func-
tion. Quite recently a new opportunity has been borne
after recent stages of HDMR works in Demiralp’s
group. This is a new method to deal with the func-
tions given by finite number of data without using
Dirac’s delta functions as the pointwise value pick-
ing agents. There, the integrals of HDMR are ap-
proximated by the multivariate Fluctuationless theo-
rem such that only the values of the function under
consideration in HDMR at the points belonging to the
cartesian product of the spectra of independent vari-
able matrix representations. This cartesian product
is composed ofN–tuples which are certainly depend
only on the universal quantities, matrix representa-
tions of independent variables, not on the HDMR’s
target function. This universality is very good in
one hand since reduced the number of the calcula-
tions enormously; is not so good in the other hand
since the grid created through this theorem may not
contain whole or any data given coordinates. This
means that certain transformations must be used to in-
directly use this grid not itself but its somehow shifted
form. This can be accomplished in a tricky way.
Not the functionf (x1, ..., xN )’s itself but the func-
tion f (g1 (x1, ..., xN ) , ..., gN (x1, ..., xN )) with theg

functions unknown yet can be taken into considera-
tion. Then,g functions are determined in such a way
that each of them produces only the values of the data
given grid nodes from the eigenvalue based grid. This
is of course an interpolation problem whose solution
is straightforward. Here we use Lagrange’s method by
accepting all pitfalls of the interpolation. As long as
the grid–to–grid mapping is smooth the interpolatory
problems remain far away. However, the decrease in
smoothness and therefore increase in curvature may
result in unpleasent polynomials highly oscillating.
Even in those cases, they can be again used for our
purposes since we would not need the values at the
values which are not interpolation points. whe

4 Implementations
In this section a numerical implementation is given
to discuss the usage of this method. The multivari-
ate data is constructed through the analytically known
multivariate functions to test the performance of this
new method. In this example the problem has six in-
dependent variables. The points for each independent
variable will be given as follows

D1 = {0.2, 0.3, 0.4, 0.5}
D2 = {0.6, 0.7, 0.8, 0.9, 1.0}
D3 = {0.1, 0.2, 0.3, 0.4}
D4 = {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
D5 = {0.7, 0.8, 0.9, 1.0, 1.1}
D6 = {1.2, 1.3}

(17)

and a cartesian product set having6400 nodes is con-
structed by using these points.

When the method given in the previous section
is applied to this interpolation problem, the following
six polynomials are obtained. These polynomials pro-
vide a transformation for shifting the given points onto
the eigenvalues of eachX(n) matrix corresponding to
each independent variable. In other words, the trans-
formation rule,g1 polynomial, is determined to shift
the points given on thex1-axis onto the eigenvalues of
theX1

(n) matrix. As this process is applied for each
independent variable six different polynomials are ob-
tained.

g1 = − 0.34661707965617775044 ∗ x3
1

+ 0.51992561948426662566 ∗ x2
1

− 0.54408073937000812415 ∗ x1

+ 0.53538609977095962446 (18)

g2 = − 0.0000000000000000001 ∗ x4
2
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− 0.52702255124972718956 ∗ x3
2

+ 0.79053382687459078451 ∗ x2
2

− 0.72848768258892679419 ∗ x2

+ 1.0324882034820315997 (19)

g3 = − 0.34661707965617775043 ∗ x3
3

+ 0.51992561948426662565 ∗ x2
3

− 0.54408073937000812414 ∗ x3

+ 0.43538609977095962446 (20)

g4 = − 15.368362545388038606 ∗ x7
4

+ 53.789268908858135121 ∗ x6
4

− 78.449849358485813221 ∗ x5
4

+ 61.65145112406919525 ∗ x4
4

− 28.546718069803941045 ∗ x3
4

+ 8.0632604350657838778 ∗ x2
4

− 1.9089249220845798656 ∗ x4

+ 1.0349372138846292443 (21)

g5 = − 0.52702255124972718971 ∗ x3
5

+ 0.79053382687459078458 ∗ x2
5

− 0.7284876825889267942 ∗ x5

+ 1.1324882034820315997 (22)

g6 = − 0.17320508075688772935 ∗ x6

+ 1.3366025403784438647 (23)

To examine these polynomials carefully a number of
additional plots are given here. Although each poly-
nomial is dependent to one independent variable such
as g1 depends onx1, to show the characteristics of
these polynomials we assume that all depend on the
variablex and we use only one plot for the purpose.
However, the reason for drawing a seperate plot for
g4 is to bypass the scaling problem. Otherwise, the
characteristics of the other polynomials cannot be ob-
served as the value of the functiong4 increases fastly.
The reason is the number of given points for the cor-
responding independent variable. As the number of
given points for an independent variable increases the
fluctuation of theg polynomial increases.

In this part all the computations are done by using
MuPAD[10] Computer Algebra System with 20-digit
precision. The program codes are run under Linux
(Ubuntu 7.10) Operating System.

g1
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5 Conclusion

In this work we have found the way of using the grids
constructed via multivariate fluctuationlessness theo-
rem. The basic idea has been to transform the grid
constructed as the cartesian product of spectra of in-
dividual matrix represantations of independent vari-
ables, each of which may be in a different but fi-
nite dimension, to the grid whose each nodal point
is accompanied by a given value of the multivariate
function under consideration. Grid–to–grid transfor-
mations are provided by using certain degree poly-
nomials each of which depends on a different inde-
pendent variable. What we have obtained is that this
idea seems to be working as expected as long as suf-
ficiently smooth transformations are under consider-
ation, although the other where curvature is higher
seem not to be creating so much numerical problems.
This work can be considered as a baby theory yet leav-
ing the very enthusiastic expectations to future works.
Our group is getting concentrated on this issue nowa-
days.
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