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Abstract: The focus of this work is to investigate the quality of High Dimensional Model Representation
(HDMR) to Fourier series. Towards this end, we experimantate with various Fourier series which are con-
structed for known univariate functions. Although the investigations are kept univariate, the extension that we
obtain here to multivariate cases seems to be straightforward. This is because we use the additivity measurers
whose conceptual structures do not change from one multivariance to another. The additiviy measurers are
certain well–ordered functionals mapping from a Hilbert space of multi or univariate functions to the interval
[ 0, 1 ] and their close–to–one values mean certain level of additivity and therefore higher qualities of truncated
HDMR approximants. Hence, those entities are evaluated for certain known cases.

Key–Words: Multivariate Functions, Fourier Series, High Dimensional Model Representation, Additivity Mea-
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1 Introduction

There are two important entities in this work; first
Fourier series and second High Dimensional Model
Representation. The first one is encountered almost
everywhere periodic or oscillatory behaviors arise.
Fourier series are in fact orthogonal function series
whose convergence were well investigated and a suf-
ficently strong theoretical and practical background
exists to illuminate those who attempt to use them.
Although they are mostly univariate, the extension of
their theory to multivariate cases does not bring any
remarkable conceptual difficulty and does not increase
the computational expenses except for the well known
dimension based expenses.

The second one is perhaps the most optimial way
of representing a multivariate function[1]. It is a finite
linear combination of less variate terms starting from
a constant term which is followed by univariate terms,
then, bivariate terms and so on. Despite the finiteness
of the number of linearly combined terms, that num-
ber is 2N for N independent variables and therefore
the number of components rapidly grows as the num-
ber of the independent variables increases. In practical
sense the case ofN = 10 corresponds to 1024 compo-
nents while N = 100 case produces 1048576 HDMR
components. This urges those dealing with HDMR to
truncate it at less variate terms like constant, univari-
ate, or perhaps, bivariate components. The univariate

terms requires N + 1 components while the bivariate
truncation involvesN(N+1)/2 HDMR components.
The qualities of these truncation approximations de-
pend on how additive the function to be expanded to
HDMR is. This nature is measured by the functionals
mapping from the Hilbert space the target function of
HDMR belongs to, to the closed interval between 0
and 1. These entities are called “Additivity Measur-
ers”and stand perhaps as the most powerful agents to
estimate the truncation errors.

This paper is organised as follows. The sec-
ond and third sections contain a brief presentation of
HDMR and the definitions and certain important prop-
erties of the additivity measurers. The fourth section
is about Fourier series and the fifth section covers the
main goal of this paper, experimentation about the ad-
ditivity of the various Fourier series. The sixth section
finalizes the paper via concluding remarks.

2 High Dimensional Model Repre-
sentation

High Dimensional Model Representation (HDMR) is
defined for a given function f(x1, x2, ..., xN ) as fol-
lows

f (x1, x2, ..., xN ) = f0+
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+
N∑
i=1

fi (xi) +
N∑

i, j = 1
i < j

fij (xi, xj)

+ · · ·+ f12...N (x1, ..., xN ) (1)

All the univariate terms above indicate the contribu-
tion alone of each independent variable dependence
on the original function without any mutual interac-
tions. Multivariate terms bring the double, triple, ...,
higher tuple mutual interaction contributions. For ex-
ample, if a zeroth order truncation is made, ignoring
the terms following f0, the mean value of the investi-
gated function is obtained. Therefore, one of the ad-
vantages of HDMR is that there is no need to calcu-
late every HDMR component to get the approximate
value of a function within a predetermined precision
by choosing the appropriate truncation of HDMR.
HDMR, its components and properties was first men-
tioned in 1993 by I. M. Sobol[2]. He used unit weight
and [ 0, 1] interval without considering the possibility
of extension of these items since these entities were
sufficient for his purpose.

H. Rabitz generalized Sobol’s work by introduc-
ing the idea of weight functions [3, 4] and orthogonal
hyperprisms. M. Demiralp defined and utilized vari-
ous versions of HDMR and brought the addivity mea-
surer concept to the theory, which is very useful for
the estimation of truncation errors[1].

Demiralp’s group continues their work develop-
ing new HDMR versions whose univariate truncation
quality is higher or they can be optimised to get higher
qualities. The HDMR components fulfill the condi-
tion∫ bj

aj

dxjWj (xj) fi1,...,ik (xi1 , ..., xik) = 0,

xj ∈ {xi1 , ..., xik} , 1 ≤ j, k ≤ N. (2)

which was imposed by Sobol to get unique HDMR
components. We call these impositions “vanishing
conditions”. It can be used to calculate HDMR terms
as follows

f0 =
∫ b1

a1

dx1W1(x1)...

×
∫ bN

aN

dxNWN (xN )f (x1, ..., xN ) (3)

fi(xi)=
∫ b1

a1

dx1W1(x1)...
∫ bi−1

ai−1

dxi−1Wi−1(xi−1)

×
∫ bi+1

ai+1

dxi+1Wi+1(xi+1)...

×
∫ bN

aN

dxNWN (xN )f(x1, ..., xN )− f0

1 ≤ i ≤ N (4)

fij (xi, xj)=
∫ b1

a1

dx1W1 (x1) ...
∫ bi−1

ai−1

dxi−1Wi−1 (xi−1)

×
∫ bi+1

ai+1

dxi+1Wi+1 (xi+1) ...

×
∫ bj−1

aj−1

dxj−1Wj−1 (xj−1)

×
∫ bj+1

aj+1

dxj+1Wj+1 (xj+1) ...

×
∫ bN

aN

dxNWN (xN )

×f (x1, ..., xN )− fi (xi)− f (xj)−f0

1 ≤ i < j ≤ N (5)

Other components can be calculated similarly. For a
practical point of view the truncations containing at
most the bivariate components are used. Zeroth, first
and k-th order truncations are as follows [1, 2, 3, 4, 5].

s0 ≡ f0,

s1 ≡ s0 +
N∑
j=1

fj (xj) ,

...
sk ≡ sk−1 +

∑
j1, ..., jk = 1
j1 < · · · < jk

fj1...jk (xj1 , ..., xjk) . (6)

The vanishing conditions mentioned above in fact cor-
respond to orthogonality between HDMR components
as it was first shown by Demiralp. This is due to the
fact that each vanishing condition can in fact be inter-
preted as the inner product of the relevant component
with the constant component, and the inner product
of any two variate components will contain at least
one integral which vanishes because of Sobol’s van-
ishing conditions. The inner product under considera-
tion here is defined as theN -fold integral of two func-
tions over the region which is the cartesian product of
individual intervals of the independent variables and
under the product of the univariate weight functions
of HDMR.

The mutual orthogonalities of HDMR compo-
nents is a very important issue since it enables us to
construct certain norm related equalities which can be
used to measure the norm square contribution of each
component to the norm square of the function whose
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HDMR is under consideration. However this is valid
only for the norm definition induced from the inner
product definition used in the HDMR construction and
the orthogonality conditions are established. Other-
wise orthogonality amongst the HDMR components
disappears and the formulation of relations towards
the truncation error analysis becomes quite compli-
cated.

3 Addivity Measurers
Let f (x1, ..., xN ) be a square integrable function,
with the aid of the orthogonality conditions and the
inner product mentioned above, we can get

‖f‖2 = ‖f0‖2 +
N∑
i=1

‖fi‖2 +
∑
i,j=1
i<j

‖fi,j‖2

+ · · ·+ ‖f12...N‖2 (7)

If we now divide both sides of this equation by ‖f‖2
we get

‖f0‖2

‖f‖2
+

N∑
i=1
‖fi‖2

‖f‖2
+

∑
i,j=1
i<j

‖fi,j‖2

‖f‖2

+ · · ·+ ‖f12...N‖2

‖f‖2
= 1 (8)

This urges us to define

σ0 ≡ ‖f0‖2

‖f‖2
,

σ1 ≡

N∑
i=1
‖fi‖2

‖f‖2
,

σ2 ≡

∑
i,j=1
i<j

‖fi,j‖2

‖f‖2
(9)

The σi’s above (first three of them are given only) are
called “Additivity Measurer of Order i”. It is not hard
to show that these entities vary between 0 and 1 inclu-
sive and they are well ordered with respect to index i.
That is,

0 ≤ σ0 < · · · < σN = 1 (10)

which means that these measurers form a monoto-
nously increasing sequence with respect to growing
values of the index. The closer the σi is to 1, the bet-
ter the quality of the i–th variate HDMR truncation.

4 Fourier Series
The generalized Fourier series [6] of a square inte-
grable function f : [a, b]→ C with respect to Φ, is

f(x) =
∞∑
k=0

ckφk(x) (11)

where ck’s are given by

ck =
< f, φk >

< φk, φk >
(12)

The ck coefficients above are called Fourier Coeffi-
cients and φk(x)s form an orthogonal basis set. The
inner product is defined by

< φk, φl >=

b∫
a

dxφk(x)φl(x)w(x) (13)

where w(x) is a weight function and φl(x) stands for
the complex conjugate of φl(x). In multi-dimensional
space, we define the inner product as follows;

< φk, φl >=
∫

[a,b]N

dxφk(x)φl(x)w(x) (14)

where dx = dx1...dxN . We use φk(x) = eikx =
ei(k1x1+···+kNxN ) for all possible integer values of kis
in this paper. The inner product definition above al-
lows us to define a weighted norm

< φk, φk >=
∫

[a,b]N

dxφk(x)φk(x)w(x) (15)

so
‖φk‖2w =

∫
[ a,b ]N

dxφk(x)φk(x)w(x) (16)

This definition is the same as the norm definition used
to calculate the additivity measurers of HDMR com-
ponents if we assume φk(x) to be a real function.
Hence we obtain

< φk, φk >=
∫

[ a,b ]N

dxφ2
k(x)w(x)

In this work, we take w(x) = 1 as the weight func-
tion and φk(x) = eikx = ei(k1x1+···+kNxN ) as the ba-
sis functions and the region is the [0, 2π]N hypercube.
These functions, φk(x)s form an orthogonal basis set
since the inner product

< φk, φl > =
∫

[ 0,2π ]N

dxei(k−l)x (17)
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becomes equal to (2π)N when k and l match other-
wise it vanishes. Thereby we can obtain an orthonor-
mal basis set by dividing eikx by its norm. Under these
circumstances the Fourier expansion of f(x) is as fol-
lows

f(x) =
∞∑
k=0

ckφk(x) =
∞∑
k=0

cke
ikx (18)

where

ck =
1

(2π)N

∫
[ 0,2π ]N

dxf(x)e−ikx. (19)

We can use the limiting form of the Parseval
inequalities to calculate the norms of the function
f(x1, ..., xN ) and its HDMR components. So we can
write

‖f‖2 =
∞∑

k1=−∞
...

∞∑
kN=−∞

∣∣∣cfk1...kN

∣∣∣2 (20)

where cfk1...kN
s are the Fourier coefficients of the func-

tion f(x1, ..., xN ).
Proceeding in the same manner, HDMR compo-

nent norms can be calculated by using their Fourier
coefficients. If we represent the Fourier coefficients
of f0 with cf0k1k2...kN

then

‖f0‖2 =
∞∑

k1=−∞
...

∞∑
kN=−∞

∣∣∣cf0k1...kN

∣∣∣2 (21)

Similar relations can be written for other HDMR com-
ponents. The only change in those formulae will be
the replacement of the superscript of the Fourier coef-
ficients with the appropriate strings like fi for univari-
ance fi1i2 for bivariance and so on. We do not give
them, instead, emphasize on certain reductive prop-
erties of the HDMR component Fourier coefficients.
They are given below for the case of constancy, uni-
variance, and bivariance respectively.

cf0k1...kN
= δk10...δkN0c

f0
0...0,

cfi

k1...kN
= δk10...δki−10δki+10...δkN0c

f0
0...0ki0...0

,

1 ≤ i ≤ N, −∞ < ki <∞
c
fi1i2
k1...kN

= δk10...δki1−10δki1+10...δki2−10

×δki2+10...δkN0c
f0
0...0ki1

0...0ki2
0...0,

1 ≤ i1 < i2 ≤ N,
−∞ < ki1 , ki2 <∞ (22)

These properties remove a lot of infinite sums in
the formulae above and therefore facilitate numeri-
cal calculations. The first of these properties means

that the HDMR’s constant term corresponds to the
the weighted average of the function f (x1, ..., xN )
Hence, the oscillations around this average value de-
termines how constant HDMR is. In other words,
smaller the Fourier coefficients except the one con-
stant basis function better quality is the HDMR trun-
cated at constant component. Similar considerations
are valid for other HDMR components.

5 Computational Experimentation
We illustrate three functions as examples in this work.
First the additivity measurers of normalized exponen-
tial function with second degree multinomial argu-
ment are computed over [0, 1]4 hypercube

F1(x) =

4∏
i=1

e−αi(xi−ci)2

4∏
i=1

∥∥e−αi(xi−ci)2
∥∥ ,

αi, ci ∈ R, 1 ≤ i ≤ 4 (23)

and then purely additive

F2(x) =
Sinx1

x1
+
Sinx2

x2
+
Sinx3

x3
+
Sinx4

x4
(24)

and purely multiplicative

F3(x) =
Sinx1

x1

Sinx2

x2

Sinx3

x3

Sinx4

x4
(25)

functions are examined.
In the first example, the function’s HDMR com-

ponents are computed by using weight function
W (x1, x2, x3, x4) = 1 over [0, 1]4 hypercube. In
Gülpınar’s thesis[7], it is illustrated that the HDMR
approximation gives the best results for the αi =
0.001 and ci = 0.5 values. In this paper we specif-
ically choose ci = 0.5 and HDMR approximation cal-
culated for 5 different αi values. In the first instance,
all of the terms except the first five are neglected from
the infinite series, then first 10 and first 15 terms are
retained in the computation while calculating additive
measurers.

First, computations were realised at αi = 0.001
and ci = 0.5 values which provided the best approx-
imation previously. We obtain σ0 = 0.99997630 and
σ1 = σ2 = σ3 = σ4 = 0.99997634 by using the
first five terms of the infinite sums in computations.
The last 4 additivity measurers are same within 10−30

digit precision. σ4 is smaller than one, because of the
five term truncation and round off errors.

As the results of a previous work[8] show, the ad-
ditivity measurers tend to 1 as αi decreases to zero.
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Greater the αis smaller the additivity measurers. For
example, when cis are all 0.5 and αis are 0.001 all
σi values except σ0 which is 0.9999999778 are equal
to 1 within ten decimal digit accuracy. For the case
where αi are 0.01 the situation is almost same except
the change in σ0 whose value is now 0.9999977788.
When αis become 0.1 beside σ0, σ1 starts to deviate
from 1. In the case where αis become quite big like
10.0, only σ4 preserves a value 1. The deviations be-
come so great that σ0 takes the value 0.3235044841
while σ1 becomes 0.7553005983[8].

Table shows the results obtained using Fourier co-
efficients to calculate sensitivity indices.

If we take first ten of the Fourier coefficients, we
observed that the results are distinctly closer to one.
If we examine the table below, the results obtained
are similar to the results at the[7].

Table 1: Sensivity Indices

nr αi = 0.001 αi = 10

1− σ0

5 3× 10−5 86106× 10−5

10 6× 10−5 86499× 10−5

15 8× 10−5 86499× 10−5

1− σ1

5 2× 10−5 50707× 10−5

10 2× 10−5 51655× 10−5

15 0.8× 10−5 51438× 10−5

1− σ2

5 2× 10−5 16885× 10−5

10 6× 10−5 17465× 10−5

15 0.8× 10−5 17293× 10−5

1− σ3

5 2× 10−5 2523× 10−5

10 6× 10−5 2598× 10−5

15 0.8× 10−5 2514× 10−5

1− σ4

5 2× 10−5 236× 10−5

10 6× 10−5 174× 10−5

15 0.8× 10−5 115× 10−5

To give an example of discontinuous functions we il-
lustrated the purely additive

F2(x) =
Sinx1

x1
+
Sinx2

x2
+
Sinx3

x3
+
Sinx4

x4

and purely multiplicative

F3(x) =
Sinx1

x1
.
Sinx2

x2
.
Sinx3

x3
.
Sinx4

x4

functions over [0, 1]4 hyperprism. Both of these functions
are discontinuous at the point x = 0. With this aim sen-
sitivity indices are calculated as well as using norm def-
inition at the HDMR definitions after F2(x) = Sinx1

x1
+

Sinx2
x2

+ Sinx3
x3

+ Sinx4
x4

function’s HDMR components com-
puted. With reference to sensitivity indices for first 5 terms

of Fourier coefficients the norm is

σ0 = 0.99326

σ1 = 0.99444

σ2 = 0.99444

σ3 = 0.99444

σ4 = 0.99444

In here σ1, σ2, σ3, σ4 terms are equal to each other
within 10−50digit precision. The sensitivity indices cal-
culated by using first 10 terms of Fourier coefficients are
given below:

σ0 = 0.99483

σ1 = 0.99606

σ2 = 0.99606

σ3 = 0.99606

σ4 = 0.99606

When first 15 terms were used are

σ0 = 0.99573

σ1 = 0.99697

σ2 = 0.99697

σ3 = 0.99697

σ4 = 0.99697

Proceeding in the same manner σ1, σ2, σ3, σ4, terms
are equal to each other with a precision of 10−50. This
gives us enough information about the approximation qual-
ity. We can say, how much closer to the real function our
approximation is on the basis of the sensitivity indices σ1,
σ2, σ3, σ4. When we computed the sensitivity indices by
using the norm definition

σ0 = 0.99937

σ1 = 1.00000

σ2 = 1.00000

σ3 = 1.00000

σ4 = 1.00000

are obtained.
By using similar calculations for obtaining sensitivity

indices for the functionF3(x) = Sinx1
x1

.Sinx2
x2

.Sinx3
x3

.Sinx4
x4

we obtain

σ0 = 0.96642

σ1 = 0.98486

σ2 = 0.98499

σ3 = 0.98499

σ4 = 0.98499
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when we include first 5 terms of Fourier coefficients. For
the first 10 terms

σ0 = 0.97161

σ1 = 0.99096

σ2 = 0.99110

σ3 = 0.99110

σ4 = 0.99111

are obtained. For the first 15 terms, we obtain

σ0 = 0.97492

σ1 = 0.99435

σ2 = 0.99449

σ3 = 0.99450

σ4 = 0.99450

If we use the norm definition to compute the sensitivity in-
dices instead of Fourier Coefficients norm, we obtain

σ0 = 0.98994

σ1 = 0.99992

σ2 = 1.00000

σ3 = 1.00000

σ4 = 1.00000

6 Conclusion
Fourier series specificly used in investigating piecewise
functions and functions which have points that cause dis-
continuity in their domains. Moreover, it is necessary to
make calculations by means of generali- zed or numeric
integration at the points where the function has discontinu-
ity. On the other hand, the observation that the number of
terms necessary to be considered grows exponentially as

the dimension increases can be seen as a disadvantage in
utilizing Fourier series in the calculation of sensitivity in-
dices.
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