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Abstract: The multivariate functions become plague of plethora when the number of their arguments increases
to high values as much as 2 digits numbers, because of the limitations of today’s computers. Instead of com-
puter programming directly, the mathematically efficient multivariate function representations must be developed
before attempting computer programming. One of those methods is “High Dimensional Model Representation
(HDMR)”Even when these types of methods are applied on the multivariate functions, the solution cost of the
modified problem after the application of the method is still complicated for a stand–alone computer. In that case,
the parallel programming helps us. Our main goal of this work is to modify the method for parallel computing.

Key–Words: Parallel Programming, Data Partitioning, Multivariate Approximation, High Dimensional Model Rep-
resentation

1 Introduction

When a natural event is analyzed, the number of fac-
tors affecting the event is higher than calculated. Gen-
eral way to overcome this is to eliminate or ignore
some of factors which will be less effective. However
as the investigated event complicates, the number of
affecting factors increases and including all these fac-
tors, within nowaday computer technology, can not be
suitable to the calculation limitations on this types of
problems. “High Dimensionel Model Representation
(HDMR)”is perhaps the most fruitful solution to those
multidimensional problems.

With the help of data partitioning via HDMR, a
given N–variate function can be approximated. Even
the approximation is achieved mathematically, com-
putational cost may still exceeds the limitations for
one PC. Therefore, the method must be modified for
parallel programming to apply on real–world prob-
lems.

In this work, we offer an idea to modify the
HDMR functions for parallel programming. For this
purpose, we investigate the mathematical structure of
data partitoning via HDMR method. Then we use the
structure to modify the method. Although we have no
any parallel implementation yet and this presentation
is rather conceptual, we explain the next steps of this
work in the future works section.

The paper is organized as follows. We begin

with a brief introduction of HDMR. Then we mention
data partitioning via HDMR. We offer the method that
modifies the data partitioning via HDMR method for
parallel programming in main section. We discuss fu-
ture works at the last section.

2 HDMR

The equation for High Dimensional Model Represen-
tation for a given multivariate function is as follows
according to Sobol Theory.

f(x1, ..., xN ) = f0 +
N∑

i1=1

fi1(xi1)

+
N∑

i1,i2=1i1<i2

fi1i2(xi1 , xi2)

+ · · ·+ f12...N (x1, ..., xN )
(1)

This expansion is a finite sum and composed of a con-
stant term, univariate terms, bivariate terms and so on
up to the N–variate term. These are the HDMR com-
ponents of the given multivariate function. For this
moment, the important step is to define the functions
on the right hand side of the equation (1).

∫ 1

0
dxsfi1,i2,...ik(xi1 , . . . , xik) = 0
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s = i1, . . . , ik (2)

These functions must satisfy orthogonality condition
via an inner product.

(fi1i2...ik , fi1i2...il) = 0,

{i1, i2, . . . , ik} 6≡ {i1, i2, . . . , il}, 1 ≤ k, l ≤ N

(3)

According to the equality defined above and orthog-
onality condition, to obtain the constant term, f0, the
equation (1) is integrated over all variables as follows.

∫ 1

0
· · ·

∫ 1

0
dx1 . . . dxNf(x1, . . . , xN ) = f0 (4)

Similarly, integrating the equation (1) on all variables
except xi give the below equality and then univariate
term fi(xi).

∫ 1

0
· · ·

∫ 1

0︸ ︷︷ ︸
N−1 times

dx1 . . . dxi−1dxi+1 . . . dxN

f(x1, . . . , xN ) = f0 + fi(xi) ∀i = 1, . . . , N

(5)

This method is improved and extended by the Rabitz
Group and applied most of reseach areas [2, 3, 4, 5].
Instead of the unit weight functions and the integration
interval [0,1] in Sobol Theory, Rabitz Group refer to
use the equation below.

∫ b1

a1

dx1 · · ·
∫ bN

aN

dxNW (x1, ..., xN )fi(xi) = 0,

1 ≤ i ≤ N (6)

The weight function W (x1, ..., xN ) is defined as fol-
lows.

W (x1, . . . , xN ) ≡
N∏

j=1

Wj(xj),

xj ∈ [ aj , bj ], 1 ≤ j ≤ N (7)

Additionally, the functions must satisfy the normal-
ization condition below.

f0 =
∫ bj

aj

dxjWj(xj) = 1, 1 ≤ j ≤ N (8)

Similarly to Sobol’s, the HDMR functions are ob-
tained on W (x1, ..., xN ) weight function as follows.

f0 =
∫ b1

a1

dx1 · · ·
∫ b1

a1

dxNW (x1, ..., xN )

×f(x1, . . . , xN ) (9)

fk(xk) =
∫ b1

a1

dx1W1(x1)

· · ·
∫ bk−1

ak−1

dxk−1Wk−1(xk−1)

×
∫ bk+1

ak+1

dxk+1Wk+1(xk+1) · · ·
∫ bN

aN

dxNWN (xN )

 f0 +

N∑

i1=1

fi1(xi1) + · · ·

− f0,

1 ≤ k ≤ N (10)

fk1k2(x1, ..., xN ) =
∫ b1

a1

dx1W1(x1)

· · ·
∫ bk1−1

ak1−1

dxk1−1Wk1−1(xk1−1)

×
∫ bk1+1

ak1+1

dxk1+1Wk1+1(xk1+1)

· · ·
∫ bk2−1

ak2−1

dxk2−1Wk2−1(xk2−1)

×
∫ bk2+1

ak2+1

dxk2+1Wk2+1(xk2+1)

· · ·
∫ bN

aN

dxNWN (xN )

×

 f0 +

N∑

i1=1

fi1(xi1) + · · ·



−fk1(xk1)− fk2(xk2)− f0,

1 ≤ k1 < k2 ≤ N (11)

3 Data Partitioning

Since we need to perform a multivariate interpolation
on finite number of discrete points we can extend the
domain of HDMR variables to entire space without
imposing any extra condition. Hence, we assume that
the interval of the independent variables is (−∞,∞).
It is considered that, the structure of the function,
f(x1, ..., xN ), is not given analytically. Instead it is
specified as the values on finite number of points in the
cartesian space defined by the independent variables.
These points are defined through a cartesian product.
For this definition, first the data of the variable xj is
defined as the following set.

Dj ≡
{
ξ
(kj)
j

}kj=nj

kj=1
=

{
ξ
(1)
j , ..., ξ

(nj)
j

}
, 1 ≤ j ≤ N

(12)
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The cartesian product mentioned above can be con-
structed from these sets as follows.

D ≡ D1 ×D2 × · · · × DN (13)

Explicit set theoretical definition of D can be given as

D ≡ {τ |τ = (x1, x2, ..., xN ) , xj ∈ Dj , 1 ≤ j ≤ N}
(14)

D consists of N-tuples, that is, points in the N di-
mensional cartesian space. The structure which needs
to be created through the interpolation must include
values of the function f(x1, ..., xN ) on these points
only. This structure can be obtained by formatting
the weight function for this purpose. In this sense the
necessary action is to define the weight function as
a linear combination of several Dirac delta functions.
Hence, the following weight function can be selected.

Wj(xj) ≡
nj∑

kj=1

α
(j)
kj

δ
(
xj − ξ

(kj)
j

)
,

xj ∈ [ aj , bj ] , 1 ≤ j ≤ N (15)

The left hand side of the equation describing the nor-
malization criterion (8) can be expressed for the we-
ight function mentioned above as follows

∫ bj

aj

dxj

nj∑

kj=1

α
(j)
kj

δ
(
xj − ξ

(kj)
j

)
=

nj∑

kj=1

α
(j)
kj

,

1 ≤ j ≤ N (16)

because of the properties of the Dirac delta function.
This enables us to obtain the following relation as
a condition on the linear combination coefficients of
Dirac delta functions.

nj∑

kj=1

α
(j)
kj

= 1, 1 ≤ j ≤ N (17)

Using the relations in (9) and (15) and the properties
mentioned above, the following equality is obtained
to determine constant term,

f0 =
∫ b1

a1

dx1

n1∑

k1=1

α
(1)
k1

δ
(
x1 − ξ

(k1)
1

)
· · · ×

×
∫ bN

aN

dxN

nN∑

kN=1

α
(N)
kN

δ
(
xN − ξ

(kN )
N

)

f(x1, ..., xN ) (18)

With the help of defined weight function, we can say

f0 =
n1∑

k1=1

n2∑

k2=1

· · ·
nN∑

kN=1




N∏

i1=1

α
(i1)
ki1




×f
(
ξ
(k1)
1 , ..., ξ

(kN )
N

)
(19)

This equality can be rewritten as follows.

f0 ≡
∑

τ∈D
ζ(τ)f(τ) (20)

where

τ =
(
ξ
(k1)
1 , ..., ξ

(kN )
N

)
, ζ(τ) = α

(k1)
1 · · ·α(kN )

N ,

1 ≤ kj ≤ nj , 1 ≤ j ≤ N (21)

We can use the definition (10) to determine HDMR
univariate components fm(xm).

fm

(
ξ(km)
m

)
=

∫ b1

a1

dx1W (x1) · · ·
∫ bm−1

am−1

dxm−1W (xm−1)

×
∫ bm+1

am+1

dxm+1W (xm+1)

· · ·
∫ bN

aN

dxNW (xN )f(x1, ..., xN )− f0

(22)

When the right hand side of the above relation is
rewritten by taking the univariate factors of the we-
ight function into consideration, the following N − 1
fold integral structure is obtained.

fm

(
ξ(km)
m

)
=

∫ b1

a1

dx1

n1∑

k1=1

α
(1)
k1

δ
(
x1 − ξ

(k1)
1

)
· · ·

×
∫ bm−1

am−1

dxm−1

nm−1∑

km−1=1

α
(m−1)
km−1

δ
(
xm−1 − ξ

(km−1)
m−1

)

×
∫ bm+1

am+1

dxm+1

nm+1∑

km+1=1

α
(m+1)
km+1

δ
(
xm+1 − ξ

(km+1)
m+1

)

· · ·
∫ bN

aN

dxN

nN∑

kN=1

α
(N)
kN

δ
(
xN − ξ

(kN )
N

)

×f(x1, ..., xN )− f0

(23)

Evaluating the above integrals and inserting the ex-
plicit form of the constant term given in (20), these
relations can be rewritten in the following more gen-
eral form.

fm

(
ξ(km)
m

)
=

∑

τm∈D(m)

ζm(τm)f(τm, ξ(km)
m )

−
∑

τ∈D
ζ(τ)f(τ) (24)

where

D(m) ≡ {τm|τm=(x1, ..., xm−1, xm+1, ..., xN )
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, xj ∈ Dj , 1 ≤ j ≤ N, j 6= m},

τm =
(
ξ
(k1)
1 , ..., ξ

(km−1)
m−1 , ξ

(km+1)
m+1 , ..., ξ

(kN )
N

)
,

ζm(τm) = α
(k1)
1 · · ·α(km−1)

m−1 α
(km+1)
m+1 · · ·α(kN )

N ,

ξ(km)
m ∈ Dm, 1 ≤ km ≤ nm, 1 ≤ m ≤ N (25)

With the equality above, N tables of ordered pairs
such that mth table constains nm (1 ≤ m ≤ N) or-
dered pairs of fm(xm) are obtained.

4 Modifying The HDMR Data Par-
titioning Algorithm for Parallel
Programming

In this section, we focus on a small data and explain
the idea on that data. For this purpose, we take the
data as follows.

D1 =
{
ξ
(1)
1 , ξ

(2)
1 , ξ

(3)
1

}
, D2 =

{
ξ
(1)
2 , ξ

(2)
2

}
,

D3 =
{
ξ
(1)
3 , ξ

(2)
3

}
(26)

Assume that we have all the f(x1, x2, x3) values.
First, we discuss modifying the about equality (19)
for the HDMR constant component, f0. It is easy to
realize that the equality uses all of the given values,
and nothing else because of the weight functions, for
calculating the constant term as follows.

f0 = (α(1)
1 α

(2)
1 α

(3)
1 )f(ξ(1)

1 , ξ
(1)
2 , ξ

(1)
3 )

+ (α(1)
1 α

(2)
1 α

(3)
2 )f(ξ(1)

1 , ξ
(1)
2 , ξ

(2)
3 )

+ (α(1)
1 α

(2)
2 α

(3)
1 )f(ξ(1)

1 , ξ
(2)
2 , ξ

(1)
3 )

+ (α(1)
1 α

(2)
2 α

(3)
2 )f(ξ(1)

1 , ξ
(2)
2 , ξ

(2)
3 )

+ (α(1)
2 α

(2)
1 α

(3)
1 )f(ξ(2)

1 , ξ
(1)
2 , ξ

(1)
3 )

+ (α(1)
2 α

(2)
1 α

(3)
2 )f(ξ(2)

1 , ξ
(1)
2 , ξ

(2)
3 )

+ (α(1)
2 α

(2)
2 α

(3)
1 )f(ξ(2)

1 , ξ
(2)
2 , ξ

(1)
3 )

+ (α(1)
2 α

(2)
2 α

(3)
2 )f(ξ(2)

1 , ξ
(2)
2 , ξ

(2)
3 )

+ (α(1)
3 α

(2)
1 α

(3)
1 )f(ξ(3)

1 , ξ
(1)
2 , ξ

(1)
3 )

+ (α(1)
3 α

(2)
1 α

(3)
2 )f(ξ(3)

1 , ξ
(1)
2 , ξ

(2)
3 )

+ (α(1)
3 α

(2)
2 α

(3)
1 )f(ξ(3)

1 , ξ
(2)
2 , ξ

(1)
3 )

+ (α(1)
3 α

(2)
2 α

(3)
2 )f(ξ(3)

1 , ξ
(2)
2 , ξ

(2)
3 ) (27)

The equality means the cartesian product of D1, D2

and D3 sets. The mathematical structure of the equal-
ity can be explained via “Graph Cartesian Product”for

Figure 1: Graph Cartesian Product

G1(v1, u1) and G2(u2, v2, w2) as follows. For our
data, graph cartesian product would be a 3-D cube.
At this point we need one definition for explaining the
equality (19) as a graph. The definition is the k-Partite
Graph. A k-partite graph is a graph whose graph ver-
tices can be partitioned into k disjoint sets so that no
two vertices within the same set are adjacent [8, 9].
The data sets we have are disjoint, so we can use this
definition. Additionally, every trio of (x1, x2, x3) of
the graph vertices in the 3 sets are adjacent. k-partite
graph also is a complete 3-partite graph such that ev-
ery pair of graph vertices in the 3 sets are adjacent.
Therefore, the elements of the equality (20) turns out
to be the following graphs.

Figure 2: Complete Partite Graph

After this, we need one more step to express the
graph as an array. This array will be an input array for
the parallel algorithm. For this step, we use “Graph–
Structured Stack”definition. A graph–structured stack
is a directed acyclic graph where each directed path
is a stack [10]. In the following diagrams, there are
four stacks: {7, 3, 1, 0}, {7, 4, 1, 0}, {7, 5, 2, 0}, and
{8, 6, 2, 0}.

Figure 3: Graph–Structured Stack

With the help of this definition, we can express all
(x1, x2, x3) trios used in (20) as an array as follows.
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Figure 4: Graph–Strucured Stack for
Cartesian Product of D1, D2 an D3

Where the elements in every row on the left hand
side of Figure 4 are in D1, D2 and D3 sets, respec-
tively. At the top right side of the figure, there is an
abbreviation for the trio (x1, x2, x3) and at the bot-
tom right there is the cartesian product of D1, D2 and
D3 as an array with the help of the definition, Graph-
Strucured Stack. Although there is no problem to
obtain the HDMR constant term f0 for parallel pro-
gramming, because the process uses all of the data,
calculating the HDMR univariate terms fi(xi) has a
different nature. The difference is the fact that each
calculation process use different part of the data. For
example, there is a cartesian product of the three sets
also, in the calculation process of f1(ξ

(1)
1 ). Howver

this time we assume that the set D1 consists only
the element ξ

(1)
1 , so the other combinations connect

ξ
(1)
2 and ξ

(1)
3 are ignored. The scheme for using in-

put data to calculate univariate term f1(ξ
(1)
1 ) is given

below where on the left side of the figure the graph-

Figure 5: Scheme for using input data
to calculate f1(ξ

(1)
1 )

structured stack appears for f1(ξ
(1)
1 ) and on the right

side there is marked part of data used for the calcu-
lation of f1(ξ

(1)
1 ). With the aid of the strategy for

preparing input data of the algorithm, using the part
of data depends on a scheme. Using the data parts
scheme while calculating the HDMR univariate terms
is as follows.

Figure 6: Scheme for using input data
to calculate univariate terms

where the array is shown as a matrix to facilitate
easy grasping the issue.

5 Concluding Remarks

The next step after this conceptual design is the par-
allel programming of the algorithm. After this step,
the efficiency of the parallel program will be analyzed
and applied on the real–data and reported in our future
publications.
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