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Abstract: - Omni-directional mobile robots are becoming popular for many applications especially in soccer 
playing robots. Effective control and self-localization of omni-directional mobile robots constitute important 
and challenging issues. In this work, a simplified model of the system has been derived for fast tuning of the 
control system parameters.  In particular, strategies for fast tuning of PID/PD coefficients for position and 
orientation control are devised. A vision-based self-localization and the conventional odometry systems have 
been fused for robust self-localization. The methods have been tested in the RoboCup competition field using 
three Persia middle size omni-directional robots.  
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1 Introduction 
Among many suggested motion mechanisms such as 
universal wheel, ball wheel, crawler and offset 
steered wheel, and omni-directional wheel [1-4], 
omni-directional wheels can provide high mobility 
with no motion restriction. In practice, providing 
high speed with an acceptable error is very 
important factor for success in a competitive and 
dynamic environment such as RoboCup 
competitions (Fig. 1). An omni-directional robot can 
reach to any position with no rotation through a 
straight line.  For this purpose, fast yet robust and 
reliable self-localization and control approaches 
must be adopted. Additionally, in the context of 
novice operation (such as in the student’s 
competition contest), or time-pressured situations, 
the system must be simple to develop and tune. 

Despite many works related to self-localization 
of robots [5-12], the problem is still open.  Common 
methods of dead-reckoning [5] are prone to errors 
that are accumulated over time. Therefore, it is 

necessary to combine other methods such as 
triangulation landmarks or map matching, in order 
to probabilistically update robot localization.  The 
problem is usually formulated with a likelihood 
function over all possible positions of the robot and 
a measure is used to find a probabilistic match 
between local and global maps [10-12]. However, 
these approaches are usually complicated and time-
consuming.  Reliability and robustness of many of 
these approaches are also questionable for robotic        

 
 
 
 
 
 
 
 
 

Fig. 1. Persia omni-directional soccer player robot. 
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soccer competitions [7, 13]. This paper contributes 
by proposing a simple, efficient, and reliable hybrid 
self-localization method using a fused system of 
odometry and vision feedbacks.  Each of the 
feedbacks used have their own advantages and 
limitations.  Odometry provides ease and low cost 
of implementation and computation, but is limited 
by the slippage effect and accumulation of odometry 
errors. Vision-based self-localization ensures flow 
of rich information unaffected by the slippage 
effect, yet limited by the camera occlusion and 
camera calibration errors (of extrinsic and intrinsic 
parameters). Also, image processing techniques 
might be time-consuming. The hybrid odometry 
system is proposed to compensate for disadvantages 
of both methods.  In particular, localization errors, 
e.g., the slippage effects of driving wheels, will not 
dominate the self-localization results.  Additional 
contribution of this work includes the sensitivity 
analysis of the performance of a vision self-
localization and feedback system.  The objective 
was to obtain sensitivity of the localization method 
to visual noise. The results showed that using one 
method for all points in the field was not perfect. 
Hence utilizing other landmarks in the field was 
proposed.  

From control perspective, advanced control 
techniques have been proposed for omni-directional 
robots, with many being computationally inefficient, 
or impractical, or difficult to tune, and/or implement 
[1, 14-16]. Among many control techniques, 
Proportional-Integral-Derivative (PID) control 
remains outstanding due to its simplicity, 
robustness, effectiveness, a wide range of 
applicability, and near-optimal performance [17]. 
Therefore, PID strategy was adopted for the position 
control in this work. This paper also contributes by 
proposing a simple strategy for fast yet effective 
tuning of a PID control. The orientation control was 
achieved using PD control law. It is a time 
consuming process to set the PID controllers 
coefficients manually with no prior estimation and 
based on just trials and errors. On the other hand, 
solving the set of coupled differential equations is 
very complicated and may not be practical for a real 
time control [14]. Some teams decoupled the 
mathematical model of the system while the others 
used fault tolerant control strategy for their systems 
[15]. Real-time path generation based on the 
polynomial spline-interpolation with prediction of 
velocities of spline functions was also proposed and 
used [16].  A fuzzy model of the omni-directional 
robot control was studied analytically in [1]. 
However, these approaches had problems such as 
lengthy effort for control tuning, complicated 

mathematical models for a real-time trajectory 
generation, and/or use of a single feedback system 
for control structure. Also, some of these models 
offered only theoretical but impractical solutions.  
This paper also contributes by outlining practical 
considerations for implementing and realizing a 
pose control through integrating PID and PD control 
laws for position and orientation control, 
respectively.  

By combining the proposed strategies and 
utilizing the comprehensive omni-directional robot 
[18], Persia Middle Size team won the 1st place in 
World RoboCup Technical Challenge Competitions 
in Portugal 2004 and the 3rd place in Italy 2003.   

This paper is organized as follow. Section 2 
describes the robot kinematics. The control strategy 
and the feedback generation for position control are 
represented in sections 3 and 4, respectively. The 
experimental results are explained in section 5. 
Finally, section 6 concludes the paper. 

 
 

2 Robot Kinematics  
Omni-directional robots usually use omni-
directional poly-roller wheels. The most common 
wheel consists of six spindles like rollers that can 
freely rotate about their rotation axes [1, 19]. 
Therefore a robot with three omni-directional 
wheels can follow any planar trajectory. Three 
active omni-directional wheels (for motion system) 
and three small passive wheels with shaft encoders 
(as a feedback mechanism) were used in the 
experimental robot (Fig. 2).  The schematic view of 
robot kinematics with omni-directional wheels is 
shown in Fig. 3. From the kinematics model of the 
robot [14], one can derive the vector of the 
coordinates of the wheels centers with respect to a 
local coordinate frame ( wP ) and drive directions as: 
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where L is the distance of wheels center from the 
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robot center of gravity (O), and vector wiD  is the 
drive direction of the i-th motor. The vector of linear 
velocities of the wheels ( ( ),  1,2,3iV t i = ) can be 
written as: 

 ( )w oθ= +V P R P ,   (3) 
where R(θ ) is the rotation matrix. Then it can be 
readily shown that the wheels angular velocity 
vector, 1 2 3[ , , ]Tϕ ϕ ϕ , can be written as a function of 
linear and angular velocities of the robot (i.e., 
[ , , ]Tx y θ ): 
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where r is the major radius of wheels. Linear and 
angular momentum equations for the robot can be 
formulated as: 
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where [ , ]T
o x y=p is the linear acceleration vector 

of the center of mass with respect to Cartesian 
coordinate frame, iF  is the magnitude of the force 
produced by the i-th motor, m is the mass of the 
robot, and J is its moment of inertia about its center 
of gravity. Assuming no-slip condition, the force 
generated by a DC motor can be written as: 

α β= −F U V ,    (6) 
where { ( ), 1,2,3}iU t i= =U  is the voltage applied 
by a supplier to the DC motors The constants α  and 
β  are motor characteristic coefficients and can be 
determined either from experiments or from the 
motors catalogue. Substituting (6) into (5) yields: 
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Fig. 2. Omni-directional chassis. 

 

 

 

 
 
 
 
 
 

Fig. 3. Robot kinematic diagram with local and global 
coordinate frames. 
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3 Robot Controller 
In this work, PID and PD controllers were used for 
controlling the robot pose (position and orientation). 
The experiments showed that such system was 
robust enough for controlling a soccer player robot 
[15]. For obtaining the PID controller gains, one 
needs to obtain first the whole transfer functions of 
the system and then use it for initial tuning. 
Determining overall equations governing the system 
behavior is not straightforward.  Since the equations 
are a set of coupled nonlinear differential equations, 
it is very difficult to solve them in a time-efficient 
fashion. Even if one manages to solve the equations, 
the resultant PID gains will not be reliable because 
they will depend on many other parameters such as 
ground surface friction factor, characteristics of 
batteries and so on. For many robotic competitions, 
an efficient and fast tuning method is desired. 
Therefore, the equations need to be decoupled with 
the use of the following assumptions: 
(1) Omni-directional mechanism is a mechanism 
which can reach to any position with no rotation 
(i.e., without loss of generality, one can assume 

0=θ ) through a straight line. This prescription 
would help the robot to reach the desired position in 
the shorter time than that with a 2-wheel 
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mechanism. It can be also assumed that any curve 
could be approximated by dividing it into straight 
line segments and at the end of each segment, the 
robot would not need to rotate to follow the next 
segment. 
(2) Whenever it is necessary to rotate (e.g., when the 
kicker robot needs to be in a particular position), the 
robot rotates while it is moving in a straight line to 
reach the target position. This can be regarded as a 
pure rotation in addition to the first assumption. The 
pure rotation in our robot is obtained by applying 
equal voltages to each motor. 
(3) In order to find PID coefficients for the robot 
position controller, moving through a straight line is 
very similar to moving through an axis like X-axis 
(i.e., y = 0 in (8)). The voltage obtained from 
position controller is then added to the voltage 
found by orientation controller.          

Based on the above assumptions, the robot 
position does not depend on θ . Therefore, for 
position control, one would assume that θ = 0. In 
the cases where rotation is required, the voltage 
obtained from orientation control for each motor is 
equally added to the position controller output. For 
PID tuning in position controller, a simple 
movement was considered, i.e., θ  = 0, y = 0 (or a 
constant value) in (8). Similarly, for orientation 
control, a pure rotation is considered, i.e., 0x =  (or 
constant), and 0y =  (or constant). 
 
3.1 Position Control Structure 
Fig. 4 shows the overall block diagram of the 
system. As it is shown in Fig. 4, the omni-
directional robot control loop contains a PID 
controller (with the transfer function PIDH ) and a 
PD control law, a plant transfer function ( PH which 
is obtained from the system dynamics), and a self-
localization transfer function (as a feedback function 
that only senses the robot’s position). A noise node, 
N , is also included that has an additive effect on 
the system position input. The input of the system is 
considered to be a step function and the output is the 
robot position and orientation. Experiments showed 
that this type of controller is robust enough for 
controlling a soccer player robot [14]. 

Two simple motions were considered and 
solved, namely straight-line motion of the robot, 
e.g., along X direction and pure rotation about the 
Z-axis. The former means that one motor is turned 
off and the other two are turned on with the same 
but opposite angular velocity while the latter means  

 

Fig. 4. Control diagram of the omni-directional robot. 

that all three motors are turning with the same 
angular velocities. 

The orientation will be studied separately in 
section 3.2. The output voltage from the orientation 
controller (w) is then added to the voltage obtained 
from the position controller output ( iv ). The 
assumption of summing up these voltages is valid 
while motors are operating in their linear regions. In 
order to apply the straight line motion, one can 
consider (8) with: 

θ =0, 1 2 30,   yϕ θ θ ϕ ϕ= = = = = − .  
Equation (8) then reduces to: 

23 3
2
xmx Uβ α+ = .   (10) 

Applying Laplace transform to (10) with the initial 
conditions: (0) 0, (0) 0X X= = , one obtains: 
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It should be noted that for ideal case (in the absence 
of noise), the complete transfer function for position 
control would be obtained as follows (assuming 
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(12) 
Here PK , IK , and DK  are proportional, integral and 
derivate gains, respectively. Fig. 5 shows the step 
and noise response curves with various 

, ,  and P I DK K K values. The following observations 
can be deducted. The dotted line in Fig. 5 shows a 
step function with an additive white (zero-mean) 
Gaussian noise (AWGN). In this curve, the noise 
was applied to the system every 40 microseconds 
due to the robot processing time. As observed from 
Fig. 5, by increasing PK  and IK  (dash-dotted line 
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and solid line), the system settling time would 
increase. Also, there are some overshoots in these 
curves. However, by increasing the DK  value, this 
effect reduces drastically. In order to find optimum 
values for the PID gains, different combinations of 
the parameters were selected and examined. 
Eventually, the proper PID gains were obtained for 
the proposed system as 

1,  1,  and 10P I DK K K= = = . The response of the 
system for these values is depicted by thick solid 
line in Fig. 5. 
 
3.2 Orientation Control 
Suppose that the robot only rotates about its vertical 
axis, i.e., Z-axis. Thus: 1 2 3 1 2 3,  U U Uϕ ϕ ϕ= = = = . 
Substituting these values into the third equation in 
(8) leads to: 

2
33 3J L LUθ αβ θ+ = .  (13) 

Applying Laplace transform to the above equation 
yields 

2 2
3( ) / ( ) 3 /( 3 )s U s L Js L sθ αβ= + ,  (14) 

and considering a PD controller for this case, the 
total transfer function for orientation control is 
given as: 

2 2
3 ( )( )

(3 3 ) 3
P D

Total
D P

L K K sH s
Js L LK s LKαβ

+
=

+ + +
.   (15) 

Fig. 6 shows the step response of the control 
system. Experiments showed that the level of noise 
(measured by noise/signal ratio) in orientation 
controller was considerably less than that in the 
position controller (almost 3 times). Therefore, the 
noise was ignored in tuning PD control gains (Fig. 
6). Since the experience showed that residual error 
for orientation control is not of great importance in 
the given scenario (i.e., robotic soccer 
competitions), a PD controller will result in desired 
system response.  Therefore, there was no need to 
apply PID controller for the orientation control. The 
optimum parameters for PD gains were obtained as 

100,  and 10P DK K= = . The step response for 
these parameters values is shown by a solid line in 
Fig. 6.  The slight overshoot is desirable since the 
effect of friction (damping the response in our 
model) was ignored. 
 
3.3 Overall Robot Controller 
In order to implement the position controller, the 
position error vector is determined as follows: 

x x
y y

′⎡ ⎤ ⎡ ⎤
= −⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦

e ,    (16) 

while the vectors [  y]  and [ '  y']T Tx x  are the desired 

  
Fig. 5. System step response of position control with 

different values of PID gains. 

 

Fig. 6.  Step response of orientation control for different 
values of PD gains. 

 
and the actual position of robot in the field, 
respectively. Thus, the position control output can 
be written as: 

m P I D
dK K dt K
dt

= + +∫
eV e e ,   (17) 

where Vm expresses the output vector of the position 
controller for the driving units whose components 
on each driving wheel ( miV ) are extracted from:  

T
mi m wiV = ⋅V D .   (18) 

For orientation control (using PD law), the 
orientation error can be calculated using the desired 
and current head angles of the robot, namely ∆  
andδ , respectively, as follows: 

∆e ∆ δ= − .    (19) 
The orientation controller output will be then: 

 ∆
P ∆ D

dew K e K
dt

= + .   (20) 

The voltage from the orientation controller output 
will then be added to the voltage obtained from the 
position control output.  Next, the final applicable 
voltages will be computed as: 

i iU v w= + .    (21) 
This voltage is applied to each motor to reach the 
desired point. Since the system sensitive parts such 
as electronic board, computer, batteries, etc., may be 
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damaged by rapid rotation of the robot, one needs to 
apply upper and lower cut-off thresholds for the 
orientation controller output. Practically, the 
threshold was set to be ± 10 v. The PID and PD 
gains were obtained from the two previous cases, 
and used as first estimation, leaving only fine-tuning 
to the scene. This was due to the robot working 
conditions such as friction, and gear boxes 
clearances and tolerances that were not available in 
advance and thus not considered in initial modeling. 
The proper coefficients were then fine-tuned 
experimentally during each competition. The results 
showed that for real cases, the maximum changes in 
the calculated values were bound to ±10% of the 
original gains values. Therefore, such simplification 
proved to provide good initial approximation, 
considerably simplifying final gains tuning.   
 
 
4 Position Feedback  
The position control method, described in the 
former sections, calls for some form of position 
feedback. The performance of this feedback 
depends on its reliability, accuracy and real-time 
computability. There have been plenty of algorithms 
and methods proposed by different researchers in 
the literature [5-12]. Among them self-localization 
by visual information and odometry approach are 
dominant due to their special characteristics which 
will be discussed in the following paragraphs. 
     In this work, a compound novel method was 
developed and optimized for RoboCup Middle Size 
League in which both visual and odometry 
information were used to ameliorate a real time, 
accurate and reliable method. Although optimized 
for soccer player robots, the self-localization 
method proposed here has enough modularity and 
flexibility to be applicable in many robotic 
applications involving self-localization. 
 Each of these complementary methods 
(vision/odometry self-localization) operates 
autonomously and has its own advantages and 
drawbacks in providing position feedback for robot 
control. For example, odometry method is known to 
have memory-based operation, accumulative error, 
low jitter, simplicity of implementation, cheap 
hardware, etc. On the other hand, vision-based self- 
localization algorithms often provide memory-less 
implementations (despite memory-based ones), no 
error accumulation, high jitter, relatively high 
computational complexity, and expensive hardware. 
Amalgamating these methods can present good 
performance in vast and diverse conditions. Each of 

these methods and their fusion are explained in the 
coming subsections.  
 
4.1. Vision-Based Self-Localization 
Vision module was designed with several goals in 
mind, including obtaining spatial information of 
ball, opponents, and teammates. Robot platforms 
were equipped with omni-directional cameras [6], 
with which the projection of the whole field area 
was available to the camera with a hyper-parabolic 
mirror (See [18] for more details and Fig. 1) with 
the following parabolic profile: 

13.233/7.1135/ 22 =− xy ,  (22) 
where x and y are given in mm. Since the omni-
directional mirror introduces a map with very high 
non-linearity between pixel separation in the scene 
and the real physical distance (of such pixels) in the 
field itself, it is not reliable enough to develop 
algorithms that use distances as their input data. 
Instead angles are preserved completely in a linear 
manner if the center of mirror and camera are 
aligned perfectly. Therefore, the algorithms with 
angles as their input data are more reliable and can 
perform more efficiently.  The proposed approach in 
vision-based self-localization is based on arcs. In 
basic geometry, there is a fact that having an angle 
of observation ω  to a fixed and spatially known 
object in a 2D plane, can provide one with possible 
loci of the observation points. Actually, the points 
are located on the circumference of two circles 
( 1 2,C C ). This simple idea is illustrated graphically in 
Fig. 7. 
The proposed algorithm here employs three 
different observation angles to constrain the unique 
position of observer (robot) in the field (assuming 
the ideal case with no visual noise). A good set of 
observation angles should have the following 
properties: (i) availability from different locations in 
the field; (ii) extractability from visual data with low 
computational effort; (iii) independency of the arcs 
resulting from these angles which means that the 
resulting arcs should leave no location ambiguity at 
any point in the filed; and (iv) lower sensitivity to 
visual noise with the increase of the angles 
magnitude.  
 
 

 
Fig. 7. Angle of observation ω  and the two related arcs. 
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 Since goals are fixed landmarks and at least one 
of them has reasonable observation angle within the 
whole field, their use for self-localization is popular 
in RoboCup Middle Size League [8]. An insightful 
examination through different combinations of 
possible observation angles for this purpose 
revealed that the following three angles are suitable 
regarding the above characteristics: 
(i) The observation angle from the robot itself to the 
nearest goal ( Goalα ). (ii) Angle between the center 
of the farthest goal and left side of the nearest one 
( Goalβ ).  (iii) Angle between the center of the 
farthest goal and right side of the nearest one 
( Goalγ ). These angles are depicted for an arbitrary 
location of a robot in Fig. 8.  Assume that the 
intersection points between Arc(j), and Arc(k) to be 
defined as: 

,j k
iP    

{ }
{1,1 ,2,2 ,3,3};
2

j,k j k
i 1,

′ ′ ′∈ ≠

∈
   (23) 

where the superscripts denote intersecting arcs and a 
subscript denotes the index of intersection. Note that 
the robot position is always at a point located on 
Arc(1).  

First, a list of intersection points pairs are 
prepared using (23). In order to find the exact 
location of the robot, the Euclidian distances of 
different pairs of intersections are computed and the 
one that has zero norm is selected as the answer. In 
other words, there is only one point that is located 
on the intersection of three arcs and this point is the 
real position of the robot in ideal case (i.e., with no 
noise).  

1, 1,
2, , ,

min i j
s ti j s t

P P−  , 2,2 ,3,3         
, 1,2,3,...

i j i j
s t

′ ′= ≠
=

 (24) 

Considering imperfections in visual information 
extraction, the intersection of Arc(1) with other two 
arcs may not coincide. In such a case, the set that 
yields the minimum Euclidean distance introduces 
the possible position of the robot. The final position 
is simply computed by averaging over the 
neighboring intersection points that satisfy the 
above criterion (Fig. 9).  
 
4.2. Sensitivity Analysis 
The performance of vision-based self-localization 
method, developed in this work, relies on accurate 
visual information obtained from the vision module 
by means of image processing techniques. Since 
goals are of two distinct colors in the play field 
(Yellow and Blue), the pixels representing them are 
distinguished by their position in RGB color space. 
Thus, the position and angle of observation are 
extracted with special region growing algorithms. 
As mentioned before, although the angles are 

preserved linearly in the omni-directional filed-of-
view projected by the hyperbolic mirror, there is 
always the possibility that some error would exist in 
the detection procedure.  The sensitivity analysis of 
vision-based self-localization method reveals the 
regions in which the method is most sensitive to 
visual noise. The sensitivity of some performance 
characteristic y regarding parameter xi, is defined as 
the measure of its change y∆ , resulting from a 
change ix∆  in the parameter xi. Suppose:  

),...,,( 21 nxxxyy =     (25) 
The variation of y is defined as: 

1 1 i

n n yi i i
x

i ii i i

x y dx dxdy y y S
y x x x= =

⎡ ⎤∂
= =⎢ ⎥∂⎣ ⎦

∑ ∑ ,   (26) 

where
i

y
xS denotes the sensitivity of y with respect to 

parameter xi , and is computed as: 

i

iy
x x

y
y
x

S
i ∂

∂
= .    (27) 

Applying the above analysis on the proposed self-
localization method showed that in certain areas 
near the corner posts, the accuracy and reliability of 
the method degraded drastically (Fig. 10).  
Therefore, the proposed algorithm may be prone to 
severe errors in those regions. Since there are flags 

 
Fig. 8.  Angles observed by the robot. 

 

Fig. 9. The arcs and possible intersections. 
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in the corner posts (providing good visibility and 
detectibly in that region), these landmarks are 
proper candidates for self-localization in those 
regions.  
 
4.3. Localization Using Flags 
For achieving better performance in the regions in 
which the sensitivity of the vision-based self-
localization method is high, flags are used instead of 
goals to determine the position of robot. The 
procedure can be summarized as follows.  
- By using visual data of goals and previous location 
of robot from its memory, the location of robot is 
roughly determined as Front-Left, Front-Right, 
Back-Left, Back-Right, where Front and Back show 
opponent and own side fields respectively.  
- The nearest flag is then detected and the distance 
of robot to the flag base is approximated by a non-
linear map constructed experimentally.  
- Since the exact position of flag                                  
( [ , ]T

FLAG FLAGX Y ) is known and the relative position 
of robot with respect to the flag is also available (R), 
then calculating the final robot position (Fig. 11) is a 
trivial task, i.e.:  

cos
sin

FLAG

FLAG

Xx R
Yy R

ϕ
ϕ

⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
.   (28) 

Since the method of localization changes in those 
regions, and in order to avoid potential hystersis and 
confusion between the two presented methods, a 
hystersis strip (the grey area between two arcs near 
the flag in Fig. 11) is defined. Therefore, once a 
robot crosses the inner ring, the method is switched 
to use flags, until the robot moves out of the outer 
ring in the hystersis strip.  
 
4.4. Self-Localization Using Odometry 
As it can be seen in Fig. 3, three free rotating omni-
directional wheels are placed 60 degrees apart from 
the main driving wheels. These wheels are only 
passive, attached to three independent shaft 
encoders, and have the role of odometry wheels. 
The shaft encoders data could be used to extract  
 
 
 
 
 

 
 
 
 
 
Fig. 10. Sensitivity of vision-based self-localization 

method at different points. 

 

 
Fig. 11. The schematic view of the robot and flag near the 

corners (the grey strip is where the hystersis occurs). 
 
pose of the robot [18] as follows  

[

]

1

2 3

1 (cos( ) cos( ))
3 33sin( )

3

( cos( ) cos( )) (cos( ) cos( )) ,
3 3

x r

dt

π πθ θ ϕπ

π πθ θ ϕ θ θ ϕ

= + − − +

− − + + + −

∫

]

1 (sin( ) sin( )) 13 33sin( )
3

                            (sin( ) sin( )) ,33

y r

dt

π πθ θ ϕπ

πθ θ ϕ

⎡= − − + +⎢⎣

− −

∫
 

1 2 3

3
θ r dt

L
ϕ ϕ ϕ+ +

= ∫ ,     (29) 

where [ ]Tyx θ  is a vector containing the 
position and orientation of the robot. Further 
simplification of the third equation in (29) results in: 

1 2 3 1 2 3dt dt dt ( ).
3L 3L
r rθ ϕ ϕ ϕ ϕ ϕ ϕ= + + = + +⎡ ⎤⎣ ⎦∫ ∫ ∫  (30) 

 
4.5. Fused Position Estimator 
In order to obtain the final position estimation for 
the robot, both visual and odometry outputs must be 
fused in an appropriate fashion that would take 
advantage of each method to make flaws from the 
other one ineffective. For example, due to the 
inherent nature of vision-based self-localization, 
there is undesired jitter at its output, but, in return, 
odometry self-localization has smooth changes that 
can be used as a low-pass filter for vision-based 
self-localization results. Having this in mind, the 
following procedure is proposed for estimating the 
final position:    
Step 1: Vision-based self-localization is used to 
estimate the current position of the robot based on 
visual information from the current frame. 
Step 2: The last computed position is utilized by 
odometry and the new position is determined 
through (28). 
Step 3: The position of robot is then computed as a 
weighted average of odometry and vision-based 
self-localization as: 

(1 )Odometry VisionP P Pη η= + − ,   (31) 
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where η  represents a fusion parameter that was 
determined experimentally to be 0.9 for this 
application. Use of η  coefficient resulted in 
smoothing the variation (due to jitter in vision-based 
self-localization) of the final position estimation. 
The coefficient in (31) was obtained by conducting 
experiments on different robot positions. 
Step 4: The initial position for odometry in step 2 is 
then set to the computed robot position in step 3 and 
the calculation continues for the next frame.   

Since the outputs of both odometry and vision-
based self-localization are prone to errors, and due 
to inherent random nature of these errors, a 2D 
AWGN is added to the output of a perfect self-
localization block in the feedback path, as shown in 
Fig. 4. The noise can be formulated as:  

2 2

2 2
1( , ) exp( ( ))

2 2 2g
x y x y

x yn x y
πσ σ σ σ

= − + ,  (32) 

where xσ  and yσ  are noise standard deviations in X 

and Y directions, respectively. These values are then 
added to the position obtained from the self-
localization module, (x0, y0), to obtain the 
probabilistic location of the robot, i.e., (x, y) as:  

2 2
0 0
2 2

1 ( ) ( )( , ) exp( ( ))
2 2 2x y x y

x x y yP x y
πσ σ σ σ

− −
= − + . (33) 

 
 

5 Experiments 
In order to evaluate the performance of the proposed 
position controller and self-localization error, four 
experiments were designed. First, a PID position 
control was applied. The robot was tracked on a 
straight line of 1 m length near the center of the 
field with no rotation. Second, the PD orientation 
control was employed with just rotation about the Z-
axis of the robot. Third, the robot was programmed 
to follow a sinusoidal curve (“A” in Fig. 12.a) with 
the wave-length of 5 m and amplitude of 3.5 m near 
the center of the field. Finally, the robot pursued 
two sinusoidal curves similar to curve A, but far 
from the center of the field (“B” and “C” in Fig. 
12.a). 

In the first experiment, the PID constants were 
set as those calculated in section 3.1.  The maximum 
deviation from the straight-line tracking and the 
final position error were measured to be 8 cm and 4 
cm, respectively (Fig. 12.b). In the second 
experiment, again the PD controller parameters 
were set to the calculated values for orientation 
control (in section 3.2). The maximum error from 
the set point angle was 0.03π radians. These two 
experiments showed that the final error for both 
tracking and pure rotation were in an acceptable 

range and the PID/PD controller parameters were 
selected properly. 
 In the third experiment, the robot had to track the 
sinusoidal curve (“A” in Fig. 12) while rotating 
about its Z-axis. The measured errors were between 
10 cm and 12 cm, and occurred at points 4, 10, 13, 
and 17 in curve “A” (Fig. 13).   The maximum 
deviation was measured to be around 12 cm that 
occurred in point 4. In the last experiment, the 
curves were located near the edges of the field (“B”, 
“C” in Fig. 12). The maximum deviation between 
the real and desirable path was measured to be 
around 23 cm that is less than 7% for this case 
study.  
 
 
6 Conclusion 
 In soccer playing robotic competitions, control and 
self-localization of robots need to be simple, time-
efficient, and reliable. Obtaining a transfer function 
for an omni-directional system is very complicated 
and also requires tuning by a trail-and-error 
procedure that may take long time in practice.  In 
this study, PID and PD controllers were used for 
position and orientation controls, respectively. 
Therefore a simplified model of an omni-directional 
robotic system was developed for tuning the PID 
and PD coefficients of the robots’ position and 
orientation control, respectively. Then, the 
controller parameters were set using a simplified 
model by taking into account the effect of noise. 
The adopted strategy proved its effectiveness in 
robotic competitions.  

In order to reduce positioning error, a hybrid 
self-localization method with fused odometry and 
vision-based localization was proposed. Using the 
geometrical properties of circles, the exact position 
of the robot in the field was determined. Next, a 
sensitivity analysis was conducted to determine the 
inaccurate points in the field. For those points, the 
flags were used as landmarks in the corners to 
overcome such difficulty. The resultant techniques 
were developed and tested on the real field. The test 
results showed that typical asymmetric errors for 
omni-directional mobile robots were reduced 
drastically on those areas. The improvement of 
performance was more than 80% in position and 
orientation in comparison with the case of using 
only the purely odometric localization. 
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