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Abstract: - Future hard disk storage systems will store information at a density of 10 Tbit/in2. The development and 
design of high density storage technologies requires the detailed simulation of the magnetization processes. We 
combine a hybrid finite element/boundary element method with matrix compression techniques and fast Poisson 
solvers, in order to simulation the writing process on a magnetic hard disks.  
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1   Introduction 
The design and optimization of ultra high density 
storage technologies requires a precise understanding of 
the dynamics of magnetization reversal in hard disk 
systems. These include the magnetic storage layer itself, 
the magnetic write head with current carrying coils, and 
any additional magnetic layers, like the soft magnetic 
underlayer (SUL) that enhances the writeability. In 
addition to the write process that needs a careful design 
of all interaction parts, the thermal stability becomes a 
main issues in future magnetic recording. A route to 
optimize and improve hard disk systems is 
micromagnetic simulation. Micromagnetism [1] is a 
continuum theory that describes the dynamics of the 
magnetization. By solving an equation of motion for the 
magnetization vector the magnetic state of a material can 
be predicted as function of space and time. The main 
challenge for the numerical solution is the huge change 
in characteristic length scales of the systems involved 
ranging from sub-nanometers to several micrometers. 
Current roadmaps in magnetic data storage aim for a 
storage density of 10 Tbit/in2. This will require magnetic 
islands of 6 nm x 6 nm with a non-magnetic spacer 
between the islands of 2 nm. Each island itself will be 
composed of multiple magnetic layers with a thickness 
of 2 nm or less. The writer dimensions including the coil 
exceed easily 10 micrometers.  The design of recording 
devices requires the span a length scale of more than 

four orders of magnitude as the interaction between all 
parts (storage layers, soft underlayer, write head, shields, 
and coil) has to be taken into account. We developed a 
finite element / boundary element method in order to 
span length scales over four orders of magnitude as 
required for this type of simulations.   
     This paper is organized as follows. We first give an 
introduction into the current state of the art of magnetic 
hard disk storage in section 2. In section 3 we present 
the governing equations that have to be solved. Section 4 
deals with the set of numerical methods that are 
combined to effectively simulate the write process and 
the thermal stability of future hard disk systems. We 
apply a finite element method for space discretization, a 
fast boundary method to treat the magnetic interaction 
between moving parts, and a fast Poisson solver to 
evaluate the magnetostatic fields. Section 5 presents 
numerical results for recording on bit patterned media.  
 
 
2   Recording technologies 
Current hard disk technology uses perpendicular 
magnetic recording media. Data is stored using granular 
magnetic thin films with the magnetically easy axis 
perpendicular to the film plane. With the last two years, 
the transition from longitudinal magnetic recording to 
perpendicular magnetic recording took place. All major 
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    Some of the magnetic layers in magnetic recording 
system such as the soft underlayer are artificial 
antiferromagnets. Two ferromagnetic layers are 
separated by a very thin (0.8 nm) Ru layer that 
introduces an antiferromagnetic coupling between the 
two ferromagnets. This trick proved to be efficient in 
order to avoid spurious magnetic fields caused by 
moving magnetic domain walls. We use special finite 
elements that were originally developed to model thin 
air gaps in magnetostatic field calculations [6], in order 
to treat such thin layers. These shell elements are 
triangular prism element with no volume. The 
integration along the direction perpendicular to the thin 
layer is performed analytically before the system 
matrices are built. 
 
 
4.2 Interactions – magnetic field computation 
In order to simulate the recording process we have to 
treat the motion of the writer over the magnetic storage 
layer. A common approach to include moving parts into 
electromagnetic finite element simulations is the use of 
sliding grids and Mortar elements [7]. An alternative 
approach is the use of the use hybrid finite element / 
boundary element (FEM/BEM) techniques [8]. For 
magnetic recording simulations FEM/BEM methods 
have the advantage that no mesh is needed between the 
different magnetic parts, and the magnetization 
dynamics can be calculated in the rest frame of each 
part. 
     Further, the FEM/BEM method effectively treats the 
open boundary problem, since it takes the boundary 
condition u = 0 at infinity into account. For the solution 
of equation (4) with the hybrid FEM/BEM method one 
Poisson equation with Neumann boundary conditions 
and one Laplace equation with Dirichlet boundary 
conditions have to be solved. To obtain the boundary 
conditions a matrix vector product has to be performed. 
We split the total magnetic potential u into two parts, u 
= u1 + u2. The potential u1 solves the Poisson equation 
(4) inside the magnetic particles with Neumann 
boundary conditions at the surface of the magnets and it 
is zero outside the magnets. The potential u2 solves the 
Laplace equation everywhere in space and shows a jump 
at the surfaces of the magnets. The potential u2 is the 
potential from a magnetic dipole sheet at the surfaces of 
the magnet and can be computed by a surface integral 
over the boundary. After discretization the integral 
operator may be expressed as a matrix vector product 

       (7) 

Here u1 and u2 are vectors that collect the potential 
values at the surface nodes of the finite element grid. 
The storage requirement for the matrix B is the 

bottleneck of the method since is a fully populated 
matrix. The storage requirements and computational 
costs are of O(M2), where M is the number of boundary 
nodes.  Especially for magnetic thin films the method 
loses efficiency since most of the nodes are located at 
the boundary.  
 
4.2.1 Clusters 
The idea of clustering the surface nodes of the surface 
mesh allows the storage of the boundary matrix in 
compressed form. The compressed matrix is sparse in a 
sense that only few data are needed for its 
representation. The matrix–vector multiplication is of 
almost linear complexity [9]. Originally, the 
discretization of the boundary integral leads to a large 
dense matrix that has no explicit structure. However, by 
suitable renumbering and permuting the boundary 
nodes, the dense matrix can be written in a block 
structure so that each block describes the interaction 
between two clusters of boundary nodes. If the two 
clusters are far apart the corresponding block matrix can 
be approximated by low rank matrices. The 
corresponding two clusters are called admissible. If the 
n×m matrix D is a block matrix that describes the 
interaction of two admissible clusters it can be 
approximated  

     

(8) 

by the product of two smaller matrices with the 
dimensions n×k and k×m. For admissible clusters k will 
be much smaller than n and much smaller than m. 
Therefore both, the storage for the block matrix and 
CPU time evaluating the product of the block matrix 
vector with a vector is only O(k(n+m)) instead of O(nm). 
     The renumbering of the nodes is done by geometric 
criteria. Consecutive boundary node numbers will be 
assigned to nodes located close to each other. These 
nodes are combined in a cluster. Each cluster pair 
corresponds to a block in the renumbered boundary 
matrix. Two admissible clusters appear as a large off-
diagonal block matrix can be approximated by a product 
of two smaller matrices. The off-diagonal blocks 
represent the far field interactions between nodes. Fig. 4 
gives an example for the panel clustering and the block 
structure for a set of 10 nodes. The cluster with the 
nodes (8,9,10) and the cluster with the node (1,2,3,4,5) 
form a pair of admissible clusters. The corresponding 
block matrix appears in the lower left corner of the 
boundary matrix.  
     There is no need to compute the full matrix in order 
to evaluate the matrix vector product (7). First, the 
boundary nodes are renumbered and arranged into a 
cluster tree. Then, the low rank approximation of the 
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