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Finite element /boundary element simulation of future hard disk recording
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Abstract: - Future hard disk storage systems will store information at a density of 10 Thit/in>. The development and
design of high density storage technologies requires the detailed simulation of the magnetization processes. We
combine a hybrid finite element/boundary element method with matrix compression techniques and fast Poisson
solvers, in order to simulation the writing process on a magnetic hard disks.
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1 Introduction

The design and optimization of ultra high density
storage technologies requires a precise understanding of
the dynamics of magnetization reversal in hard disk
systems. These include the magnetic storage layer itself,
the magnetic write head with current carrying coils, and
any additional magnetic layers, like the soft magnetic
underlayer (SUL) that enhances the writeability. In
addition to the write process that needs a careful design
of all interaction parts, the thermal stability becomes a
main issues in future magnetic recording. A route to
optimize and improve hard disk systems is
micromagnetic simulation. Micromagnetism [1] is a
continuum theory that describes the dynamics of the
magnetization. By solving an equation of motion for the
magnetization vector the magnetic state of a material can
be predicted as function of space and time. The main
challenge for the numerical solution is the huge change
in characteristic length scales of the systems involved
ranging from sub-nanometers to several micrometers.
Current roadmaps in magnetic data storage aim for a
storage density of 10 Thit/in?. This will require magnetic
islands of 6 nm x 6 nm with a non-magnetic spacer
between the islands of 2 nm. Each island itself will be
composed of multiple magnetic layers with a thickness
of 2 nm or less. The writer dimensions including the coil
exceed easily 10 micrometers. The design of recording
devices requires the span a length scale of more than
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four orders of magnitude as the interaction between all
parts (storage layers, soft underlayer, write head, shields,
and coil) has to be taken into account. We developed a
finite element / boundary element method in order to
span length scales over four orders of magnitude as
required for this type of simulations.

This paper is organized as follows. We first give an
introduction into the current state of the art of magnetic
hard disk storage in section 2. In section 3 we present
the governing equations that have to be solved. Section 4
deals with the set of numerical methods that are
combined to effectively simulate the write process and
the thermal stability of future hard disk systems. We
apply a finite element method for space discretization, a
fast boundary method to treat the magnetic interaction
between moving parts, and a fast Poisson solver to
evaluate the magnetostatic fields. Section 5 presents
numerical results for recording on bit patterned media.

2 Recording technologies

Current hard disk technology uses perpendicular
magnetic recording media. Data is stored using granular
magnetic thin films with the magnetically easy axis
perpendicular to the film plane. With the last two years,
the transition from longitudinal magnetic recording to
perpendicular magnetic recording took place. All major
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recording companies are now shipping products based
on perpendicular magnetic recording.
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Fig 1. Transition from longitudinal to perpendicular
recording. In perpendicular recording information is
stored using magnetic moments pointing perpendicular
to the thin film. One major advantage of perpendicular
recording is the possibility to use higher write fields
which results in a gain of in thermal stability and
consequently area density.

A major limit in conventional magnetic recording
technology is given by the superparamagnetic effect.
When the magnetic storage unit becomes too small the
magnetization will lose its preferred direction due to
thermal fluctuations. In order to achieve a high signal to
noise ratio on bit of a magnetic recording medium is
made of several storage units (grains). By making the bit
size smaller the grain size has to decrease as well, in
order to keep a sufficient number of grains per bit. In
order to avoid thermal decay of the information, the
magnetocrystalline anisotropy of the material has to be
increased. A high magneto-crystalline anisotropy keeps
the magnetization stable against thermal fluctuations but
also increases the magnetic field required to reverse the
magnetization. This effect provides the ultimate limit for
storage density in conventional perpendicular recording.
At some stage, the field produced by the write head is
just too small to switch the grains and write information
onto the disk. By placing the media effectively into the
air gap of the writer (write pole, yoke, soft under layer,
and return pole) a higher write field can be achieved in
perpendicular magnetic recording as compared to
longitudinal recording which can make only use of the
fringing fields of the writer (see Fig 1). The higher write
field is one of the main advantages of perpendicular
recording. It is now possible to shrink the grains while
keeping a high thermal stability by increasing the
magnetocrystalline anisotropy. The interplay between
signal to noise, thermal stability, and writeability is
usually referred to as recording trilemma [2].
Conventional perpendicular magnetic recording is
believed to reach recording densities in the range of 500
Gbit/in? to 600 Gbit/in* [3]. At 500 Ghit/in* one bit
covers an area of about 17 nm x 75 nm. One bit is made
out of an ensemble of grains with a diameter in the range
of 6 nm to 8 nm. At 500 Gbhit/in? one bit is made of
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about 30 grains with their magnetization point in the
same direction, either up or down. Recent Lab
demonstrations come close to the limit of conventional
perpendicular recording. In October 2007, Western
Digital announced an area density of 520 Gbit/in? [4].
One way to overcome the recording is so-called bit
patterned media. The key idea of bit patterned recording
is to increase the volume of a magnetic storage unit and
thus make it thermally more stable. This increases the
product of the magnetic anisotropy energy (anisotropy
energy density multiplied by volume) of the magnetic
entity and thus enhances the thermal stability. Increasing
the grain size in granular thin film media to increase the
volume of magnetic entity in granular thin film
recording media would increase the noise and broaden
the transition width between bits. If the bit boundary is
broad the bits cannot put closely together leading to
transition jitter. In bit patterned media the bit boundary
is defined by patterning. The magnetic entities are
physically separated and the transition jitter is reduced.

3 Micromagnetic equations

A magnetic material can be characterized by the spatial
distribution of its magnetic polarization vector. The
equilibrium configuration of the magnetic polarization
can be directly computed by minimizing the total
magnetic Gibb’s free energy. The total Gibb’s free
energy is the sum of the exchange energy, the magneto-
crystalline anisotropy energy, the magnetostatic energy,
and the Zeeman energy:

3
1
E = [| A3 (VB + /D) =30 Hy=T Hy|dV .

i=1

(1)

where J = (B1,B2,B3)Js denotes the magnetic polarization.
A is the exchange constant and f, is the energy density
associated with the uniaxial magnetocrystalline
anisotropy of grains in the magnetic storage layer. Hy
and Hey denote the demagnetizing and the external field,
respectively. The minimization of (1) with respect to J,
subject to the constraint |J| = Js, provides an equilibrium
state of the ferromagnetic structure. However, in
magnetic recording we are also interested in the time
evolution of the magnetic polarization. Here the external
field is a function of time Heyx = Hex(t) and is generated
by a current pulse through the coil of the magnetic write
head.
The Gilbert equation of motion
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gives the dynamic response of the magnetization due to
a change of the driving field Hey. The effective field Heg
is the negative variational derivative of the magnetic
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Gibb’s free energy density. Hy, is a random, thermal
field that mimics the effect of thermal fluctuations at
non-zero temperature assuming white noise. The thermal
field has zero mean and is uncorrelated in time and
space.

The external field is the magnetic field created by a
given current distribution. Examples are the current
through the driving coil of the write head or the current
through the sensing element of a read head. It can be
calculated by Bio-Savart’s law

’
1—r3th

Ir-r’

where the integral is over the conductor with a current
density j. The numerical evaluation of (3) for the
calculation of the field created from current coils uses
matrix compression techniques that will be discussed in
later in section 4.

The demagnetizing field Hg, which is also called
magnetostatic interaction field, follows from a magnetic
scalar potential u

VJ

Au = — and H;
Ho

l ¢,
Hoy(r) =[x )

—Vu

(4)

The right hand side of equation (4) is zero for any point
outside the magnetic materials. Equation (4) is an open
boundary problem [5]. There is no boundary conditions
that gives the potential at the surface of the magnet. For
the unique solution of (4) one need to apply the
condition that u approaches zero at infinity. We use a
hybrid finite element / boundary element method to
solve (4) whereby significant speed up and memory
reduction is obtained using matrix compression.

4 Numerical methods

Fig. 2 illustrates the multiscale nature of magnetic
recording simulations. The length scales span several
orders of magnitude. In addition we have to treat moving
parts as the head is flying over the data layer during
magnetic recording.

We use an object oriented approach to represent the
different real world objects and their interactions. The
basic objects of the simulation software are shown in
Fig. 3. The interaction objects take care of the mutual
interactions between the models. Magnets and
conductors are generalized as model. Each model has its
locally changing material properties (grains), a finite
element mesh, magnetic moments, and effective fields.
For fast computation of the interaction fields the mesh
points are divided into clusters. The field box is used for
field evaluation using a fast Poisson solver.
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Fig 2. Multiscale simulation of high density magnetic
recording systems. The characteristic length scale ranges
from more than 10 nm in coils to 1 nm size features in
the data layer.
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Fig. 3. Objects in magnetic recording simulations.

4.1 Models — space discretization

Each part of the recording system (coil, yoke and pole
tip of the write head, data layer, and soft underlayer) is
treated as a model. In order to represent the
magnetization distribution within a magnetic model, we
mesh the model using a tetrahedral mesh. Within a
tetrahedron the Cartesian components of J are
interpolated with linear basis functions. Each node point
holds a magnetic moment vector m; = JVi/ue and an
effective field vector Hei. Here g is the permeability of
vacuum. The effective field Hes at the nodal points of
the finite element mesh is calculated within the
framework of the box method. At the nodal point i of the
finite element mesh is approximated by [6]

1 BE,
V.oJ

H eff,i (5)

where V; is the volume of a “box” surrounding the nodal
point i. The box volumes are mutually exclusive so that
the following equation holds

sz = JV and VT-F\VJ- = 0 tori#j.
J

Similarly the coil is meshed into tetrahedral elements.
Here the current density j is defined at the nodes of the
mesh.

(6)
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Some of the magnetic layers in magnetic recording
system such as the soft underlayer are artificial
antiferromagnets. Two ferromagnetic layers are
separated by a very thin (0.8 nm) Ru layer that
introduces an antiferromagnetic coupling between the
two ferromagnets. This trick proved to be efficient in
order to avoid spurious magnetic fields caused by
moving magnetic domain walls. We use special finite
elements that were originally developed to model thin
air gaps in magnetostatic field calculations [6], in order
to treat such thin layers. These shell elements are
triangular prism element with no volume. The
integration along the direction perpendicular to the thin
layer is performed analytically before the system
matrices are built.

4.2 Interactions — magnetic field computation

In order to simulate the recording process we have to
treat the motion of the writer over the magnetic storage
layer. A common approach to include moving parts into
electromagnetic finite element simulations is the use of
sliding grids and Mortar elements [7]. An alternative
approach is the use of the use hybrid finite element /
boundary element (FEM/BEM) techniques [8]. For
magnetic recording simulations FEM/BEM methods
have the advantage that no mesh is needed between the
different magnetic parts, and the magnetization
dynamics can be calculated in the rest frame of each
part.

Further, the FEM/BEM method effectively treats the
open boundary problem, since it takes the boundary
condition u = 0 at infinity into account. For the solution
of equation (4) with the hybrid FEM/BEM method one
Poisson equation with Neumann boundary conditions
and one Laplace equation with Dirichlet boundary
conditions have to be solved. To obtain the boundary
conditions a matrix vector product has to be performed.
We split the total magnetic potential u into two parts, u
= U; + Uy. The potential u; solves the Poisson equation
(4) inside the magnetic particles with Neumann
boundary conditions at the surface of the magnets and it
is zero outside the magnets. The potential u, solves the
Laplace equation everywhere in space and shows a jump
at the surfaces of the magnets. The potential u, is the
potential from a magnetic dipole sheet at the surfaces of
the magnet and can be computed by a surface integral
over the boundary. After discretization the integral
operator may be expressed as a matrix vector product

(")

Here u; and u, are vectors that collect the potential
values at the surface nodes of the finite element grid.
The storage requirement for the matrix B is the

uy, = Bu,
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bottleneck of the method since is a fully populated
matrix. The storage requirements and computational
costs are of O(M?), where M is the number of boundary
nodes. Especially for magnetic thin films the method
loses efficiency since most of the nodes are located at
the boundary.

4.2.1 Clusters

The idea of clustering the surface nodes of the surface
mesh allows the storage of the boundary matrix in
compressed form. The compressed matrix is sparse in a
sense that only few data are needed for its
representation. The matrix—vector multiplication is of
almost linear complexity [9]. Originally, the
discretization of the boundary integral leads to a large
dense matrix that has no explicit structure. However, by
suitable renumbering and permuting the boundary
nodes, the dense matrix can be written in a block
structure so that each block describes the interaction
between two clusters of boundary nodes. If the two
clusters are far apart the corresponding block matrix can
be approximated by low rank matrices. The
corresponding two clusters are called admissible. If the
nxm matrix D is a block matrix that describes the

interaction of two admissible clusters it can be
approximated
i

Dmn - ZEm'Ffm (8)

i=1
by the product of two smaller matrices with the
dimensions nxk and kxm. For admissible clusters k will
be much smaller than n and much smaller than m.
Therefore both, the storage for the block matrix and
CPU time evaluating the product of the block matrix
vector with a vector is only O(k(n+m)) instead of O(nm).

The renumbering of the nodes is done by geometric
criteria. Consecutive boundary node numbers will be
assigned to nodes located close to each other. These
nodes are combined in a cluster. Each cluster pair
corresponds to a block in the renumbered boundary
matrix. Two admissible clusters appear as a large off-
diagonal block matrix can be approximated by a product
of two smaller matrices. The off-diagonal blocks
represent the far field interactions between nodes. Fig. 4
gives an example for the panel clustering and the block
structure for a set of 10 nodes. The cluster with the
nodes (8,9,10) and the cluster with the node (1,2,3,4,5)
form a pair of admissible clusters. The corresponding
block matrix appears in the lower left corner of the
boundary matrix.

There is no need to compute the full matrix in order
to evaluate the matrix vector product (7). First, the
boundary nodes are renumbered and arranged into a
cluster tree. Then, the low rank approximation of the
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off-diagonal block matrices can be computed using
adaptive cross approximation [10]. This iterative
algorithm computes factorization (8) of the block matrix
into two smaller matrices with a complexity of
O(k*(n+m)).

12345678910
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+

Approximate blocks
of the full matrix

m
n

group and
renumber nodes

Fig. 4. Fast boundary element method used for the
calculation of magnetostatic interactions. Left hand side:
The nodes are renumbered and grouped together so that
nodes with consecutive numbers are located next to each
other and form a cluster. Right hand side: Corresponding
block structure of the interaction matrix. The large off-
diagonal blocks can be approximated by low rank
matrices. After [10].

4.2.2 Fieldboxes and moving parts

Equation (7) also treats the interactions between distinct
magnetic parts. This leads to the complication that the
interaction matrix has to be re-evaluated at each time
step. Despite the gain in CPU time owing to matrix
compress the repeated computation of the interaction
matrix is too costly for recording simulations. In order to
avoid this problem we use the properties of the magnetic
scalar potential. For example, the scalar potential
produced by the head magnetization follows from a
surface integral over the surface of the head. Instead of
evaluating the potential directly on the nodes of the
storage layer, we evaluate the potential at the surface of
a field box that encloses the storage layer. Then a fast
Poisson solver is used to compute the potential from the
head within the field box at high spatial resolution.
Numerical derivation gives the magnetostatic field on
the field box grid. Finally, the magnetostatic interation
field in the storage layer is computed by interpolation
from the regular grid of the box onto the finite element
mesh of the storage layer.

Again, we use matrix compression techniques to
reduce the size of the interaction matrix, which relates
the surface nodes of the head with the surface nodes of
the field box. The idea of clustering the surface nodes of
the surface mesh allows the storage of the boundary
matrix in compressed form.

ISBN: 978-960-6766-67-1

434

4.3 Time integration

The space discretization described above leads to a
system of ordinary differential equations (ODEs). The
ODEs describe the dynamics of the magnetic moments
at the nodes of the finite element mesh. Owing to
ferromagnetic  exchange that strongly couples
neighboring magnetic moments and favors their parallel
orientation the ODEs are stiff. Therefore we use a
backward differentiation scheme [11]. It is essential to
apply a proper preconditioner. We provide an
approximate Jacobian matrix that contains all the short-
range interactions (ferromagnetic exchange interactions,
magnetocrystalline anisotropy, external field) but
neglects the long-range magnetostatic interactions. This
method speeds up the time integration by orders of
magnitude [12].

5 Results

One serious problem in bit patterned magnetic recording
is write synchronization. The write field has to hit the
magnetic island at exactly the right time. If the write
field switches to early or to late the target island will be
missed and no bit is written. Schabes [13] introduced the
concept of addressability for bit patterned recording.
Switching of a given island is possible within a certain
write margin. Magnetostatic interactions amongst the
islands create additional fields acting on the target island
during writing. As a consequence the write margin will
depend on the magnetic state.

' Soft underlayer
Fig. 5. Write head and magnetic elements for bit

patterned recording. The image shows a blow-up of the
region below the pole tip of the head.

We compute the write margins for a given random
magnetization configuration in patterned media with a
storage density of 2 Thit/in?. The media design follows
that proposed by Richter and co-workers [14]. The
islands were of ellipsoidal shape with a length of 30 nm
and a width of 7.5 nm. The center to center spacing was
8.98 nm. The switching field of the island is around 1 T
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with a minimum at a field angle of about 40 degree. The
island thickness was 3 nm, the air bearing surface (ABS)
to media spacing was 3 nm and the ABS to soft
underlayer (SUL) spacing was 8 nm. Recording
simulations were performed using a standard single pole
head with trailing shield. We calculated the maximum
write margins including  magnetostatic  effects
(interactions between the dots and head-media-head
interactions). The multiscale nature of the simulation
project becomes clear by looking at the writer and the
patterned elements simultaneously (Fig. 5).

To compute the write margins we were running the
simulations several times with different initial positions
of the head. To avoid any effects from the head
dynamics we first computed the remanent state of the
head, then cycled the head several times and finally
performed the recording simulations. With a data rate of
2 bits per nanosecond the head velocity used in the
simulations was 17.96 m/s. From the results we
conclude that the non-uniform magnetization reversal of
the dots and the magnetostatic interactions between the
dots narrow the write margin. Most of the dots are multi-
domain for an extended time period before they reach
their final magnetic state (up or down). Fig. 6 shows the
successful writing of bits in the center track in an array
of 3 x 12 magnetic islands. The write margin was found
to be 1.75 £ 0.25 nm. This corresponds to 19 percent of
the center to center spacing of the dots. Moving the head
out of phase by more than 1.75 nm leads to bit errors.
Bit errors especially are found for bits where the stray
field from the neighboring track is high.
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Fig. 6. Successful writing on bit patterned magnetic
recording media. Magnetization reversal of the island
occurs by the nucleation of a reversed domain and
successive domain wall motion. The shaded area denotes
the position of the pole tip of head.

6 Conclusion

We presented numerical methods for magnetic recording
simulations. The mutual interaction between moving
parts is efficiently treated using a hybrid finite / element
boundary method. The adaptive cross approximation
scheme is used to compress the interaction matrices.
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