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Abstract: We improve the visual assessment of tendency (VAT) technique, which, developed by J.C.
Bezdek, R.J. Hathaway and J.M. Huband, uses a visual approach to find the number of clusters in
data. Instead of using square gray level images of dissimilarity matrices as in VAT, we further process
the matrices and produce the tendency curves. Possible cluster structure will be shown as peak-valley
patterns on the curves, which can be caught not only by human eyes but also by the computer. Our
numerical experiments showed that the computer can catch cluster structures from the tendency curves
even in cases where the visual outputs of VAT are virtually useless.
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1 Introduction

In clustering one partitions a set of objects O =
{o1, o2, . . . , on} into c self-similar subsets (clus-
ters) based on available data and some well-
defined measure of similarity. But before using
a clustering method one has to decide whether
there are meaningful clusters, and if so, how many
are there. This is because all clustering algo-
rithms will find any number (up to n) of clusters,
even if no meaningful clusters exist. The pro-
cess of choosing the number of clusters is called
the assessing of clustering tendency. We refer
the reader to Tukey [1] and Cleveland [2] for vi-
sual approaches in various data analysis prob-
lems, and to Jain and Dubes [3] and Everitt [4]
for formal (statistics-based) and informal tech-
niques for cluster tendency assessment. Recently
the research on the visual assessment of tendency
(VAT) technique has been quite active; see the
original VAT paper by Bezdek and Hathaway
[5], also see Bezdek, Hathaway and Huband [6],
Hathaway, Bezdek and Huband [7], and Huband,
Bezdek and Hathaway [8, 9].

The VAT algorithms apply on relational data,
in which each pair of objects in O is represented
by a relationship. Most of the time, the relation-
ship between oi and oj is given by their dissim-
ilarity Rij (a distance or some other measure).
These n2 data items form a symmetric matrix
R = [Rij ]n×n. If the data is given as a set
X = {x1, x2, . . . , xn} ⊂ IRs, called object data,
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Figure 1: A data set X ordered by VAT

then Rij can be computed as the distance between
xi and xj measured by some norm or metric in IRs.
In this paper if the data is given as object data X,
we will use as Rij the square root of the Euclidean
norm of xi − xj , that is, Rij =

√
‖xi − xj‖2. The

VAT algorithms reorder (through indexing) the
points so that points that are close to one an-
other in the feature space will generally have sim-
ilar indices. Their numeric output is an ordered
dissimilarity matrix (ODM). We will still use the
letter R for the ODM. It will not cause confusion
since this is the only information on the data we
are going to use. The ODM satisfies

0 ≤ Rij ≤ 1, Rij = Rji and Rii = 0.

The largest element of R is 1 because the algo-
rithms scale the elements of R.

The ODM is displayed as ordered dissimilarity
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Figure 2: Dissimilarity image before reordering X

Figure 3: ODI using the order in Fig 1.

image (ODI), which is the visual output of VAT.
In ODI the gray level of pixel (i, j) is proportional
to the value of Rij : pure black if Rij = 0 and
pure while if Rij = 1. The idea of VAT is shown
in Fig.1–3. Fig.1 shows a scatterplot of a data
set X ⊂ IR2 of 20 points containing three well-
defined clusters. Its original order is random, as
in most applications. The dissimilarity image in
Fig.2 contains no useful visual information about
the cluster structure in X. The broken line in
Fig.1 shows the new order of the data set X, with
the diamond in the lower left corner representing
the first point in the ordered data set. Fig.3 gives
the corresponding ODI. Now the three clusters are
represented by the three well-formed black blocks.

The VAT algorithms are certainly useful, but
there is room for improvements. It seems to us
that our eyes are not very sensitive to structures
in gray level images. One example is given in
Fig.4. There are three clusters in the data as we
will show later. The clusters are not well sep-
arated, and the ODI from VAT does not reveal
any sign of the existence of the structure.

The approach of this paper is to focus on
changes in dissimilarities in the ODM, the nu-
meric output of VAT that underlies its visual out-

put ODI. The results will be displayed as curves,
which we call the tendency curves. The borders
of clusters in the ODM (or blocks in the ODI) are
shown as certain patterns in peaks and valleys on
the tendency curves. The patterns can be caught
not only by human eyes but also by the computer.
It seems that the computer is more sensitive to
these patterns on the curves than human eyes are
to them or to the gray level patterns in the ODI.
For example, the computer caught the three clus-
ters in the data set that produced the virtually
useless ODI in Fig.4.

Figure 4: How many clusters are in this ODI?

2 Tendency Curves

Our approach is to catch possible diagonal blocks
in the ordered dissimilarity matrix R by using var-
ious averages of distances, which are stored as vec-
tors and displayed as curves. Let n be the number
of points in the data, we define

m = 0.05n, M = 5m, w = 3m. (1)

We restrict ourselves to the w-subdiagonal band
(excluding the diagonal) of R, as shown in Fig.5.
Let �i = max(1, i − w), then the i-th “row-
average” is defined by

r1 = 0, ri =
1

i − �i

i−1∑
j=�i

Rij , 2 ≤ i ≤ n. (2)

In another word, each ri is the average of the el-
ements of row i in the w-band. The i-th m-row
moving average is defined as the average of all ele-
ments in up to m rows above row i, inclusive, that
fall in the w-band. This corresponds to the region
between the two horizontal line segments in Fig.5.
We also define the M -row moving average in al-
most the identical way except with m replaced by
M . They will be referred to as the r-curve, the
m-curve and the M -curve, respectively.
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Figure 5: Sub-diagonal band of the ODM

The idea of the r-curve is simple. Just imag-
ine a horizontal line, representing the current row
in the program, moving downward in an ODI such
as the one in Fig.3. When it moves out of one di-
agonal black block and into another, the r-curve
should first show a peak because the numbers to
the left of diagonal element Rii will suddenly in-
crease. It should drop back down rather quickly
when the line moves well into the next black block.
Therefore the border of two blocks should be rep-
resented as a peak on the r-curve if the clusters
are well separated.

When the situation is less than ideal, there
will be noise, which may destroy possible patterns
on the r-curve. That is how the m-curve comes in,
which often reveals the pattern beneath the noise.
Since the VAT algorithms tend to order outliers
near the end, so the m-curve tends to move up in
the long run, which makes it hard for the program
to identify peaks. That is why we introduce the
M -curve, which shows long term trends of the r-
curve. The difference of the m- and M -curves,
which we call the d-curve, retains the shape of
the m-curve but is more horizontal, basically lying
on the horizontal axis. Furthermore, the M -curve
changes more slowly than the m-curve, thus when
moving from one block into another in the ODM,
it will tend to be lower than the m-curve. As the
result, the d-curve will show a valley, most likely
below the horizontal axis, after a peak. It is the
peak-valley, or high-low, patterns that signal the
existence of cluster structures. This will become
clear in our examples in the section that follows.

3 Numerical Examples

We give one group of examples in IR2 so that we
can use their scatterplots to show how well/poorly
the clusters are separated. We also give the visual
outputs (ODIs) of VAT for comparison. These
sets are generated by choosing α = 8, 4, 3, 2, 1 and
0 in the following settings: 2000 points (observa-

tions) are generated in three groups from mul-
tivariate normal distribution having mean vec-
tors μ1 = (0, α

√
6/2), μ2 = (−α

√
2/2, 0) and

μ3 = (α
√

2/2, 0). The probabilities for a point
to fall into each of the three groups are 0.35, 0.4
and 0.25, respectively. The covariance matrices
for all three groups are I2. Note that μ1, μ2 and
μ3 form an equilateral triangle of side length α

√
2.

There are three well separated clusters for the
case α = 8, the ODI from VAT (not shown) has
three black blocks on the diagonal with sharp bor-
ders. Fig.6 shows the data set for α = 4, in which
the three clusters are reasonably well separated.
Our r-curve in Fig.8 (the one with “noise”) has
two vertical rises and the m-curve (the solid curve
going through the r-curve where it is relatively
flat) has three peaks. Two of the three peaks
are followed by valleys, corresponding to the two
block borders in the ODI in Fig.7. The M -curve,
the smoother, dash-dotted curve, is only interest-
ing in its relative position with respect to the m-
curve. That is, it is only useful in generating the
d-curve, the difference of these two curves. The d-
curve looks almost identical to the m-curve, also
having three peaks and two valleys. The major
difference is that it is in the lower part of the
figure, around the horizontal axis. Note that
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Figure 6: Three normally distributed clusters in
IR2 with α = 4

Figure 7: ODI from VAT, α = 4

the wild oscillations near the end of the r-curve
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Figure 8: Tendency curves for α = 4

bring up all other three curves, forming the third
peak. This corresponds to the small region in the
lower-right corner of the ODI, where there lacks
pattern. Note also that no valley follows from the
third rise or peak. This is understandable because
a valley appears when the curve index (the hori-
zontal variable of the graphs) runs into a cluster,
shown as a block in ODI. Now we know what we
should look for: vertical rises or peaks followed by
valleys, or high-low patterns, on all the tendency
curves maybe except the M -curve.
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Figure 9: Three normally distributed clusters in
IR2 with α = 3

Figure 10: ODI from VAT, α = 3

The case α = 3 is given in Fig.9–11. One
can still easily make out the three clusters in the
scatterplot, but it is harder to tell to which clus-
ter many points in the middle belong. It is ex-
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Figure 11: Tendency curves for α = 3

pected that every visual method will have diffi-
culties with them, as evidenced by the lower right
corner of the ODI, and the oscillations on the last
one fifth of the r-curve. The oscillations bring up
the r- and m-curves, but not the d-curve. The d-
curve remains almost the same as that in the pre-
vious case, except the third peak becomes larger
and decreases moderately without forming a val-
ley. The two high-low patterns on the m- and
d-curves show the existence of three clusters. As
we have said earlier that it is a valley on the m-
curve and, especially, the d-curve that signals the
beginning of a new cluster.

We hope by now the reader can see the pur-
pose of the d-curve. Both the m- and M -curves
in Fig.11 go up with wild oscillations, but the d-
curve always stays low, lying near the horizon-
tal axis. Unlike the other three curves, its values
never get too high or too low. This enables us to
detect the beginnings of new blocks in an ODM by
catching the high-lows on the d-curve. When the
d-curve hits a ceiling, set as 0.04, and then a floor,
set as 0, the program reports one new cluster. The
ceiling and floor values are satisfied by all cases in
our numerical experiments where the clusters are
reasonably, sometimes only barely, separated. If
we lower the ceiling and raise the floor, we would
be able to catch some of the less separated clus-
ters we know we have missed, but it would also
increase the chance of “catching” false clusters.
We do not like the idea of tuning parameters to
particular examples. We will stick to the same
ceiling and floor values throughout this paper. In
fact, we do not recommend changing the suggested
values of the parameters in our program, that is,
the values for the ceiling and floor set here, and
those for m, M and w given in (1).

The situation in the case α = 2, shown in
Fig.12–14, really deteriorates. One can barely
make out the three clusters in Fig.12 that are sup-
posed to be there; the ODI in Fig.13 is a mess. In
fact, this is the same ODI as the one in Fig.4, put
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Figure 12: Three normally distributed clusters in
IR2 with α = 2

Figure 13: ODI from VAT, α = 2

here again for side-by-side comparison with the
scatterplot and the tendency curves. The ten-
dency curves in Fig.14, however, pick up cluster
structure from the ODM. The d-curve has several
high-lows, with two of them large enough to hit
both the ceiling and floor, whose peaks are near
600 and 1000 marks on the horizontal axis, re-
spectively. This example clearly shows that our
tendency curves generated from the ODM are
more sensitive than the raw block structure in the
graphical display (ODI) of the same ODM. The
largest advantage of the tendency curves is proba-
bly the quantization which enables the computer,
not only human eyes, to catch possible patterns.

When α goes down to zero, the cluster struc-
ture disappears. The scatterplots for α = 0
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Figure 14: Tendency curves for α = 2
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Figure 15: Three normally distributed clusters in
IR2 with α = 0 (combining into one)
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Figure 16: Tendency curves for α = 0

(Fig.15) and α = 1 (not shown) are almost iden-
tical, showing a single cluster in the center. The
tendency curves for both cases (Fig.16 and 17)
have no high-lows large enough to hit the ceiling
then the floor, which is the way they should be.
Note that while all other three curves go up when
moving to the right, the d-curve, the difference of
the m- and M -curves, stays horizontal, which is,
again, the reason we introduced it.

We also tested our program on many other
data sets, including small data sets containing
120 points in IR4. It worked equally well. We
also tested two examples in Figures 12 and 13
of Bezdek and Hathaway [5], where the points
are regularly arranged, on a rectangular grid, and
along a pair of concentric circles, respectively. Be-
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Figure 17: Tendency curves for α = 1
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Figure 18: Tendency curves for the Iris data

cause we could only have speculated from ODI
images produced from the sets before applying
our program, it was to our great, and pleasant,
surprise that the program worked seamlessly on
them, accurately reported the number of clusters
that exist. What we want to emphasize is that
we did all this without ever having to modify any
suggested parameter values! These tests will be
reported in a forthcoming paper.

It is almost a sacred ritual that everybody
tries the Iris data in a paper on clustering, so we
conclude ours by trying our program on it. The
tendency curves are given in Fig.18, and the com-
puter caught the large high-low on the left and
ignored the small one on the right, and correctly
reported two clusters.
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