Investigating on results of a newly engineered e-learning survey


Centro “Rete Puglia” – Università degli Studi di Bari - Via G. Petroni, 15/F.1 – 70124 Bari – ITALY
Dipartimento di Informatica – Università degli Studi di Bari - Via Orabona, 4 – 70126 Bari – ITALY
Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari, Via Orabona, 8 – 70126 Bari – ITALY

Abstract: - This paper deals with quality evaluation of e-learning university courses. It considers a newly engineered survey that evaluates not only quality in use but also quality in learning. The quality of the interface, the friendliness of the contents, the quality of concepts and the capability to transfer new knowledge are all considered. Through the paper, the various aspects concerning the evaluation of e-learning products are addressed. The results, obtained during university teaching activities, show the usefulness of the survey in discriminating the relevant factors and in understanding learners’ needing.

Key-Words: e-learning, learnability, quality evaluation, survey, usability.

1 Introduction

Information and Communication Technology (ICT) offers people new facilities for continuous and lifelong learning. E-learning offers people the possibility to become skilful and acquire knowledge without time and space constraints.

So far, in the development and management of an e-learning course the emphasis has been often on technical aspects, whereas the relevance of learning products for the actual process of learning has not been enough considered. Indeed the most important aspect of a learning product is its capacity to provide knowledge and skill by stimulating an in dept study, further researches and close investigations. The added value of an e-learning product is in the learning and not in the instrument used to vehicle new contents and new concepts. Therefore, the educational software production needs to be focused on the process of learning and on the enrichment of the educational processes.

This paper presents the results obtained by adopting a survey engineered to monitor the effective usefulness for the learning process of university learning objects. The paper is organized as follows: Section 2 summarizes the main engineering principles and the most widespread guidelines to develop learning products; in Section 3 the usability problems in educational e-learning software are discussed; Section 4 deals with the design of e-learning products; Section 5 briefly presents the newly engineered survey to evaluate quality of e-learning university courses; in Section 6 the experimental results are presented and discussed.

2 Good Engineering Principles

Learning is a very special task that cannot be approaches as a conventional kind of work, with a number of problems to be solved and various outputs to be produced [1].

So far, learning has been defined in terms of behavior [2], knowledge [3], knowledge and observable behavior [4]. Whatever definition is adopted, learning is always considered as a positive change over time that aims at improving capabilities to cognition, through a series of actions through personal observation and interaction. Therefore, learning is not a simple process of transmitting information from someone who knows to someone who does not. Instead learning is an active process that happens through direct experience, conducted by people engaged in authentic tasks [5].

At least five principles need to be considered while developing learning products [6]:

a) Content based on fundamental ideas;
b) Incorporation of different cognitive levels;
c) High degree of interaction;
d) Feedback;
e) Visualization and fit for use.

a) The production of multimedia learning software need to be centered on fundamental concepts. Bruner’s concept of “fundamental idea” [7], better qualified by Schwill [8] as a schema for thinking, acting describing or explaining, need to be considered.
b) Educational software offers a broad range of tasks at different cognitive levels. Bloom [9] developed the taxonomy with six cognitive...
levels, arranged in an increasing complexity order. Good educational software would emphasize the higher cognitive levels: analysis, synthesis and evaluation.


d) The software feedback can assist the learning process. Roughly there could be defined two levels of feedback: implicit feedback and explicit feedback.

e) There are several guidelines to design multimedia objects [13] and to use web contents [14]. Guzdial and Soloway [15] argued that educational software needs to correspond to multimedia environments and to student everyday use of computer. Moreover Varisco [16, 17] individualize factors that make meaningful learning. Finally, McTighe and Wiggins [18], focus the purpose of questions in tests.

3 Usability problems in educational e-learning software

The ultimate objective for educational software is to be educationally beneficial. So it is important to understand how usability can contribute to educational goals [19]. Squires and Preece [20] argue that software developers do not consider enough the implications of usability features of an educational package in order to achieve educational goals. So in spite of all efforts, users become easily frustrated or unenthusiastic about the material and do not complete learning activities [21].

While, considering the design of web-based learning courses the active process that happens through direct experience takes the form of web navigation. Good design of a course’s interface and good organization of contents is critically important. With software interfaces users return many times in the same environment and gradually learn the interface. While using the web-based learning interfaces, users must make sense quickly since the user is unlikely to use the environment for an extended period of time.

An instructional interface is effective when the learner is able to focus on learning contents and concepts rather than on how to access the learning content. The need to concentrate on the users’ objectives rather than the tasks is of fundamental importance.

While making an attempt in identifying usability attributes, the first step is to define the context of use of web-based learning applications. Usability testing needs additional consideration under the light of web-based learning environments. Dringus [22] proposes of applying opportunely arranged software usability heuristics to evaluate web-based course environments.

Indeed, a learning web page is usable if it is effectively useful. A learning product must not only have an easy to use interface, but it should also serve a purpose. Norman [23] defined Learnability as the ease and the seed with which users can figure out how to use a product without training or manuals. In the world of e-learning this definition need to be better qualified to include the ability of learners to effectively learn and retain skills and knowledge. The level of learnability of a course is undeniably associated with the strengths and weakness of the instructional design. The e-learning products, engineered with usefulness and learnability in mind, have intrinsic high instructional value [24].

On the base of these assumptions, Squires and Preece [25] realized that the simple application of software heuristics is not sufficient because they fail to address the specific challenges of learner centred design and the issue of integration of usability and learning. The proposed set of learning with software heuristics contains the following:

- Match between designer and learner models;
- Navigational fidelity;
- Appropriate levels of learner control;
- Prevention of peripheral cognitive errors;
- Understandable and meaningful symbolic representations;
- Support personally significant approaches to learning;
- Strategies for cognitive error recognition, diagnosis and recovery;
- Match with the curriculum.

Cronje [26] investigated to what extent some of the methods, used by educators, can be replicated over the internet. He posed the question of how can adult learners respond to internet based role-play exercises and youthful metaphors. Dringus and Terrell [27] focus their interest on awareness, as a combination of visual and conceptual cues given to the learner that increases the immediate sense of presence of others in an online class. Moreover Forcheri [28] uses metaphors from working context while designing his prototype in order to engage
workers to interact effectively with an on-line training application. Relevant to navigational fidelity is the work conducted by Parlangeli [29]. Piccoli [30] focus the work on examining the Virtual Learning Environments (VLE) effectiveness and learner control. Learning styles issue is a discriminating factor while supporting personally significant approaches to learning. Terrell and Dringus, [31] also investigated the effect of learning styles on student success in an on-line web-based learning environment.

All these researches point out that specific e-learning usability testing activities need to be carried on to allow better understanding of learners’ needing and to create a learning culture made up of intrinsically motivated users.

Using instructional design and user interface principles together to the motivational goals allow promoting an integrated design process that better meets the needs of the learners.

Instructional principles common to diverse learning theories are the following [2]:
- Learners progress through stages or phases;
- Material should be organized and presented in small steps;
- Learners require practice, feedback and review;
- Social models facilitate learning and motivation;
- Motivation and contextual factors influence learning.

Usability evaluation needs to include post-course assessments, surveys, and interviews, to gain a deeper understanding of the impact that the training product has on the learners. The combination of all these elements helps measure whether or not the e-learning program meets the prefixed goals. Such activities enable also continuous administration of courses by successive refining.

4 Designing e-learning products

The different learning theories and their major assumptions have guided design and development efforts. Chalmers [32] links learning theories as well as instructional theories in order to present potential improvements for research and development of computer-assisted instruction. Norman and Spohrer [33] combine learner-centred approach with constructivism and problem based learning. The ideas of active exploration and construction of meaning as well as the motivation to solve real problems in authentic contexts are here dominant. Norman and Spohrer [33] also focus their analysis on three dimensions of instruction: engagement, effectiveness and viability. The new paradigms place the learner in the centre of the learning process [34]. Cronje [26] relies on cooperative model and collaborativism while designing his virtual classroom. Pear and Crone-Todd [35] focus their study on a computer mediated teaching system developed by incorporating a social constructivism approach.

It is widely accepted that there is no ideal learning theory and/or model. According Leidner and Jarvenpaa [36], different learning approaches will be appropriate depending on the circumstances.

5 The structure of the survey

The quality of educational software is evidently the product of many factors; therefore, there are different quality aspects to consider for obtaining good results. The proposed survey consists of three main sections [37]:
- The first section considers quality in use;
- The second section considers learnability;
- The third section collects information about involvement capability.

The first section, about quality in use, considers various factors:
- The simplicity of the graphic style;
- The distinction of interface elements;
- The operation of navigation tools;
- The availability of multimedia elements;
- The coherence of page contents;
- The accuracy of multimedia production;
- The overall easiness in use of the didactic module.

The second section, dealing with content learnability, investigates:
- The clarity of the didactic objectives;
- The clearness and correctness of the content;
- The congruity of lexicon;
- The adequacy of contents;
- The applicability to real situations;
- The coherence, consequence and clarity of explanations;
- The presence and easy identification of evaluation instruments;
- The stimulus to return back to visited contents;
- The expression of a comprehension level;
- The individualization of not well understood concepts.

The third section contains final questions to investigate the level of involvement of the learner in the didactic module; it investigates if:
- The entire didactic module spurs learners on further researches;
- The availability and use of reference material results useful;
- There are sufficient materials included in the didactic module or if it results better to use external products;
- The entire set of resources and documents allows a satisfactory topic comprehension.

At the end, in the last question of the survey, the learner is invited to indicate if there is something missing in the learning product, and where to include the eventual missing arguments in the presentation of the electronic lesson.

6 Analysis of survey results

Analysis of survey results have been conducted by considering answers provided by university students which used the didactic module on Introduction to Discrete Systems (Figure 1), developed, published and imported in the Oracle iLearning LMS during the activities of the PROTEO project carried on at the University of Bari with the support of the Italian Government and of the European Union [38, 39, 40].

Figure 1: Convolution Theorem: lesson page

The results here presented represent an enhancement of former activities and a starting point for further developments [41, 42, 43]. Each section of the didactic module consists of a lesson and a test learning object (Figure 2).

Figure 2: Digital pulse: test page

The evaluation phase involved 20 university students which used the product in e-learning, and answered to the questions in the survey.

Analyzing the results of the section on quality in use it results that the 0,12% answered with a judgment, corresponding to a 2, in the scale ranging from 1 (worst value) to 5 (best value), the 11,19% with a 3, the 44,83% with a 4, and the 43,86% with a 5, that is to say with the better judgment. More in detail by considering the simplicity of the graphic style the 0,83% of the panel answered with a 2, the 22,50% answered with a 3, the 51,67% with a 4, and a 25,00% with a 5. By considering distinction of interface elements the 23,33% answered with a 4 and the 76,67% with a 5. By considering the operation of navigation tools and the availability of multimedia elements, the 7,50% with a 3, the 45,00% with a 4 and the 47,50% with a 5. By considering the coherence of page contents, the 2,50% with a 3, the 47,50% with a 4, and the 50,00% with a 5. By considering accuracy of multimedia production, the 18,33% answered with a 3, the 48,88% with a 4 and the 33,33% with a 5. By considering the overall easiness in use, the 20,00% with a 3, the 53,00% with a 4, and the 27,00% with a 5.

Analyzing the results of the section on quality in learning the 1,08% answered with a 2, the 18,79% answered with a 3, the 43,72% answered with a 4 the 36,41% with a 5. More in detail, by considering the clarity of the didactic objectives the 41,67% answered with a 4, and the 58,33% with a 5. By considering the clearness and correctness of the content the 25,00% with a 3, the 15,00% with a 4, and the 60,00% with a 5. By considering congruity of lexicon the 22,50% answered with a 3, the 47,50% with a 4, and the 30,00% with a 5. By considering adequacy of contents, the 11,25% with a 3, the 21,25% with a 4 and the 67,50% with a 5. By considering applicability to real situations, the 21,00% with a 3, the 40,00% with a 4, and the 39,00% with a 5. By considering coherence, consequence and clarity of explanations, the 14,00% with a 3, the 72,00% with a 4, and the 14,00% with a 5. By considering presence and easy identification of evaluation instruments, the 41,00% with a 4, and the 59,00% with a 5. By considering the stimulus to return back to visited contents, the 7,50% with a 2, the 32,50% with a 3, the 45,00% with a 4, and the 15,00% with a 5. By considering the measurement of the comprehension level, the 3,33% with a 2, the 21,67% with a 3, the 60,00% with a 4, and the 15% with a 5. By considering the individualization of not
well understood concepts the 40.00% with a 3, the 36.25% with a 4, and the 23.75% with a 5.

Analyzing results of the section on level of involvement, the 11.67% answered with a 3, the 52.08% answered with a 4, and the 36.25% answered with a 5. More in detail, by considering spurs to further researches, the 42.50% answered with a 3, the 40.00% with a 4, and the 17.50% with a 5. By considering usefulness of teaching material, the 1.67% with a 3, the 73.33% with a 4, and the 25.00% with a 5. By considering sufficiency of materials the 2.50% with a 3, the 72.50 with a 4 and the 25.00% with a 5. By considering the satisfactory comprehension of the topic the 22.50% answered with a 4 and the 77.50% with a 5.

On the whole the judgments corresponding to a 2 occurs in the 0.40% of cases, the judgments corresponding to a 3 on the 15.53% of cases, the 4 occurs in the 46.47% of cases, and the 5 occurs in the 37.60% of cases.

The number of time each one of the member of the panel adopted the different judgment values changes from evaluator to evaluator. But, nobody expressed a judgment corresponding to 1. The per user adoption of the judgment corresponding to 2 ranges from 0.00% and 2.67%, with a mean value of 0.40%. The first quarter of 2 occurrences has as upper bound 0.00%, the second quarter has as upper bound 0.00% (the median value), the third quarter has as upper bound 0.33%. The adoption of a judgment corresponding to 2 ranges from 0.00% to 29.33%, with a mean value of 15.53%. The first quarter of 3 occurrences has as upper bound 10.67%, the second quarter has as upper bound 14.67%, the third quarter has as upper bound 17.33%. The adoption of a judgment corresponding to 4 ranges from 38.67% to 57.33%, with a mean value of 46.47%. The first quarter of 4 occurrences has as upper bound 42.33%, the second quarter has as upper bound 46.67%, the third quarter has as upper bound 50.67%. The adoption of a judgment corresponding to 5 ranges from 24.00% to 50.67%, with a mean value of 37.60%. The first quarter of 5 occurrences has as upper bound 31.67%, the second quarter has as upper bound 37.33%, the third quarter has as upper bound 44.00%.

8 Conclusion

This paper presents a detailed analysis for the evaluation of e-learning activities. For this purpose, a well-defined survey is considered. It allows evaluating not only the quality in use of a learning module but also, concept explanation, content learnability and learner involvement.

The main properties of the learning product are all investigated and sound out by considering different aspects. Results show user judgments. Critical factors are also individualized and highlighted.

The obtained results point out: a) the quality of the multimedia product to provide learning; b) the real needing of learners and possible enhancements to the actual implementation within the lifecycle of learning products.

Therefore, the proposed approach shows the extent to which a learning object is really useful and the effectiveness, efficiency and satisfaction with which users can achieve learning results in a particular learning environment.

References


