Taxonomy of Nominal Type Histogram Distance Measures

Sung-Hyuk Cha
Department of Computer Science, Pace University
861 Bedford rd, Pleasantville, NY 10570, USA

Abstract

Distance or similarity measures are of fundamental importance to pattern classification, clustering, and information retrieval problems. Various distance/similarity measures that are applicable to compare two nominal type histograms are reviewed and categorized in both syntactic and semantic relationships. A correlation coefficient and a hierarchical clustering technique are adopted to reveal similarities among numerous distance/similarity measures.

Key-Words: - Distance, Metrics, Similarity

1 Introduction

Albeit the concept of Euclidean distance has prevailed in different cultures and regions for millennia, it is not a panacea for all types of data or pattern to be compared. The $20^{\text {th }}$ century witnessed tremendous efforts to exploit new distance/similarity measures, disim's in short, for a variety of applications. There are a substantial number of disim's in short, encountered in many different fields such as anthropology, biology, chemistry, computer science, ecology, information theory, geology, mathematics, physics, psychology, statistics, etc.

Because it is often an essential key to solve many pattern recognition problems such as classification, clustering, and retrieval problems [1], there has been considerable effort in finding the appropriate measures among such a plethora of choices throughout different fields [2-5]. Notwithstanding, further comprehensive study is necessary because even names for certain disim's are fluid and promulgated differently.

From the mathematical point of view, distance is defined as a quantitative degree of how far apart two objects are. Those distance measures satisfying the metric properties are simply called metric while other non-metric distance measures are occasionally called divergence. Similarity measures are often called similarity coefficients. A distance measure and a similarity measure are denoted as d_{x} and s_{x}, respectively throughout the rest of the paper.

The choice of disim's depends on the measurement type or representation of objects. Here the histogram, which is one of the most popular pattern representations, is considered. Let d be the number of bins in the histogram. Two approaches vector and probability. There are different types of histograms [6]. Here only the nominal type histogram where each level or bin is independent from other levels or bins is considered and other
types of histogram are abstained. Moreover, various disim's that are applicable to compare two nominal type histograms are perambulated and categorized. All measures appearing in this paper have the shuffling invariant property [6] and thus naturally imply the level independency.

There are two approaches in histogram disim's: vector and probabilistic. Since each level is assumed to be independent from other levels, a histogram can be considered as a vector, i.e., a point in the Euclidean space or a Cartesian coordinate system. Hence, numerous geometrical distances can be applied to compare histograms. There is much literature regarding discrete versions of various divergences between probability density functions, in short $p d f \mathrm{~s}$ in probability and information theory fields $[7,8]$. Computing the distance between two pdfs can be regarded as the same as computing the Bayes (or minimum misclassification) probability [1]. This is equivalent to measuring the overlap between two pdfs as the distance. The probabilistic approach is based on the fact that a histogram of a measurement provides the basis for an empirical estimate of the pdf. A pdf for a corresponding histogram is produced by dividing each level by n. Let P and Q be the pdfs to be compared.

The rest of the paper is organized as follows. In section 2, various measures are enumerated according to their syntactic similarities. Section 3 presents the hierarchical cluster tree using the correlations between different measures. Finally, section 4 concludes this work.

2 Definitions

Table 1. L_{p} Minkowski family

1. Euclidean L_{2}	$d_{\text {Euuc }}=\sqrt{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|^{2}}$
2. City block L_{1}	$d_{C B}=\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|$

| 3. Minkowski L_{p} | $d_{M k}=\sqrt[p]{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|^{p}}$ |
| :--- | :--- | :--- |
| 4. Chebyshev L_{∞} | $d_{\text {Cheb }}=\max _{i}\left\|P_{i}-Q_{i}\right\|$ |

A couple of thousand years ago, Euclid stated that the shortest distance between two points is a line and thus the eqn (1) is predominantly known as Euclidean distance. It was often called Pythagorean metric since it is derived from the Pythagorean theorem. In the late $19^{\text {th }}$ century, Hermann Minkowski considered the city block distance [9]. Other names for the eqn (2) include rectilinear distance, taxicab norm, and Manhattan distance. Hermann also generalized the formulae (1) and (2) to the eqn (3) which is coined after Minkowski. When p goes to infinite, the eqn (4) can be derived and it is called the chessboard distance in 2D, the minimax approximation, or the Chebyshev distance named after Pafnuty Lvovich Chebyshev [10].
Table 2. L_{1} family

5. Sørensen	$d_{\text {sor }}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d}\left(P_{i}+Q_{i}\right)}$
6. Gower	$d_{\text {gow }}=\frac{1}{d} \sum_{i=1}^{d} \frac{\left\|P_{i}-Q_{i}\right\|}{R_{i}}$
	$=\frac{1}{d} \sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|$

7. Soergel $d_{s g}=\frac{\sum_{i=1}^{d}\left|P_{i}-Q_{i}\right|}{\sum_{i=1}^{d} \max \left(P_{i}, Q_{i}\right)}$
8. Kulczynski $d \quad d_{k u l}=\frac{\sum_{i=1}^{d}\left|P_{i}-Q_{i}\right|}{\sum_{i=1}^{d} \min \left(P_{i}, Q_{i}\right)}$

9. Canberra	$d_{\text {Can }}=\sum_{i=1}^{d} \frac{\left\|P_{i}-Q_{i}\right\|}{P_{i}+Q_{i}}$
10. Lorentzian	$d_{\text {Lor }}=\sum_{i=1}^{d} \ln \left(1+\left\|P_{i}-Q_{i}\right\|\right)$

* L_{1} family \supset \{Intersectoin (13), Wave Hedges (15), Czekanowski (16), Ruzicka (21), Tanimoto (23), etc \}.
Several distance measures listed in Table 2 facilitate the L_{1}, more precisely the absolute difference. The eqn (5), which is widely used in ecology [11], is known as Sørensen distance [12] or Bray-Curtis [2,4,13]. When it is used for comparing two pdfs, it is nothing but the L_{1} divided by 2 . Gower distance [14] in the eqn (6) scales the vector space into the normalized space and then uses the L_{1}. Since the pdf is already normalized space, Gower distance is the L_{1} divided by d. Other L_{1} family distances that are nonproportional to the L_{1} include Soergel and Kulczynski distances given in the eqns (8) [4] and (9) [2] respectively. At first glance, Canberra metric
given in the eqn (10) [2,15] resembles Sørensen but normalizes the absolute difference of the individual level. It is known to be very sensitive to small changes near zero [15]. The eqn (11) [2], attributed to Lorentzian, also contains the absolute difference and the natural logarithm is applied. 1 is added to guarantee the non-negativity property and to eschew the log of zero.

Table 3. Intersection family		
11. Intersection	$s_{I S}=\sum_{i=1}^{d} \min \left(P_{i}, Q_{i}\right)$	(12)
$d_{n o n-I S}=1-s_{I S}$	$d_{n o n-I S}=\frac{1}{2} \sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|$	(13)
12. Wave Hedges	$\begin{aligned} & d_{W H}=\sum_{i=1}^{d}\left(1-\frac{\min \left(P_{i}, Q_{i}\right)}{\max \left(P_{i}, Q_{i}\right)}\right) \\ & =\sum_{i=1}^{d} \frac{\left\|P_{i}-Q_{i}\right\|}{\max \left(P_{i}, Q_{i}\right)} \end{aligned}$	(14) (15)
13. Czekanowski	$s_{C z e}=\frac{2 \sum_{i=1}^{d} \min \left(P_{i}, Q_{i}\right)}{\sum_{i=1}^{d}\left(P_{i}+Q_{i}\right)}$	(16)
$d_{C z e}=1-s_{C z e}$	$d_{C z e}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d}\left(P_{i}+Q_{i}\right)}$	(17)
14. Motyka	$s_{\text {Mot }}=\frac{\sum_{i=1}^{d} \min \left(P_{i}, Q_{i}\right)}{\sum_{i=1}^{d}\left(P_{i}+Q_{i}\right)}$	(18)
$D_{M o t}=1-s_{\text {Mot }}$	$d_{\text {Mot }}=\frac{\sum_{i=1}^{d} \max \left(P_{i}, Q_{i}\right)}{\sum_{i=1}^{d}\left(P_{i}+Q_{i}\right)}$	(19)
15. Kulczynski s	$s_{K u l}=\frac{\sum_{i=1}^{d} \min \left(P_{i}, Q_{i}\right)}{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}$	(20)
16. Ruzicka	$s_{R u z}=\frac{\sum_{i=1}^{d} \min \left(P_{i}, Q_{i}\right)}{\sum_{i=1}^{d} \max \left(P_{i}, Q_{i}\right)}$	(21)
17. Tanimoto d_{T} =	$\begin{aligned} & \frac{\sum_{i=1}^{d} P_{i}+\sum_{i=1}^{d} Q_{i}-2 \sum_{i=1}^{d} \min \left(P_{i}, Q_{i}\right)}{\sum_{i=1}^{d} P_{i}+\sum_{i=1}^{d} Q_{i}-\sum_{i=1}^{d} \min \left(P_{i}, Q_{i}\right)} \\ & \left.\max \left(P_{i}, Q_{i}\right)-\min \left(P_{i}, Q_{i}\right)\right) \\ & \sum_{i=1}^{d} \max \left(P_{i}, Q_{i}\right) \end{aligned}$	(22) (23)

The intersection between two pdfs in the eqn (12) is a widely used form of similarity [1] where the nonoverlaps between two pdfs defined in the eqn (13) is nothing but the L_{1} divided by 2 [6]. Hence, most similarity measures pertinent to the intersection enumerated in Table 3 can be transformed into the L_{1}
based distance measures using the technique, i.e., $d_{x}(P, Q)=1-s_{x}(P, Q)$ with a few of exceptions. The eqn (14) is called Wave Hedges [16] and its L_{1} based distance form is given in the eqn (15). Czekanowski Coefficient in the eqn (16) [15] has its distance form identical to Sorensen (5). Half of the Czekanowski Coefficient is called Motyka similarity in the eqn (18) [2]. The eqn (20) is known as Kulczynski similarity [2]. The eqn (22) is referred to as Tanimoto distance [1] a.k.a., Jaccard distance. Soergel distance in the eqn (8) is identical to Tanimoto. 1- $d_{\text {Tani }}$ is Ruzicka similarity given in the eqn (21) [2]. The eqn (23) is given to help understand their equivalencies.
Table 4. Inner Product family

18. Inner Product	$s_{I P}=P \bullet Q=\sum_{j=1}^{d} P_{i} Q_{i}$	(24)
19. Harmonic mean	$s_{H M}=2 \sum_{i=1}^{d} \frac{P_{i} Q_{i}}{P_{i}+Q_{i}}$	(25)
20. Cosine	$s_{C o s}=\frac{\sum_{i=1}^{d} P_{i} Q_{i}}{\sqrt{\sum_{i=1}^{d} P_{i}^{2}} \sqrt{\sum_{i=1}^{d} Q_{i}^{2}}}$	(26)
21. KumarHassebrook (PCE)	$s_{J a c}=\frac{\sum_{i=1}^{d} P_{i} Q_{i}}{\sum_{i=1}^{d} P_{i}^{2}+\sum_{i=1}^{d} Q_{i}^{2}-\sum_{i=1}^{d} P_{i} Q_{i}}$	(27)
22. Jaccard	$s_{\text {Jac }}=\frac{\sum_{i=1}^{d} P_{i} Q_{i}}{\sum_{i=1}^{d} P_{i}^{2}+\sum_{i=1}^{d} Q_{i}^{2}-\sum_{i=1}^{d} P_{i} Q_{i}}$	(28)
$d_{J a c}=1-s_{J a c}$	$d_{J a c}=\frac{\sum_{i=1}^{d}\left(P_{i}-Q_{i}\right)^{2}}{\sum_{i=1}^{d} P_{i}^{2}+\sum_{i=1}^{d} Q_{i}^{2}-\sum_{i=1}^{d} P_{i} Q_{i}}$	(39)
23. Dice	$s_{\text {Dice }}=\frac{2 \sum_{i=1}^{d} P_{i} Q_{i}}{\sum_{i=1}^{d} P_{i}^{2}+\sum_{i=1}^{d} Q_{i}^{2}}$	(40)
$d_{\text {Dice }}=1-S_{\text {Dice }}$	$d_{\text {Dice }}=\frac{\sum_{i=1}^{d}\left(P_{i}-Q_{i}\right)^{2}}{\sum_{i=1}^{d} P_{i}^{2}+\sum_{i=1}^{d} Q_{i}^{2}}$	(31)

Table 4 deals exclusively with similarity measures which incorporate the inner product, $\mathrm{P} \bullet \mathrm{Q}$ explicitly in their definitions. The inner product of two vectors in the eqn (24) yields a scalar and is sometimes called the scalar product or dot product [1]. The inner product is also called the number of matches or the overlap if it is used for binary vectors. The eqn (25) is the harmonic mean [2]. The eqn (26) is the normalized inner product and called the cosine coefficient because it measures the angle between two vectors and thus often called the angular metric [2]. Other names for the cosine coefficient include

Ochiai $[2,4]$ and Carbo [4]. Kumar and Hassebrook utilized $\mathrm{P} \bullet \mathrm{Q}$ to measure the Peak-to-correlation energy, $P C E$ in short [17] in the eqn (27). Jaccard coefficient [18], a.k.a. Tanimoto [19], defined in the eqn (28) is another variation of the normalized inner product. Dice coefficient in the eqn (30) [20] is occasionally called Sorensen, Czekannowski, Hodgkin-Richards [4] or Morisita [21]. The eqns $(24,26,28,30)$ are frequently encountered similarity measures in the fields of information retrieval and biological taxonomy for the binary feature vector comparison (see $[2,22]$ for the exhaustive list of distance and similarity measures for the binary feature vectors).

Table 5. Fidelity family or Squared-chord family		
24. Fidelity	$s_{F i d}=\sum_{i=1}^{d} \sqrt{P_{i} Q_{i}}$	(32)
25. Bhattacharyya	$d_{B}=-\ln \sum_{i=1}^{d} \sqrt{P_{i} Q_{i}}$	(33)
26. Hellinger	$d_{H}=\sqrt{2 \sum_{i=1}^{d}\left(\sqrt{P_{i}}-\sqrt{Q_{i}}\right)^{2}}$	(34)
$=2 \sqrt{1-\sum_{i=1}^{d} \sqrt{P_{i} Q_{i}}}$	(35)	
27. Matusita	$d_{M}=\sqrt{\sum_{i=1}^{d}\left(\sqrt{P_{i}}-\sqrt{Q_{i}}\right)^{2}}$	(36)
	$=\sqrt{2-2 \sum_{i=1}^{d} \sqrt{P_{i} Q_{i}}}$	(37)
28. Squared-chord	$d_{s q c}=\sum_{i=1}^{d}\left(\sqrt{P_{i}}-\sqrt{Q_{i}}\right)^{2}$	(38)
$s_{s q c}=1-d_{s q c}$	$s_{s q c}=2 \sum_{i=1}^{d} \sqrt{P_{i} Q_{i}}-1$	(39)

The sum of geometric means in the eqn (32) is referred to as Fidelity similarity, a.k.a. Bhattacharyya coefficient or Hellinger affinity [2]. Bhattacharyya distance given in the eqn (33), which is a value between 0 and 1, provides bounds on the Bayes misclassification probability [23]. Other approaches closely related to Bhattacharyya include Hellinger [2] and Matusita [24] in eqns (34) and (36) respectively. The basic form in the eqn (38), i.e., Matusita without the square root is called Squaredchord distance [5] and thus all Fidelity based measures have their alternative representation using the squared-chord distance.

Table 6. Squared L_{2} family or χ^{2} family		
29. Squared Euclidean	$d_{s q e}=\sum_{i=1}^{d}\left(P_{i}-Q_{i}\right)^{2}$	(40)
30. Pearson χ^{2}	$d_{P}(P, Q)=\sum_{i=1}^{d} \frac{\left(P_{i}-Q_{i}\right)^{2}}{Q_{i}}$	(41)
31. Neyman χ^{2}	$d_{N}(P, Q)=\sum_{i=1}^{d} \frac{\left(P_{i}-Q_{i}\right)^{2}}{P_{i}}$	(42)

32. Squared χ^{2}	$d_{S q C h i}=\sum_{i=1}^{d} \frac{\left(P_{i}-Q_{i}\right)^{2}}{P_{i}+Q_{i}}$	(43)
33. Probabilistic Symmetric χ^{2}	$d_{P C h i i}=2 \sum_{i=1}^{d} \frac{\left(P_{i}-Q_{i}\right)^{2}}{P_{i}+Q_{i}}$	(44)
34. Divergence	$d_{D i v}=2 \sum_{i=1}^{d} \frac{\left(P_{i}-Q_{i}\right)^{2}}{\left(P_{i}+Q_{i}\right)^{2}}$	(45)
35. Clark	$d_{C l k}=\sqrt{\sum_{i=1}^{d} \frac{\left(\frac{\left\|P_{i}-Q_{i}\right\|}{P_{i}+Q_{i}}\right)^{2}}{}}$	(46)
36. Additive Symmetric χ^{2}	$d_{\text {AdChi }}=\sum_{i=1}^{b} \frac{\left(P_{i}-Q_{i}\right)^{2}\left(P_{i}+Q_{i}\right)}{P_{i} Q_{i}}$	(47)
* Squared L_{2} family $\supset\{$ Jaccard (29), Dice (31)\}		

Distance measures containing the Squared Euclidean distance in the eqn (40) as the dividend are corralled in Table 6. Jaccard and Dice distance forms in the eqns (29) and (31) also belong to this family. The cornerstone to the χ^{2} family (eqns (41) $\sim(47)$) is Pearson χ^{2} divergence in the eqn (41) [25] which embodies the Squared Euclidean distance. Pearson χ^{2} divergence is asymmetric. Neyman χ^{2} in the eqn (42) [26] is $d_{N}(P, Q)=d_{P}(Q, P)$. Various symmetric versions of the χ^{2} have been exploited. The eqn (43) is called the squared χ^{2} distance [5] or triangular discrimination $[27,28]$. Twice of the eqn (44) is called the probabilistic symmetric χ^{2} [2] which is equivalent to Sangvi χ^{2} distance between populations [2]. The term 'divergence' is pronominal to refer non-metric distance. Notwithstanding the eqn (45) has been commonly called divergence [29]. The squared root of half of the divergence is called Clark in the eqn (46) [2]. The eqn (47) is $d_{A d C h i}(P, Q)=$ $d_{P}(P, Q)+d_{P}(Q, P)[2,3]$. Albeit the eqn (47) is occasionally called 'symmetric χ^{2} divergence', let's call it the additive symmetric χ^{2} here in order to distinguish other symmetric versions of χ^{2}.
Table 7. Shannon's entropy family

37. KullbackLeibler $d_{K L}=\sum_{i=1}^{d} P_{i} \ln \frac{P_{i}}{Q_{i}}$	(48)
38. Jeffreys $d_{J}=\sum_{i=1}^{d}\left(P_{i}-Q_{i}\right) \ln \frac{P_{i}}{Q_{i}}$	(49)
39. K divergence $\quad d_{\text {Kdiv }}=\sum_{i=1}^{d} P_{i} \ln \frac{2 P_{i}}{P_{i}+Q_{i}}$	(50)
40. Topsøe $d_{\text {Top }}=\sum_{i=1}^{d}\left(\operatorname{P} \ln \left(\frac{2 P_{i}}{P_{i}+Q_{i}}\right)+Q_{i} \ln \left(\frac{2 Q_{i}}{P_{i}+Q_{i}}\right)\right)$	(51)
41. Jensen-Shannon $d_{J S}=\frac{1}{2}\left[\sum_{i=1}^{d} P_{i} \ln \left(\frac{2 P_{i}}{P_{i}+Q_{i}}\right)+\sum_{i=1}^{d} Q_{i} \ln \left(\frac{2 Q_{i}}{P_{i}+Q_{i}}\right)\right]$	(52)
42. Jensen difference $d_{J D}=\sum_{i=1}^{b}\left[\frac{P_{i} \ln P_{i}+Q_{i} \ln Q_{i}}{2}-\left(\frac{P_{i}+Q_{i}}{2}\right) \ln \left(\frac{P_{i}+Q_{i}}{2}\right)\right]$	(53)

Eqns in Table 7 are primary due to Shannon's concept of probabilistic uncertainty or "entropy" $\mathrm{H}(\mathrm{P})=\sum_{i=1}^{\mathrm{d}} P_{i} \ln P_{i}$ [30]. Kullback and Leibler [31] introduced the eqn (48) called KL divergence, relative entropy, or information deviation [2]. The symmetric form of the KL divergence using the addition method is in the eqn (49) [31-33] and it is called Jeffreys or J divergence. The eqn (50) is called the K divergence and its symmetric form is given in the eqn (51) and called Topsøe distance [2] or information statistics [5]. The half of the Topsøe distance is called Jensen-Shannon divergence [2,34]. Sibson [35] studied the idea of information radius for a measure arising due to concavity property of Shannon's entropy and introduced the Jensen difference in the eqn (53) [33]. All eqns (48~53) can be expressed in terms of entropy.
Table 8. Combinations
43. Taneja $\quad d_{T J}=\sum_{i=1}^{d}\left(\frac{P_{i}+Q_{i}}{2}\right) \ln \left(\frac{P_{i}+Q_{i}}{2 \sqrt{P_{i} Q_{i}}}\right)$

$\begin{array}{c}\text { 44. Kumar- } \\ \text { Johnson }\end{array}$	$d_{K J}=$
45. $\operatorname{Avg}\left(L_{1}, L_{\infty}\right)$	
	$\left.d_{A C C}=\frac{\left.\sum_{i=1}^{d} \left\lvert\, \frac{\left(P_{i}^{2}-Q_{i}{ }^{2}\right)^{2}}{2\left(P_{i} Q_{i}\right)^{3 / 2}}\right.\right)}{2} Q_{i}\left\|+\max _{i}\right\| P_{i}-Q_{i} \right\rvert\,$
2	

Table 8 exhibits distance measures utilizing multiple ideas or measures. Taneja utilized both arithmetic and geometric means came up with the arithmetic and geometric mean divergence in the eqn (54) [36]. Symmetric χ^{2}, arithmetic and geometric mean divergence is given in the eqn (55) [37]. The average of city block and Chebyshev distances in the eqn (56) appears in [9].

3 Hierarchical Clustering

Hitherward, the focus is moved from the syntactic similarity to the semantic similarity between disim's. So as to assess how similar distance measures are, the following experiments were conducted using the cluster analysis. n samples whose values are between 1 and d are randomly selected to build a histogram. Next, each bin is divided by n to produce the pdf. Let R be the set of r number of reference pdfs and q be a query pdf. Then r number of distance values are produced using a certain distance measure $d_{x}\left(r_{i}, q\right)$ for $\forall i . r_{i}$ and q are randomly generated pdfs.

Fig 1 presents the upper triangle matrix of correlation between $d_{x}\left(r_{i}, q\right)$ and $d_{y}\left(r_{i}, q\right)$ plots for selected distance or similarity measures where $n=$ $20, b=8$, and $r=30$. Each plot in Figure 2 represents the relation between two distance measures. In order to quantify the correlation between disim's, a correlation coefficient measure in the eqn (57) is used.

$$
\begin{gather*}
\operatorname{Corr}\left(d_{x}, d_{y}\right)=\frac{\sum_{i=1}^{r}\left(d_{x}\left(r_{i}, q\right)-\overline{d_{x}}\right)\left(d_{y}\left(r_{i}, q\right)-\overline{d_{y}}\right)}{\sqrt{\sum_{i=1}^{r}\left(d_{x}\left(r_{i}, q\right)-\overline{d_{x}}\right)^{2} \sum_{i=1}^{r}\left(d_{y}\left(r_{i}, q\right)-\overline{d_{y}}\right)^{2}}} \tag{57}\\
\text { where } \overline{d_{x}}=\frac{\sum_{i=1}^{r} d_{x}\left(r_{i}, q\right)}{r}
\end{gather*}
$$

It indicates the strength and direction of a linear relationship between two distance measures. If the value gets close to 1 , it represents a good fit, i.e., two distance measures are semantically similar. As the fit gets worse, the correlation coefficient approaches zero. When either two distance or two similarity measures are compared, the correlation coefficient is a positive value. When a distance measure and a similarity measure are compared, the correlation coefficient is a negative value e.g., the squared χ^{2} and probabilistic symmetric χ^{2} divergences have $d_{S s q C h i}=$ $.5 d_{P r C h i}$ and Corr $\left(d_{S s q C h i}, d_{P r C h i}\right)=1$ whereas Motyka similarity (20) and Sørensen (5) have $s_{M o t}=1-d_{S o r}$ and $\operatorname{Corr}\left(s_{M o t}, d_{S o r}\right)=-1$.

Fig 1. Upper triangle matrix of correlation plots between two selected disim's.

To adequately understand the similarities among disim's, cluster analysis is adopted. The correlation coefficient is converted into the distance in the eqn (59) to find clusters of disim's shown in Fig 2.

$$
\begin{equation*}
d_{D M}\left(d_{x}, d_{y}\right)=1-\left|\operatorname{Corr}\left(d_{x}, d_{y}\right)\right| \tag{58}
\end{equation*}
$$

The dendrogram representing the hierarchical clusters of disim's is produced by averaging 30 independent trials of the above experiment. It is built using the agglomerative single linkage with the average clustering method [1]. The vertical scale represents various disim's and the horizontal scale represents the closeness between two clusters.

The dendrogram representing the hierarchical clusters of disim's is produced by averaging 30 independent trials of the above experiment. It is built using the agglomerative single linkage with the average clustering method [1]. The vertical scale on
the left represents various disim's and the horizontal scale represents the closeness between two clusters of disim's. The dendrogram provides intuitive groupings of disim's. Some distance measures in syntactic groups are interspersed in the semantic groups. Here are a few simple observations.

Fig 2. Hierarchical Clusters of disim's.
Observation 1: if two measures are proportional to each other, i.e., $d_{x}=c d_{y}, d_{D M}\left(d_{x}, d_{y}\right)=0$.
Observation 2: if two measures are in distance/ similarity relation s.t. $d_{x}=1-s_{y}, d_{D M}\left(d_{x}, d_{y}\right)=0$.
Observation 3: if two measures are in distance/ similarity relation such that $s_{y}=1 / d_{x}, d_{D M}\left(d_{x}, d_{y}\right) \geq 0$. e.g, Kulczynski has $s_{k u l}=1 / d_{k u l}$ and $d_{D M}\left(s_{k u l}, d_{k u l}\right)>0$.

4 Conclusion

This article built the edifice of disim's by enumerating and categorizing a large variety of disim's for comparing nominal type histograms. Grouping aforementioned measures has concentrated upon two general aspects: syntactic similarity and semantics. The importance of finding suitable disim's cannot be overemphasized. There is a continual demand for better ones.

References:

1. R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, 2nd ed. Wiley, 2001
2. E. Deza and M.M. Deza, Dictionary of Distances, Elsevier, 2006
3. P. Zezula, G. Amato, V. Dohnal, and M. Batko, Similarity Search The Metric Space Approach, Springer, 2006
4. V. Monev, Introduction to Similarity Searching in Chemistry, MATCH Commun. Math. Comput. Chem. 51 pp. 7-38, 2004
5. D.G. Gavin, W.W. Oswald, E.R. Wahl, and J.W. Williams, A statistical approach to evaluating
distance metrics and analog assignments for pollen records, Quaternary Research 60, pp 356-367, 2003
6. S. Cha and S. N. Srihari, On Measuring the Distance between Histograms, in Pattern Recognition, Vol 35/6, pp 1355-1370, June 2002
7. T. Kailath, The divergence and bhattacharyya distance measures in signal selection, IEEE Trans. Commun. Technol. COM-15 (1) (1967) 52-60.
8. G.T. Toussaint, Bibliography on estimation of misclassification, IEEE Trans. Inform. Theory 20 (4) (1974) 472-479. pp. 21-24.
9. E.F. Krause, Taxicab Geometry An Adventure in Non-Euclidean Geometry
10. F. Heijden, R. Duin, D. Ridder, D. Tax, Classification, Parameter Estimation and State Estimation: An Engineering Approach Using MATLAB. John Wiley and Sons, 2004.
11. J. Looman and J.B. Campbell, Adaptation of Sorensen's K (1948) for estimating unit affinities in prairie vegetation. Ecology 41 (3): 409-416, 1960
12. T. Sørensen, A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biologiske Skrifter / Kongelige Danske Videnskabernes Selskab, 5 (4): 1-34, 1948.
13. J.R. Bray and J.T. Curtis, An ordination of the upland forest of the southern Winsconsin. Ecological Monographies, 27, 325-349, 1957.
14. J.C. Gower, General Coefficient of Similarity and Some of Its Properties, Biometrics 27, pp8578741971
15. A.D. Gordon, Classification. $2^{\text {nd }}$ ed. Chapman \& Hall/CRC, 1999
16. T.S. Hedges, 1976, An empirical modification to linear wave theory, Proc. Inst. Civ. Eng., 61, 575579.
17. B. V. K. Vijaya Kumar and L. G. Hassebrook, "Performance measures for correlation filters," Appl. Opt. 29, 2997-3006, 1990.
18. P. Jaccard, Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 1901, 547-579.
19. T.T. Tanimoto, IBM Internal Report Nov. 1957. 20. L. R. Dice, Measures of the amount of ecologic association between species, Ecology, 26:297-302, 1945
20. M. Morisita, Measuring of interspecific association and similarity between communities. Mem. Fac. Sci. Kyushu Univ. Ser. E (Biol.) 3:65-80, 1959.
21. S. Cha, S. Yoon, and C.C. Tappert, Enhancing Binary Feature Vector Similarity Measures, in

Journal of Pattern Recognition Research, Vol 1 No 1, pp 63-77, 2006
23. A. Bhattacharyya, On a measure of divergence between two statistical populations defined by probability distributions, Bull. Calcutta Math. Soc., vol. 35, pp. 99-109, 1943.
24. K. Matusita, Decision rules, based on the distance, for problems of fit, two samples, and estimation, Ann. Math. Statist. 26 631-640, 1955
25. K. Pearson, On the Criterion that a given system of deviations from the probable in the case of correlated system of variables is such that it can be reasonable supposed to have arisen from random sampling, Phil. Mag., 50, 157-172, 1900.
26. J. Neyman. Contributions to the theory of the χ^{2} test. In Proc. of the First Berkley Symposium on Mathematical Statistics and Probability, 1949.
27. S. S. DRAGOMIR, J. SUNDE and C. BUSE, New Inequalities for Jeffreys Divergence Measure, Tamsui Oxford Journal of Mathematical Sciences, 16(2), 295-309, 2000.
28. F. TOPSØE, Some Inequalities for Information Divergence and Related Measures of Discrimination, IEEE Trans. on Inform. Theory, IT46, 1602-1609, 2000.
29. T.F. Cox and M.A.A. Cox, Multidimensional Scaling, Chapman \& Hall/CRC 2 ${ }^{\text {nd }}$ ed. 2001
30. C.E. Shannon, A mathematical theory of communication, Bell System Tech. J. vol 27, 379423, 623-656, 1948.
31. S. Kullback, R.A. Leibler, On information and sufficiency, Ann. Math. Statist. 22, 79-86, 1951.
32. H. Jeffreys, An Invariant Form for the Prior Probability in Estimation Problems, Proc. Roy. Soc. Lon., Ser. A, 186, 453-461, 1946.
33. I.J. Taneja, Generalized Information Measures and Their Applications, 2001 on-line book: www.mtm.ufsc.br/~taneja/book/book.html
34. J. Lin, Divergence measures based on the Shannon entropy. IEEE Trans. on Information Theory, 37(1):145-151, 1991.
35. R. Sibson, Information Radius, Z. Wahrs. und verw Geb., 14, 149-160, 1969.
36. I.J. Taneja, New Developments in Generalized Information Measures, in Advances in Imaging and Electron Physics, 37-135, 1995.
37. P. Kumar and A. Johnson, On a symmetric divergence measure and information inequalities, Journal of Inequalities in pure and applied Mathematics, Vol 6, Issue 3, article 65, 2005.

