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Abstract: - The objective of this paper is to develop a new appearance based visual servoing method that needs 
no prior structuring of the environment and also eliminates the correspondence problem associated with 
conventional visual servoing methods. Detailed description of object appearance and its generation are 
provided in this paper. In addition, owing to the non-linear and high dimensional nature of the object 
appearance a Machine Learning method known as Reinforcement Learning is to generate the controller. 
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1 Introduction 
 
The integration of visual feedback into robotic 
manipulation systems is becoming an 
increasingly important area of research. 
Although the first systems that used visual 
feedback to control a robotic system appeared 
in the early 80’s [1], progress was slow. 
However, the pace of research has increased 
significantly in the last ten years, due to the 
development in several areas, especially 
computer vision and the availability of greater 
processing power. Therefore, it is now possible 
to run control loops with visual feedback at 
reasonable rates (approximately 50 Hz). Earlier 
on, slower hardware caused larger delays, thus 
making it impractical to run visual servo control 
loops in real time. 
 
Two major advantages over conventional 
sensing mechanisms are offered by the 
integration of vision into robotic systems. 
Firstly, vision sensors offer more information, 
and secondly they are cost effective. 
Conventional sensors, for instance 3D laser 
scanners can determine the distances of objects 
in the workspace. But this information cannot 
be used for object recognition. The second 

major advantage offered by vision sensors is 
that they are cost effective. Until recently, 
researchers had to manage with specialized 
expensive pixel processing hardware [2]. 
However, now with the advancement of 
microelectronics the vision sensors themselves 
along with the necessary data processing 
hardware are available at low prices.   
 
Formally, the above mentioned integration of 
visual feedback into a robotic system for the 
accomplishment of a manipulation task is 
known as visual servoing. The visual servoing 
method presented in this work, Appearance 
Based Visual Servoing eliminates the need for 
pose estimation and structuring of the 
environment as is needed in conventional visual 
servoing. Instead of estimating the pose of the 
object to be manipulated, or extracting any 
features from the image, the “appearance” of 
the object is used. This is done by using 
Angular Colour Co-occurrence Histograms, 
first proposed by [3]. This method also 
eliminates the correspondence problem 
associated with image based visual servoing. 
Owing to the nonlinear nature of the object 
appearance signal, the controller is generated 
using a machine learning strategy known as 
Reinforcement Learning.  

8th WSEAS Int. Conf. on ROBOTICS, CONTROL and  MANUFACTURING TECHNOLOGY (ROCOM '08),  Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-51-0 161 ISSN: 1790-5117

mailto:umar.khan@mail.au.edu.pk
mailto:kliaquat@yahoo.com
mailto:zahid_shahs@hotmail.com


 
2 Visual Servoing 
 
Formally visual servoing can be defined as “the 
use of one or more cameras and a computer 
vision system to control the position of the 
robot's end-effectors relative to the work piece 
as required by the task.” [2]. Visual servoing 
systems can be divided into two classes: 
Position Based Visual Servoing and Image 
Based Visual Servoing. Position Based Visual 
Servoing estimates the pose of the object to be 
manipulated, relative to the robot end effector. 
This method has two disadvantages. Firstly, 
model acquisition and calibration is never error 
free. Secondly, pose estimation requires a 
significant amount of computation, thus causing 
the system to get slower. Image Based Visual 
Servoing systems on the other hand, do not 
estimate the pose of the object. The end effector 
is controlled directly with the help of the 
features extracted from the image.  This 
eliminates the errors arising from pose 
estimation, and also reduces the computational 
requirements.  
 
The approach considered in this work can be 
classified as an image based visual servoing 
method. The difference is that instead of 
extracting features from the image, the 
“appearance” of the object is used as an input 
by the controller. The basic idea behind 
extraction of the appearance of an object is 
derived from Plenoptic Functions [4]. 
 
The key advantages offered by this scheme are 
that no pose estimation is necessary, and 
secondly no features have to be extracted. Thus 
no special color segments on the object, LED’s, 
or structuring of the environment in any other 
way are required.  The object only needs to 
have some arbitrary texture on it. Thus clearly, 
this scheme is more robust. 
 
 
3 The Visual Servoing Task 
 
The manipulator in this work is a KATANA 
6M five degree of freedom anthropomorphic 
arm. The object with respect to which the 

control loop must function is placed on a 
turntable in front of the katana. The rotation of 
the object object Roll is not known. The 
camera is placed in the center of the gripper. 
The gripper always looks towards the center of 
the object, at an elevation angle referred to as 
gripper Elevation, and with a rotation referred 
to as gripper Roll. These terms are illustrated 
in Figure 1. 
 

 
Fig-1.  An illustration of the task parameters 
 
As can be seen, the origin of the co-ordinate 
system is placed at the center of the turn table. 
The camera is placed in the gripper, and looks 
towards the origin. The purpose of the 
controller is to grasp the object that lies in front 
of the manipulator, using only the images 
acquired from the camera. This can be achieved 
by moving the gripper to a pose in which, the 
gripper Elevation is 90° and the gripper Roll is 
equal to the unknown object Roll. The strategy 
proposed in this work is simulated in virtual 
reality, using the Matlab Virtual Reality 
Toolbox. 
 
 
4  Image Processing 
 
The most important aspect of this thesis is the 
formal definition of the “appearance” of the 
object. This “appearance” is defined using the 
angular color co-occurrence histograms 
(ACCH). 
The ACCH’s are an extension of color co-
occurrence histograms (CCH). The basic idea 
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underlying CCH’s is that they count, starting 
with a reference pixel that is subsequently 
shifted across the image, the frequency of pixel 
pairs in a local environment of the reference 
pixel. In contrast to CCH’s, entries in ACCH’s 
are not only related to color but in addition to 
the orientations of the considered pixel pairs. 
Again, starting from the reference pixel, an 
angle to a pixel in the local environment is 
computed and assigned to a discrete angular 
interval. 
 
4.1 Color Co-occurrence Histograms 
 
CCH’s encompass a statistical description of 
the geometric color distribution of an object. A 
CCH count starting with a reference that is 
subsequently shifted across the image, the 
frequency of pixel pairs in a local environment 
of the reference pixel. The entries of the CCH 
contain the frequency of pixel pairs of a distinct 
color combination. The reference pixel together 
with its local environment is shifted pixel by 
pixel across a region of interest (ROI) for which 
the overall geometric color statistics are 
recorded. The counts in the CCH are 
normalized, such that the obtained statistics are 
independent of the scale of the object. One 
major problem with this approach is that the 
number of color pairs increases with the square 
of the number of colors. It is therefore 
necessary to limit the number of colors used for 
the generation of the histograms. This is done 
using the k-means color clustering algorithm.  
The color centers are distributed according to 
the pixel density in the color space. The k-
means clustering algorithm is described in 
detail in the next section. In addition, the 
histograms are made robust towards changing 
illumination by normalizing the color space. 
 
4.2  Angular Color Co-occurrence  
       Histograms 
 
In contrast to CCH’s, entries in ACCH’s are not 
only related to color but in addition to the 
orientations of the considered pixel pairs. 
ACCH’s constitute an extension to so-called 
normal CCH’s as they store additional 
geometric relations. In addition to the two pixel 

colours, they also contain information on the 
angle between both pixels.  
Again, starting from the reference pixel an 
angle to a pixel in the local environment is 
computed and assigned to a discrete angular 
interval. Figure 2 shows an object with two 
distinct colours. The local environment is 
partitioned into two angular sectors. Therefore, 
the histogram consists of six separate bins, 
namely blue-blue, blue-red and red-red pixel 
pairs, divided into two sectors with angles 
smaller or larger than 45°. Notice, that the 
ACCH does not distinguish between blue-red 
pixel pairs and red-blue pixel pairs. 
 
 

 
Fig-2.  Generation of an ACCH 
 
For the purpose of this work the images are 
colour segmented using 20 colours. 10 angular 
bins are used for the generation of the ACCH’s. 
Thus each ACCH has 2100 elements.  
 
 
5 Reinforcement Learning 
 
This section gives a basic overview to 
reinforcement learning theory. The first section 
explains the reinforcement learning problem 
along with an explanation of the necessary 
terms. The second section discusses two 
approaches to solve the reinforcement learning 
problem namely: Monte Carlo methods and 
Temporal Difference methods, respectively. 
 
5.1  Reinforcement Learning Problem 
  
Reinforcement learning is a machine learning 
method used to solve problems involving 
sequences of actions to achieve a desired 
objective. There are two classes of machine 
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learning methods: supervised learning methods 
and unsupervised learning methods. Supervised 
learning methods use training data to learn a 
function. The training data consists of a set of 
inputs and the corresponding set of correct 
outputs. In the case of unsupervised learning 
however, no training data is provided. The 
purpose of the learning algorithm is to learn to 
classify the input data. Two examples of 
unsupervised learning tasks are clustering and 
dimensionality reduction. 
 
Reinforcement Learning lies in the middle of 
these two extremes. No training data is 
provided as in the case of supervised learning. 
Although, a “hint” is provided regarding how 
good or bad a selected action is. This “hint” is 
given using a numerical reward signal. The two 
fundamental elements of a reinforcement 
learning mechanism are the agent and the 
environment.  The agent is the decision maker 
that decides which actions to take. The 
environment is every thing that the agent can 
perceive using its sensors. Figure 3 depicts the 
reinforcement learning scheme.                                    
                  

 
Fig.-3: Basic reinforcement learning scheme. 
 
Formally, let S be the set of all possible discrete 
environment states, and let A(S) be all the 
possible discrete actions for every state. The 
agent maintains a mapping from states to 
actions. This mapping denoted by ( , )s aπ  is 
known as the policy. ( , )s aπ  represents the 
probability of choosing action a in state s [5].  
At any given time t, the agent receives form the 
environment a state  (Figure 3). Based upon 
the policy 

ts

( , )s aπ , the agent generates an action 

. This is received by the environment and at 
the next time step, it responds with the new 
state 

ta

1ts +  and the reward . The objective of 
the agent is to maximize the received reward.  If 
all actions in all states are executed infinitely 
often, then the agent always learns the optimal 
policy. By following the actions recommended 
by the optimal policy π

1tr +

* (s, a), the received 
reward is maximized. All reinforcement 
learning algorithms must finally be able to 
generate this policy. 
 
5.2 The Solution Strategies  
 
This section gives an introduction to two 
methods to solve the reinforcement learning 
problem, namely Monte Carlo methods and 
temporal difference methods. None of these 
methods need a model of the environment. 
Monte Carlo methods however have the 
disadvantage that they require complete 
episodes of agent environment interaction in 
order to generate the optimal policy. Temporal 
difference methods on the other hand do not 
need to wait until the end of the episode and can 
learn after every time step. 
 
5.2.1  Monte Carlo Methods 
 
The agent learns his policy from scratch. Thus 
the policy that he follows initially is random. 
The basic idea underlying Monte Carlo methods 
is that this arbitrary policy is evaluated and then 
improved in alternating steps. The process of 
evaluation and improvement is continued until 
the optimal policy is generated.  
 
5.2.2 Temporal Difference Learning 
 
The second method used to solve the 
reinforcement learning problem is the temporal 
difference method. The major difference 
between this and the Monte Carlo method is, 
that it is not necessary to wait until the end of 
the episode to update the value functions. 
Rather, the updates can be made every time the 
agent executes an action and moves into a new 
state. This is a major improvement over Monte 
Carlo methods. In most real applications the 
agent environment interaction can get very 
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long, and thus it is not feasible to wait until the 
end of the episode. In some applications, there 
may be no episodes at all.  
 
In order to generate the optimal policy starting 
from a completely arbitrary one, the arbitrary 
policy is improved gradually. Unlike the Monte 
Carlo case however, where the action values 

 are updated at the end of the episode, 
updates are made at every step.  

( , )Q s aπ

 
The temporal difference method used in this 
work is known as Q Learning.  This method 
makes use of the action value function to 
generate the optimal policy. Once the agent is in 
a particular state , it chooses the action . The 
action selection is done using an 

ts ta

ε -greedy 
strategy described in [5]. Afterwards the reward 
received , and the maximum action value for 
actions in the next state is stored.  The 
action value of the state action pair ( ), is 
updated using the following equation: 

tr

1+ts

tt as ,

 
]),(),(max[),(),( 1 ttt

a
ttttt asQasQrasQasQ −++← +γα ,      

   
where α  denotes the learning rate. This is the 
rate at which the current action value of the 
state action pair  is moved towards its 
new updated value 

),( tt as

),(max 1 asQr t
a

t ++ γ . This is 

due to the fact that the action value function for 
all the state action pairs is initially arbitrary. 
Thus, the action values of the next state  
cannot be “trusted” completely. Therefore the 
action values are gradually moved towards their 
estimates. The factor 

1+ts

γ  determines the rate of 
propogation of the Q values backwards from the 
goal state to the starting state. 
 
The Q values for all possible state action pairs 
are stored in an array Q. The number of 
elements in this array is equal to the number of 
state action pairs. This array is initialized with 
random values. In order to guarantee 
convergence to the optimal policy, all state 
action pairs must be visited infinitely often. 
Therefore, the exploration loop must go on 

forever. At the start of the loop, the agent 
observes the current state of the environment 

.  The agent then chooses the action to be 
executed in this state. The action selection is 
done in exactly the same way as in the case of 
the Monte Carlo method. The chosen action 
referred to as 

currents

a′ is executed and the new state 
 and reward r are observed. The Q value for 

action 
news

a′ in state  is then updated using 
the standard Q learning equation. These steps 
are then repeated forever. 

currents

 
 
6 Simulation Setup and Results 
 
6.1 Simulation Setup 
 
This section describes in detail the 
implementation of the reinforcement learning 
method for the solution of the visual servoing 
task. 
 
6.1.1 The Agent 
 
The agent consists of a five degree of freedom 
manipulator, the Katana 6M (Figure 1) from 
Neuronics AG, along with a CCD camera 
mounted in the center of the gripper. In order to 
reduce exploration time the arm always looks 
towards the center of the object. Only the 
gripper Elevation and gripper Roll of the 
manipulator can change.  
 
6.1.2 The Environment 
 
The environment is an unmodeled textured 
object, in this case a MilkPack (Figure 1). It is 
placed on a turn turntable, which is rotated by 
an unknown rotation object Roll.  

 
6.1.3 Action Space 
 
The Katana is capable of looking upon an 
object from elevation angles of 45° to 90°, and 
the gripper can be rotated 360°. Therefore the 
pose of the TCP is defined by two parameters, 
gripper Elevation and gripper Roll (Figure 1). 
The action vector therefore has two elements, 
the change in the elevation ΔElevation of the 
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arm and the change in the rotation of the gripper  
ΔRoll. The actions are discredited. The ΔRoll 
can have fixed values of 5°, 0° ,-5° , whereas 
the ΔElevation can have values of 0° and 5°. 
This combination generates five possible 
actions. 
 
Once the reinforcement learning algorithm 
decides which action to take, the final joint 
motor commands are generated using the 
inverse kinematics of the arm. For the purpose 
of bringing the simulations closer to the real 
environment, noise is also added to the joints. 
No noise is added to the acquired images or the 
histograms currently. 
 
6.1.4 State Space 
                       
The state is defined by the ACCH for a 
particular pose. The image size is 200×200 
pixels. It is color segmented with a resolution of 
20 colors. Finally it is normalized and then the 
corresponding ACCH is generated. 10 angular 
bins are used for the generation of ACCH’s. 
 
Since noise is added to the joints of the 
manipulator, there is some uncertainty in the 
actual position of gripper. If no noise is added 
the states will always have fixed values. But if 
noise is added some randomness is always 
associated with them. This makes the states 
continuous.  
 
6.1.5 The Goal State 
 
The goal state is defined by the ACCH which is 
generated when, 
 gripper Elevation = 90° 
 gripper Roll          = object Roll    
 
6.1.6 The Reward Function 
 
The reward function is purely image based. 
Ideally the reward scheme could be such that a 
positive reward is given upon reaching the goal 
state and nothing otherwise. But the learning 
can be made faster if negative rewards are given 
for the crash states. Crash states occur, if the 
gripper goes all the way to the top of the object, 
however its rotation (gripper Roll) is still not 

equal to the rotation of the object(object Roll). 
Therefore three kinds of states are possible: 
goal state, crash states and intermediate states. 
 
6.2 Simulation Results 
 
6.2.1 Q-Learning 
 
The controller is tested for all values of object 
Roll from 0° to 359°.  For every value, the 
gripper Elevation and gripper Roll are both set 
to 0°. The controller then moves the gripper to 
its final position. Ideally, in the final position, 
the gripper Elevation should be 90° and the 
gripper Roll should be equal to the object Roll. 
In this position, the gripper can easily grasp the 
object. 
 
After testing the controller for all values of 
object Roll, it is observed that when the gripper 
reaches the top of the object, its rotation gripper 
Roll comes close to the object Roll, although 
not perfectly. Figure 4 shows these errors, 
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Fig.-4. Roll errors. 

 
The average error is 7.86°. With such errors it is 
still possible to grasp the object. In order to 
visualize the learned Q values the object Roll is 
set to 50°. The gripper Elevation and gripper 
Roll are then set to all possible values between 
0° and 90° at intervals of 5°. At each of these 
poses, the ACCH’s are generated. Then the 
closest match is searched in amongst the stored 
ACCH’s. The Q values are then stored. For 
interpolation purposes they are passed through a 
guassian kernel. Figure 5 below show the 
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learned Q values for action 3 
(ΔElevation=5ο,ΔRoll=0ο). The goal state in 
this case corresponds to a gripper Roll of 50° 
and gripper Elevation of 90°. The gripper 
always starts from a gripper Roll of 0° and 
gripper Elevation of 0°. As can be seen, the 
highest values are in the region of the goal state 
and get lower towards the start state. This is 
because close to the goal state, action 3 nearly 
always yields a positive reward. 
 
 

  
Figure 5: Learned Q values. 

 
6.2.2 Monte Carlo Method 
 
The controller is tested for all values of object 
Roll from 0° to 359°.  For every value, the 
gripper Elevation and gripper Roll are both set 
to 0°. The controller then moves the gripper to 
its final position. Ideally, in the final position, 
the gripper Elevation should be 90° and the 
gripper Roll should be equal to the object Roll. 
In this position, the gripper can easily grasp the 
object. After testing the controller for all values 
of object Roll, it is observed that when the 
gripper reaches the top of the object, its rotation 
gripper Roll comes close to the object Roll, but 
not perfectly. Figure 6 gives these errors for all 
object rotations 

 
 

Figure 6: Roll errors. 
 
The average error is 9.25°. For values of object 
Roll close to 270°, the errors are very high. 
However for the other object Roll values, they 
are low. With such errors it is still possible for 
the gripper to grasp the object. 
 
Figure 7 gives the learned Q values for action 3. 
The plot is generated in the same way as in 
section 6.2.1.The goal state in this case again 
corresponds to a gripper Roll of 50° and gripper 
Elevation of 90°. The gripper always starts from 
a gripper Roll of 0° and gripper Elevation of 0°. 
Just like the values learned with the Q learning 
algorithm, the highest values are in the region 
of the goal state and get lower towards the start 
state.  
 

 
Figure 7: Learned Q values. 
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7 Conclusion 
 
A new machine learning based visual servoing 
approach was investigated. The results clearly 
demonstrate that controller thus generated is 
adequate for most object grasping application. It 
remains however to be seen if the large number 
of trails necessary for the controller generation 
can be reduced so that the approach can be 
extended to a real manipulator and the approach 
be tested in reality. 
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