
Reinforcement Learning for Appearance Based Visual Servoing in
Robotic Manipulation

UMAR KHAN, LIAQUAT ALI KHAN, S. ZAHID HUSSAIN

Department of Mechatronics Engineering
AIR University
E-9, Islamabad

PAKISTAN
umar.khan@mail.au.edu.pk, kliaquat@yahoo.com,

 http://www.au.edu.pk

Abstract: - The objective of this paper is to develop a new appearance based visual servoing method that needs
no prior structuring of the environment and also eliminates the correspondence problem associated with
conventional visual servoing methods. Detailed description of object appearance and its generation are
provided in this paper. In addition, owing to the non-linear and high dimensional nature of the object
appearance a Machine Learning method known as Reinforcement Learning is to generate the controller.

Key-Words: - Visual Servoing, Reinforcement Learning, Machine Learning, Robotic Manipulation

1 Introduction

The integration of visual feedback into robotic
manipulation systems is becoming an
increasingly important area of research.
Although the first systems that used visual
feedback to control a robotic system appeared
in the early 80’s [1], progress was slow.
However, the pace of research has increased
significantly in the last ten years, due to the
development in several areas, especially
computer vision and the availability of greater
processing power. Therefore, it is now possible
to run control loops with visual feedback at
reasonable rates (approximately 50 Hz). Earlier
on, slower hardware caused larger delays, thus
making it impractical to run visual servo control
loops in real time.

Two major advantages over conventional
sensing mechanisms are offered by the
integration of vision into robotic systems.
Firstly, vision sensors offer more information,
and secondly they are cost effective.
Conventional sensors, for instance 3D laser
scanners can determine the distances of objects
in the workspace. But this information cannot
be used for object recognition. The second

major advantage offered by vision sensors is
that they are cost effective. Until recently,
researchers had to manage with specialized
expensive pixel processing hardware [2].
However, now with the advancement of
microelectronics the vision sensors themselves
along with the necessary data processing
hardware are available at low prices.

Formally, the above mentioned integration of
visual feedback into a robotic system for the
accomplishment of a manipulation task is
known as visual servoing. The visual servoing
method presented in this work, Appearance
Based Visual Servoing eliminates the need for
pose estimation and structuring of the
environment as is needed in conventional visual
servoing. Instead of estimating the pose of the
object to be manipulated, or extracting any
features from the image, the “appearance” of
the object is used. This is done by using
Angular Colour Co-occurrence Histograms,
first proposed by [3]. This method also
eliminates the correspondence problem
associated with image based visual servoing.
Owing to the nonlinear nature of the object
appearance signal, the controller is generated
using a machine learning strategy known as
Reinforcement Learning.

8th WSEAS Int. Conf. on ROBOTICS, CONTROL and MANUFACTURING TECHNOLOGY (ROCOM '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-51-0 161 ISSN: 1790-5117

mailto:umar.khan@mail.au.edu.pk
mailto:kliaquat@yahoo.com
mailto:zahid_shahs@hotmail.com

2 Visual Servoing

Formally visual servoing can be defined as “the
use of one or more cameras and a computer
vision system to control the position of the
robot's end-effectors relative to the work piece
as required by the task.” [2]. Visual servoing
systems can be divided into two classes:
Position Based Visual Servoing and Image
Based Visual Servoing. Position Based Visual
Servoing estimates the pose of the object to be
manipulated, relative to the robot end effector.
This method has two disadvantages. Firstly,
model acquisition and calibration is never error
free. Secondly, pose estimation requires a
significant amount of computation, thus causing
the system to get slower. Image Based Visual
Servoing systems on the other hand, do not
estimate the pose of the object. The end effector
is controlled directly with the help of the
features extracted from the image. This
eliminates the errors arising from pose
estimation, and also reduces the computational
requirements.

The approach considered in this work can be
classified as an image based visual servoing
method. The difference is that instead of
extracting features from the image, the
“appearance” of the object is used as an input
by the controller. The basic idea behind
extraction of the appearance of an object is
derived from Plenoptic Functions [4].

The key advantages offered by this scheme are
that no pose estimation is necessary, and
secondly no features have to be extracted. Thus
no special color segments on the object, LED’s,
or structuring of the environment in any other
way are required. The object only needs to
have some arbitrary texture on it. Thus clearly,
this scheme is more robust.

3 The Visual Servoing Task

The manipulator in this work is a KATANA
6M five degree of freedom anthropomorphic
arm. The object with respect to which the

control loop must function is placed on a
turntable in front of the katana. The rotation of
the object object Roll is not known. The
camera is placed in the center of the gripper.
The gripper always looks towards the center of
the object, at an elevation angle referred to as
gripper Elevation, and with a rotation referred
to as gripper Roll. These terms are illustrated
in Figure 1.

Fig-1. An illustration of the task parameters

As can be seen, the origin of the co-ordinate
system is placed at the center of the turn table.
The camera is placed in the gripper, and looks
towards the origin. The purpose of the
controller is to grasp the object that lies in front
of the manipulator, using only the images
acquired from the camera. This can be achieved
by moving the gripper to a pose in which, the
gripper Elevation is 90° and the gripper Roll is
equal to the unknown object Roll. The strategy
proposed in this work is simulated in virtual
reality, using the Matlab Virtual Reality
Toolbox.

4 Image Processing

The most important aspect of this thesis is the
formal definition of the “appearance” of the
object. This “appearance” is defined using the
angular color co-occurrence histograms
(ACCH).
The ACCH’s are an extension of color co-
occurrence histograms (CCH). The basic idea

 2

8th WSEAS Int. Conf. on ROBOTICS, CONTROL and MANUFACTURING TECHNOLOGY (ROCOM '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-51-0 162 ISSN: 1790-5117

underlying CCH’s is that they count, starting
with a reference pixel that is subsequently
shifted across the image, the frequency of pixel
pairs in a local environment of the reference
pixel. In contrast to CCH’s, entries in ACCH’s
are not only related to color but in addition to
the orientations of the considered pixel pairs.
Again, starting from the reference pixel, an
angle to a pixel in the local environment is
computed and assigned to a discrete angular
interval.

4.1 Color Co-occurrence Histograms

CCH’s encompass a statistical description of
the geometric color distribution of an object. A
CCH count starting with a reference that is
subsequently shifted across the image, the
frequency of pixel pairs in a local environment
of the reference pixel. The entries of the CCH
contain the frequency of pixel pairs of a distinct
color combination. The reference pixel together
with its local environment is shifted pixel by
pixel across a region of interest (ROI) for which
the overall geometric color statistics are
recorded. The counts in the CCH are
normalized, such that the obtained statistics are
independent of the scale of the object. One
major problem with this approach is that the
number of color pairs increases with the square
of the number of colors. It is therefore
necessary to limit the number of colors used for
the generation of the histograms. This is done
using the k-means color clustering algorithm.
The color centers are distributed according to
the pixel density in the color space. The k-
means clustering algorithm is described in
detail in the next section. In addition, the
histograms are made robust towards changing
illumination by normalizing the color space.

4.2 Angular Color Co-occurrence
 Histograms

In contrast to CCH’s, entries in ACCH’s are not
only related to color but in addition to the
orientations of the considered pixel pairs.
ACCH’s constitute an extension to so-called
normal CCH’s as they store additional
geometric relations. In addition to the two pixel

colours, they also contain information on the
angle between both pixels.
Again, starting from the reference pixel an
angle to a pixel in the local environment is
computed and assigned to a discrete angular
interval. Figure 2 shows an object with two
distinct colours. The local environment is
partitioned into two angular sectors. Therefore,
the histogram consists of six separate bins,
namely blue-blue, blue-red and red-red pixel
pairs, divided into two sectors with angles
smaller or larger than 45°. Notice, that the
ACCH does not distinguish between blue-red
pixel pairs and red-blue pixel pairs.

Fig-2. Generation of an ACCH

For the purpose of this work the images are
colour segmented using 20 colours. 10 angular
bins are used for the generation of the ACCH’s.
Thus each ACCH has 2100 elements.

5 Reinforcement Learning

This section gives a basic overview to
reinforcement learning theory. The first section
explains the reinforcement learning problem
along with an explanation of the necessary
terms. The second section discusses two
approaches to solve the reinforcement learning
problem namely: Monte Carlo methods and
Temporal Difference methods, respectively.

5.1 Reinforcement Learning Problem

Reinforcement learning is a machine learning
method used to solve problems involving
sequences of actions to achieve a desired
objective. There are two classes of machine

 3

8th WSEAS Int. Conf. on ROBOTICS, CONTROL and MANUFACTURING TECHNOLOGY (ROCOM '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-51-0 163 ISSN: 1790-5117

learning methods: supervised learning methods
and unsupervised learning methods. Supervised
learning methods use training data to learn a
function. The training data consists of a set of
inputs and the corresponding set of correct
outputs. In the case of unsupervised learning
however, no training data is provided. The
purpose of the learning algorithm is to learn to
classify the input data. Two examples of
unsupervised learning tasks are clustering and
dimensionality reduction.

Reinforcement Learning lies in the middle of
these two extremes. No training data is
provided as in the case of supervised learning.
Although, a “hint” is provided regarding how
good or bad a selected action is. This “hint” is
given using a numerical reward signal. The two
fundamental elements of a reinforcement
learning mechanism are the agent and the
environment. The agent is the decision maker
that decides which actions to take. The
environment is every thing that the agent can
perceive using its sensors. Figure 3 depicts the
reinforcement learning scheme.

Fig.-3: Basic reinforcement learning scheme.

Formally, let S be the set of all possible discrete
environment states, and let A(S) be all the
possible discrete actions for every state. The
agent maintains a mapping from states to
actions. This mapping denoted by (,)s aπ is
known as the policy. (,)s aπ represents the
probability of choosing action a in state s [5].
At any given time t, the agent receives form the
environment a state (Figure 3). Based upon
the policy

ts

(,)s aπ , the agent generates an action

. This is received by the environment and at
the next time step, it responds with the new
state

ta

1ts + and the reward . The objective of
the agent is to maximize the received reward. If
all actions in all states are executed infinitely
often, then the agent always learns the optimal
policy. By following the actions recommended
by the optimal policy π

1tr +

* (s, a), the received
reward is maximized. All reinforcement
learning algorithms must finally be able to
generate this policy.

5.2 The Solution Strategies

This section gives an introduction to two
methods to solve the reinforcement learning
problem, namely Monte Carlo methods and
temporal difference methods. None of these
methods need a model of the environment.
Monte Carlo methods however have the
disadvantage that they require complete
episodes of agent environment interaction in
order to generate the optimal policy. Temporal
difference methods on the other hand do not
need to wait until the end of the episode and can
learn after every time step.

5.2.1 Monte Carlo Methods

The agent learns his policy from scratch. Thus
the policy that he follows initially is random.
The basic idea underlying Monte Carlo methods
is that this arbitrary policy is evaluated and then
improved in alternating steps. The process of
evaluation and improvement is continued until
the optimal policy is generated.

5.2.2 Temporal Difference Learning

The second method used to solve the
reinforcement learning problem is the temporal
difference method. The major difference
between this and the Monte Carlo method is,
that it is not necessary to wait until the end of
the episode to update the value functions.
Rather, the updates can be made every time the
agent executes an action and moves into a new
state. This is a major improvement over Monte
Carlo methods. In most real applications the
agent environment interaction can get very

 4

8th WSEAS Int. Conf. on ROBOTICS, CONTROL and MANUFACTURING TECHNOLOGY (ROCOM '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-51-0 164 ISSN: 1790-5117

long, and thus it is not feasible to wait until the
end of the episode. In some applications, there
may be no episodes at all.

In order to generate the optimal policy starting
from a completely arbitrary one, the arbitrary
policy is improved gradually. Unlike the Monte
Carlo case however, where the action values

 are updated at the end of the episode,
updates are made at every step.

(,)Q s aπ

The temporal difference method used in this
work is known as Q Learning. This method
makes use of the action value function to
generate the optimal policy. Once the agent is in
a particular state , it chooses the action . The
action selection is done using an

ts ta

ε -greedy
strategy described in [5]. Afterwards the reward
received , and the maximum action value for
actions in the next state is stored. The
action value of the state action pair (), is
updated using the following equation:

tr

1+ts

tt as ,

]),(),(max[),(),(1 ttt

a
ttttt asQasQrasQasQ −++← +γα ,

where α denotes the learning rate. This is the
rate at which the current action value of the
state action pair is moved towards its
new updated value

),(tt as

),(max 1 asQr t
a

t ++ γ . This is

due to the fact that the action value function for
all the state action pairs is initially arbitrary.
Thus, the action values of the next state
cannot be “trusted” completely. Therefore the
action values are gradually moved towards their
estimates. The factor

1+ts

γ determines the rate of
propogation of the Q values backwards from the
goal state to the starting state.

The Q values for all possible state action pairs
are stored in an array Q. The number of
elements in this array is equal to the number of
state action pairs. This array is initialized with
random values. In order to guarantee
convergence to the optimal policy, all state
action pairs must be visited infinitely often.
Therefore, the exploration loop must go on

forever. At the start of the loop, the agent
observes the current state of the environment

. The agent then chooses the action to be
executed in this state. The action selection is
done in exactly the same way as in the case of
the Monte Carlo method. The chosen action
referred to as

currents

a′ is executed and the new state
 and reward r are observed. The Q value for

action
news

a′ in state is then updated using
the standard Q learning equation. These steps
are then repeated forever.

currents

6 Simulation Setup and Results

6.1 Simulation Setup

This section describes in detail the
implementation of the reinforcement learning
method for the solution of the visual servoing
task.

6.1.1 The Agent

The agent consists of a five degree of freedom
manipulator, the Katana 6M (Figure 1) from
Neuronics AG, along with a CCD camera
mounted in the center of the gripper. In order to
reduce exploration time the arm always looks
towards the center of the object. Only the
gripper Elevation and gripper Roll of the
manipulator can change.

6.1.2 The Environment

The environment is an unmodeled textured
object, in this case a MilkPack (Figure 1). It is
placed on a turn turntable, which is rotated by
an unknown rotation object Roll.

6.1.3 Action Space

The Katana is capable of looking upon an
object from elevation angles of 45° to 90°, and
the gripper can be rotated 360°. Therefore the
pose of the TCP is defined by two parameters,
gripper Elevation and gripper Roll (Figure 1).
The action vector therefore has two elements,
the change in the elevation ΔElevation of the

 5

8th WSEAS Int. Conf. on ROBOTICS, CONTROL and MANUFACTURING TECHNOLOGY (ROCOM '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-51-0 165 ISSN: 1790-5117

arm and the change in the rotation of the gripper
ΔRoll. The actions are discredited. The ΔRoll
can have fixed values of 5°, 0° ,-5° , whereas
the ΔElevation can have values of 0° and 5°.
This combination generates five possible
actions.

Once the reinforcement learning algorithm
decides which action to take, the final joint
motor commands are generated using the
inverse kinematics of the arm. For the purpose
of bringing the simulations closer to the real
environment, noise is also added to the joints.
No noise is added to the acquired images or the
histograms currently.

6.1.4 State Space

The state is defined by the ACCH for a
particular pose. The image size is 200×200
pixels. It is color segmented with a resolution of
20 colors. Finally it is normalized and then the
corresponding ACCH is generated. 10 angular
bins are used for the generation of ACCH’s.

Since noise is added to the joints of the
manipulator, there is some uncertainty in the
actual position of gripper. If no noise is added
the states will always have fixed values. But if
noise is added some randomness is always
associated with them. This makes the states
continuous.

6.1.5 The Goal State

The goal state is defined by the ACCH which is
generated when,
 gripper Elevation = 90°
 gripper Roll = object Roll

6.1.6 The Reward Function

The reward function is purely image based.
Ideally the reward scheme could be such that a
positive reward is given upon reaching the goal
state and nothing otherwise. But the learning
can be made faster if negative rewards are given
for the crash states. Crash states occur, if the
gripper goes all the way to the top of the object,
however its rotation (gripper Roll) is still not

equal to the rotation of the object(object Roll).
Therefore three kinds of states are possible:
goal state, crash states and intermediate states.

6.2 Simulation Results

6.2.1 Q-Learning

The controller is tested for all values of object
Roll from 0° to 359°. For every value, the
gripper Elevation and gripper Roll are both set
to 0°. The controller then moves the gripper to
its final position. Ideally, in the final position,
the gripper Elevation should be 90° and the
gripper Roll should be equal to the object Roll.
In this position, the gripper can easily grasp the
object.

After testing the controller for all values of
object Roll, it is observed that when the gripper
reaches the top of the object, its rotation gripper
Roll comes close to the object Roll, although
not perfectly. Figure 4 shows these errors,

0 50 100 150 200 250 300 350
0

5

10

15

20

25

Object Roll

R
ol

l E
rro

rs

Fig.-4. Roll errors.

The average error is 7.86°. With such errors it is
still possible to grasp the object. In order to
visualize the learned Q values the object Roll is
set to 50°. The gripper Elevation and gripper
Roll are then set to all possible values between
0° and 90° at intervals of 5°. At each of these
poses, the ACCH’s are generated. Then the
closest match is searched in amongst the stored
ACCH’s. The Q values are then stored. For
interpolation purposes they are passed through a
guassian kernel. Figure 5 below show the

 6

8th WSEAS Int. Conf. on ROBOTICS, CONTROL and MANUFACTURING TECHNOLOGY (ROCOM '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-51-0 166 ISSN: 1790-5117

learned Q values for action 3
(ΔElevation=5ο,ΔRoll=0ο). The goal state in
this case corresponds to a gripper Roll of 50°
and gripper Elevation of 90°. The gripper
always starts from a gripper Roll of 0° and
gripper Elevation of 0°. As can be seen, the
highest values are in the region of the goal state
and get lower towards the start state. This is
because close to the goal state, action 3 nearly
always yields a positive reward.

Figure 5: Learned Q values.

6.2.2 Monte Carlo Method

The controller is tested for all values of object
Roll from 0° to 359°. For every value, the
gripper Elevation and gripper Roll are both set
to 0°. The controller then moves the gripper to
its final position. Ideally, in the final position,
the gripper Elevation should be 90° and the
gripper Roll should be equal to the object Roll.
In this position, the gripper can easily grasp the
object. After testing the controller for all values
of object Roll, it is observed that when the
gripper reaches the top of the object, its rotation
gripper Roll comes close to the object Roll, but
not perfectly. Figure 6 gives these errors for all
object rotations

Figure 6: Roll errors.

The average error is 9.25°. For values of object
Roll close to 270°, the errors are very high.
However for the other object Roll values, they
are low. With such errors it is still possible for
the gripper to grasp the object.

Figure 7 gives the learned Q values for action 3.
The plot is generated in the same way as in
section 6.2.1.The goal state in this case again
corresponds to a gripper Roll of 50° and gripper
Elevation of 90°. The gripper always starts from
a gripper Roll of 0° and gripper Elevation of 0°.
Just like the values learned with the Q learning
algorithm, the highest values are in the region
of the goal state and get lower towards the start
state.

Figure 7: Learned Q values.

 7

8th WSEAS Int. Conf. on ROBOTICS, CONTROL and MANUFACTURING TECHNOLOGY (ROCOM '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-51-0 167 ISSN: 1790-5117

7 Conclusion

A new machine learning based visual servoing
approach was investigated. The results clearly
demonstrate that controller thus generated is
adequate for most object grasping application. It
remains however to be seen if the large number
of trails necessary for the controller generation
can be reduced so that the approach can be
extended to a real manipulator and the approach
be tested in reality.

References:

[1] Sanderson and Weiss, Adaptive Visual Sevo
Control of Robots, Robot Vision, 1983.

[2] S. Hutchinson, G. Hager and P. Corke, A

tutorial on Visual Servo Control, IEEE
Trans. On Automation and Robotics,
12(5):651-670, October 1996.

[3] F. Hoffmann, S. Ekvall, D. Kragic, Object

Recognition and Pose Estimation using
Color Coocurrence Histograms and
Geometric Modelling, Image and Vision
Computing, 2005.

[4] Edward H.Adelson and James R.Bergen,

The Plenoptic Function and the Elements
of Early Vision. Computational Models of
Visual Processing, Cambridge, MA:MIT
Press 1991.

[5] R.S. Sutton and A.G. Barto,Reinforcement

Learning: An Introduction, MIT Press 1998.

 8

8th WSEAS Int. Conf. on ROBOTICS, CONTROL and MANUFACTURING TECHNOLOGY (ROCOM '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-51-0 168 ISSN: 1790-5117

