
A Lightweight Web-based Application Framework
for Web 2.0 Using Python

ANDY HON WAI CHUN

Department of Computer Science
City University of Hong Kong

Tat Chee Avenue, Kowloon Tong
HONG KONG

andy.chun@cityu.edu.hk http://www.cs.cityu.edu.hk/~hwchun

Abstract: - This paper provides an overview of the design and architecture of a simple and yet powerful
lightweight web-based application framework called the “FOA Application Framework.” It follows a Model-
View-Controller (MVC) architectural design pattern. The framework is Python-based and provides role-based
access as well as a lightweight template engine. The simple syntax of Python makes the FOA framework very
easy to use. It operates within a Solaris environment using Apache as the web server. The City University of
Hong Kong recently used this framework to create a Web 2.0 AI rostering system for the Equestrian Events of
Good Luck Beijing Games that were held in 2007 in Hong Kong in preparation for the 2008 Beijing
Olympics.

Key-Words: - Web-based application framework, template engine, Python, Web 2.0

1 Introduction
In today’s rapid paced and highly competitive
society, when an organization has a business case
for a new IT system, it usually does not have time to
wait a year or several months for implementation –
it would most likely need it within a few weeks or a
couple of months. Such was the case in May 2007
when we were commissioned to create a volunteer
management system to manage all the volunteers for
the Equestrian Events in the Good Luck Beijing
Games [3], which were preparation games for the
2008 Beijing Olympics [1, 2]. We had only 6 weeks
to design, implement and test the system.

Fortunately, for us, we had a reliable and robust
application framework that allows us to quickly
create prototypes and refine them in Rapid
Application Development (RAD) manner [4]. Our
framework is called the “FOA Application
Framework.” The FOA Application Framework is
Python-based [5]. Python is also known to be one of
the most productive and easiest to use modern
programming languages to date. This further
improves the overall efficiency of the project.

This paper describes the overall design and

architecture of the “FOA Application Framework.”
It uses the Good Luck Beijing volunteer
management system as an example of how we
leveraged features within the framework to quickly
and successfully create the system within only a few

weeks’ time to help Hong Kong pass the
International Olympic Committee’s readiness
requirements for the 2008 Beijing Olympics.

2 Volunteer Management
The volunteer management system for the Hong
Kong Equestrian Events is called the “Workforce
Management System” (WMS). It is a typical Web
2.0 [6] JavaScript-based rich internet application
(RIA) [7, 8] Server-side services were implemented
using our own lightweight FOA Application
Framework.

The WMS is a secured role-based [9]
application with 2 main classes of users –
volunteers/staffs, and administrators/planners.
Volunteers/staffs have access to WMS features to
update their profiles, such as addresses, phone
numbers, etc., as well as availability and uniform
size information. They can of course use WMS to
check their rosters/ schedules, as well as
individual/group messages and announcements from
the administrators/planners.

Administrators/planners, on the other hand,

have access to WMS administrative features to
search and retrieve information related to individual
volunteers/staffs, define shifts and generate rosters,
and send messages/announcements. Figure 1 is an
example of a typical “administrator” screen in the

7th WSEAS Int. Conf. on APPLIED COMPUTER & APPLIED COMPUTATIONAL SCIENCE (ACACOS '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-49-7 324 ISSN: 1790-5117

WMS; this particular screen shows part of the roster
for one of the divisions. The cells are colored to
indicate the first shift the volunteer/staff is assigned
to for a particular day. White cells indicate that a
volunteer/staff is not available on that day. Red
indicates a conflict; either the staff is not available
or overlapping assignments were made. Pink
indicates that the volunteer/staff is available but not
assigned any duties. Mousing over the cell displays
details of the assignment. Clicking on any cell will
display a form to allow the administrator to edit the
assignment.

Figure 1. The WMS Roster Screen

3 System Architecture
The system architecture of WMS is similar to other
modern Web 2.0 applications. It is based on a
distributed multi-tiered Web-based architecture. The
client-tier consists of the JavaScript-based RIA
client as well as the AJAX-engine. The Web server
tier handles the HTTP requests and contains our
FOA Application Framework. Dynamic pages are
composed using our FOA Template Engine. The
application server consists of the domain objects and
business logic coupled with an Artificial Intelligence
(AI) Engine. The database tier is a persistent store of
these domain objects. In addition, the FOA
Application Framework maintains a database log of
every single system access and action taken. Figure

2 shows the system architecture we used to create
the WMS.

Figure 2. The Architecture of the WMS.

The following describes the design and structure
of the FOA Application Framework as well as its
underlying FOA Template Engine.

4 FOA Template Engine
The main task for the “FOA Template Engine” is to
provide mechanisms to define screen templates for
dynamic web pages. Our lightweight template
engine operates on top of the Apache [10] web
server using the mod_python module [11] that
provides Python support and Python Server Pages
(PSP) [12]. Python is a modern computer language
with a very simple syntax. It is considered by many
as one of the more productive and easiest language
to use.

However, PSP technology alone only allows
one to embed server-side Python code into HTML
pages. It does not provide a well-defined mechanism

7th WSEAS Int. Conf. on APPLIED COMPUTER & APPLIED COMPUTATIONAL SCIENCE (ACACOS '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-49-7 325 ISSN: 1790-5117

to define page layout, page components nor dynamic
page composition, i.e., how components of a page
change depending on desired view or user profile.

Our lightweight template engine allows us to

quickly and very easily create a template layout,
define the components of the template, and have
dynamic content be filled in using PSP. A new
screen can be added within minutes, simply by
creating a new PSP page (for the dynamic content)
and registering the page with our framework. This
greatly improves productivity during prototyping
and rapid application development.

Our FOA frameworks were created by making

heavy use of Python’s meta-programming
capabilities through the use of the “decorators” [13]
language construct, which greatly simplifies
application coding. At a very high level, Python
decorators may seem similar to meta-programming
constructs in other languages, such as Java
“annotations” [14] and .Net “attributes” [15].
However, because of Python’s dynamic nature,
“decorators” are actually quite different from its
Java or .Net counterparts.

Syntactically, Python decorators are similar to

Java annotations and use the @-symbol. However,
Java "annotations" do not directly affect the
semantics of a program. .Net “attributes” also
perform a “declarative” function and do not modify
their referents. In contrast, Python decorators, takes
one function and returns another, possibly with
modified semantics depending on the dynamic
context at the time of use.

In general, Python decorators are usually used

to define class/static methods, adding function
attributes, tracing, setting pre- and post-conditions,
and synchronization. For example, the following
illustrates a built-in decorator to define a read-only
property of a class:

class Bike(object):
 def __init__(self):
 self.__doors = 0
 @property
 def doors(self):
 """Get the number of doors."""
 return self.__doors

This will automatically create a “getter” method

that allows one to access the “private” __doors
attribute for objects belonging to the Bike class. For
example:

myBike = Bike() # create a bike object
print myBike.doors # use getter

Python “decorators” allow us to write code in

very concise form and have the decorator expand it
to more complex programs and with additional
supporting functions if needed.

 The following illustrates how we made use of

decorators to define templates. The
“foaTemplatePart” Python decorator creates new
components for use by the FOA Template Engine.
In the examples below, “footer” is a XHTML
component, while “userMenu” references a Python
Server Pages (PSP) file. However, the syntax for
defining the two different type of web page
component is the same.

@foaTemplatePart
def footer(req):
 '''<small>Developed by CityU</small>'''
@foaTemplatePart
def userMenu(req):
 '''template/userMenu.psp'''

Depending on the page component content, the

@foaTemplatePart decorator would either return the
desired text string or call the PSP engine to
dynamically create content to be used as part of a
web page. The structure of the web page itself is
defined using our @foaTemplate decorator. For
example:

@foaTemplate
def myTemplate(req): '''template.psp'''

The above would automatically create a

function that automatically fills in the template
defined in template.psp and return the dynamic page
back to the browser. The “template.psp” file itself
might look like:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en">
<head>
 <title><% title(req) %></title>
 <% cssjs(req) %>
 <% metatags(req) %>
</head>
<body>
<div id="container">
 <div id="header"><% logo(req) %></div>
 <div id="sideBar"><% menu(req) %></div>
 <div id="mainClm">

7th WSEAS Int. Conf. on APPLIED COMPUTER & APPLIED COMPUTATIONAL SCIENCE (ACACOS '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-49-7 326 ISSN: 1790-5117

 <% content(req) %>

 <p class="copyright">
 <% copyright(req) %>

 <% footer(req) %>
 </p>
 </div>
</div>
</body>
</html>

Our experiments show that we achieve a 90%

savings in code size by using our “FOA Template
Engine” to define dynamic content.

5 FOA Application Framework
 The “FOA Application Framework” provides a
framework to create applications following the
popular Model-View-Controller (MVC) architecture
design pattern [16]. The main function of the “FOA
Application Framework” is to act as the “Controller”
in the MVC model. The “View” is provided by the
previously described FOA Template Engine. And
the “Model” is provided by domain objects.

As the “controller,” the FOA Application
Framework provides three key functions – role-
based access control, role-based action dispatching
and role-based screen dispatching. The action/screen
dispatching mechanism is similar in concept to
Jakarta Struts [17].

5.1 Access Control
All access to applications built on top of the FOA
Application Framework must go through the
“Access Control” module. In other words, each and
every click (or page access) will be authenticated by
the “Access Control” module. After authentication,
roles and privileges will be checked to ensure user
has rights to access a particular page or function. All
activities are logged into the access control database
as audit trail.

Then, depending on the user request, the FOA
Application Framework may either route the request
to the Action Dispatcher or Screen Dispatcher.

5.2 Role-based Action Dispatching
Within our framework, there are two main types of
user requests – a simple dynamic page request, or
invoking a REST web service [18]. A dynamic page
request does not involve executing business logic or
modifying the state of domain objects. This is

handled by the role-based screen dispatcher that we
will explain later.

The FOA Application Framework supports
REST web services, i.e., web service in the form of
URI format. The purposes of these web services are
usually to create new server-side objects, manipulate
existing domain objects and/or possibly modify
states of these objects. These REST web servers are
called “actions” in FOA.

Actions are also defined using Python

decorators. The following illustrates the simple
syntax of a typical action in FOA:

@actionHandler('admin', next=uploadStatusScreen)
def doUpload(req, **kwargs):

return manager.doUpload(req, req.form)

In this example, the web service “doUpload”
can only be accessed by a user with “admin”
privileges. The action implementation, i.e.
manager.doUpload() is a method provided by the
domain “Model.” The “next” parameter in the
@actionHandler defines the screen flow, i.e. the
next screen to display if the action was successfully.

The @actionHandler reduces coding

complexity by a 100 times! The three line code
shown above is actually replaced by a more complex
program that spans 300 lines of Python code. The
expanded code includes session handling, timeout
control, logging, error handling, and integration with
the screen dispatching to display the “next” screen.
It also automatically logs any errors and instantly
sends an alert, email or SMS, to notify a support
personnel if there are any errors during execution.

5.3 Role-based Screen Dispatching
Dynamic screens in FOA are also defined using
Python decorators. The following is the code that
implements the “uploadStatusScreen” shown in the
previous example:

@screenHandler('admin', menu=adminMenu)
def uploadStatusScreen(req, **kwargs): pass

The code is deceivingly simple. It defines a

new dynamic screen that only users with “admin”
privilege can access. The “menu” component within
the page template is to be replaced with the
“adminMenu.” This is done behind the scene by the
FOA Template Engine. The name of the screen is
uploadStatusScreen. However, the function is an
empty function, i.e. “pass” only. This is because it

7th WSEAS Int. Conf. on APPLIED COMPUTER & APPLIED COMPUTATIONAL SCIENCE (ACACOS '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-49-7 327 ISSN: 1790-5117

uses the default screen dispatching behavior which
is to retrieve screen content from a PSP file with the
same name and then inserting it into the layout
template that was defined earlier. For richer user
experiences, AJAX support is provided through the
PSP pages.

The 2 line code shown in the example is

automatically expanded to a complex 350 line code
using the @screenHandler decorator and thus reduce
coding efforts by 99%! Similar to the
@actionHandler, the expanded code includes
session handling, timeout control, logging, error
handling, and integration with template engine as
well as automatic support alert if there are any errors
during execution.

6 Case Study
The FOA Application Framework and its associated
FOA Template Engine were used to create the
Workforce Management System (WMS) for the
“Good Luck Beijing — HKSAR 10th Anniversary
Cup” equestrian games that were held in August
2007. The “Good Luck Beijing” games were held to
test the readiness of and prepare Hong Kong for the
Equestrian Events to be held in 2008 as part of the
Beijing Olympics.

In the “Good Luck Beijing” games, a total of
nine delegations comprising some 40 horses
participated. To support the games, roughly a
thousand volunteers and part-time staff had to be
rostered and assigned jobs. This is the role of the
WMS.

We only had roughly 6 weeks to design and

implement WMS. The first two weeks were used to
define the requirements and to perform data
preparation, which included creating the HR-XML
compliant domain “model.” Once the domain model
was in place, it only took roughly a week to come up
with a detailed second prototype, because of the
productivity gains from using the FOA framework
and template engine. The scheduling/rostering
algorithms were then implemented. The last two
weeks were then spent on refining the user interface
and interactivity as well as thoroughly testing the
application.

Since the system was built on top of our

existing Web frameworks and AI libraries, the
debug cycle was used mainly to ensure the Web-

based process flow matched operational needs to
support the equestrian events.

With the help of WMS and our FOA

framework, the Hong Kong “Good Luck Beijing”
games went very smoothly and Hong Kong was able
to successfully pass its Olympics readiness testing
[19].

The President of the International Olympic

Committee, Mr. Jacques Rogge, commented: “I am
very happy with the preparations. I have spoken
with the riders and they are very
happy,…Everything is progressing well, and we will
have an absolutely fabulous Games here next year.”

The President of the Hong Kong International

Olympic Committee, Mr. Timothy Fok, said: “In
spite of the weather, we are satisfied with the
results,…We have one year to prepare and I am
confident it (the test event) will be good preparation
for the Olympics.”

The Chief Judge for the test event, Mr. Martin

Plewa, said: “This is the best test event I’ve ever
been to,… It is almost like [how] the Olympics feel
itself.”

The Director of Corporate Administration, Dr.

Horace Yuen, commented on CityU efforts on
creating the WMS: “[CityU] was very professional
in understanding user requirements… readily
available Web-based platform… shortened
development time.”

7 Conclusion
This paper presented the architecture and design of
our modern Web-based FOA Application
Framework and its associate FOA Template Engine.
Because of the simplicity of the Python language
and its powerful decorator feature, the framework
and template engine greatly improves coding
productivity and reduces actual code size. Because
of the productivity gain, we were able to produce
and deploy a sophisticated Workforce Management
System, in support of the Hong Kong “Good Luck
Beijing” equestrian games within only 6 weeks’
time.

7th WSEAS Int. Conf. on APPLIED COMPUTER & APPLIED COMPUTATIONAL SCIENCE (ACACOS '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-49-7 328 ISSN: 1790-5117

References:

[1] The International Olympic Committee Web Site,

“Beijing 2008.” Retrieved 2008. Available at
www.olympic.org/uk/games/beijing/index_uk.asp

[2] The International Olympic Committee Web Site,

“Beijing 2008: Rogge In Hong Kong,” Retrieved
2008. Available at
www.olympic.org/uk/games/beijing/full_story_uk.
asp?id=2278

[3] The Hong Kong Equestrian Events Web Site.

“Olympic Equestrian – Events.” Retrieved 2007.
Available at
www.equestrian2008.org/eng/olympic_e.aspx

[4] Wikipedia Web Site, “Rapid Application

Development.” Retrieved 2008. Available at:
http://en.wikipedia.org/wiki/Rapid_application_dev
elopment

[5] Python Programming Language Official Web Site,

Retrieved 2008. Available at:
http://www.python.org/

[6] O’Reilly, Tim, “What is Web 2.0”, Sept 30, 2005.

Available at:
http://www.oreilly.com/pub/a/oreilly/tim/news/200
5/09/30/what-is-web-20.html

[7] Adobe Web Site, “Rich Internet Application,”

Retrieved 2008. Available at:
http://www.adobe.com/resources/business/rich_inte
rnet_apps/

[8] Wikipedia Web Site, “Rich Internet Application,”

Retrieved 2008. Available at:
http://en.wikipedia.org/wiki/Rich_Internet_applicat
ion

[9] Wikipedia Web Site, “Role-based access control,”

Retrieved 2008. Available at:
http://en.wikipedia.org/wiki/RBAC

[10] The Apache Software Foundation Web Site,

Retrieved 2008. Available at:
http://www.apache.org/

[11] Apache/Python Integration. Retrieved 2008.

Available at: http://www.modpython.org/

[12] Python Server Pages. Retrieved 2008. Available

at: http://www.modpython.org/live/current/doc-
html/pyapi-psp.html

[13] Dr. Dobb’s Portal. May 01, 2005, “Python 2.4
Decorators,” Available at:
http://www.ddj.com/web-
development/184406073;jsessionid=TGP3FFMUE
T5CGQSNDLPCKHSCJUNN2JVN?_requestid=3
30263

[14] Java Programming Language Documentation,

“Annotations,” Retrieved 2008. Available at:
http://java.sun.com/j2se/1.5.0/docs/guide/language/
annotations.html

[15] informIT Web Site, “.NET Reference Guide –

Attributes,” Aug 19, 2005, Available at:
http://www.informit.com/guides/content.aspx?g=d
otnet&seqNum=401

[16] Burbeck, S. 1992. “Application Programming in

Smalltalk-80: How to use Model-View-Controller
(MVC).” University of Illinois in Urbana-
Champaign (UIUC) Smalltalk Archive. Available
at http://st-www.cs.uiuc.edu/users/smarch/st-
docs/mvc.html

[17] IBM Websphere Web Site, “Introduction to Struts

Tools,” Retrieved 2008. Available at:
http://publib.boulder.ibm.com/infocenter/wsphelp/i
ndex.jsp?topic=/com.ibm.etools.struts.doc/html/cst
ruse0001.htm

[18] Wikipedia Web Site, “Representational State

Transfer,” Retrieved 2008. Available at:
http://en.wikipedia.org/wiki/Representational_State
_Transfer

[19] The Hong Kong Digest Web Site, “IOC Gives

Hong Kong Vote of Confidence,” Available at
www.hketousa.gov.hk/ny/e-
newsletter/07july/Equestrian.htm

7th WSEAS Int. Conf. on APPLIED COMPUTER & APPLIED COMPUTATIONAL SCIENCE (ACACOS '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-49-7 329 ISSN: 1790-5117

