Design of an Wide-band FIR filter with Sharp Transition using Generalized Sampling Kernels

K.J. Kim, J.B. Seo, and S.W. Nam
Department of Electronics and Computer Engineering
Hanyang University
Seoul, 133-791, Korea

Abstract: - This paper proposes a new design of a computationally efficient FIR filters with wide passband and sharp transition, where generalized sampling kernels are introduced and utilized along with the IFIR filter structure. In particular, the proposed filter design approach provides a closed-form solution for filter coefficients, yielding a practical design procedure for linear-phase sharp FIR digital filters with wide passband.

Key-Words: - wide-band FIR filters, sharp transition, linear-phase, IFIR structure, interpolation, sampling kernel

1 Introduction

Practical design of linear-phase sharp FIR filters have been much studied in communication and signal processing areas. Some problems in designing and implementing those sharp FIR filters include high computational complexity due to the required long filter length. Accordingly, several computationally efficient FIR filter design approaches were reported to reduce the computational complexity required in implementing them (e.g., the prefilter-equalizer [1], the interpolated FIR (IFIR) [2], and the frequency-response masking (FRM) technique [3]). While those approaches yield relatively high computational efficiency, it may not be easy to utilize them further for the design of reconfigurable FIR digital filters, since all subfilters obtained in the derivation of such computationally efficient filters should be separately and differently redesigned to accommodate different filter specifications [4]. Recently, an efficient FIR filter design method was proposed in [5] for the design of linear-phase sharp FIR filters and utilized for the design of dc-notch FIR filters, which incorporates a modified sampling kernel into the filter design, providing a simpler design procedure than conventional design methods [6].

In this paper, a new design of computationally efficient wide-band FIR filter with sharp transition is discussed in Section 2. Also, a new design of wide-band sharp FIR filters using generalized sampling kernels is introduced in Section 3. Section 4 presents a wide-band FIR filter with sharp transition designed by the proposed approach. Finally, the conclusion is drawn in Section 5.

2 Design of Sharp Linear-Phase FIR Filters using a Modified Sampling Kernel

Let’s consider the following two discrete-time signals \(h[n] \) and \(h_{\alpha}[n] \) sampled at different sampling rates:

\[
h[n] = h(nT), \quad h_{\alpha}[n] = h(nT'), \quad T' = T / \alpha
\]

In (1), when \(\alpha > 1 \), derivation of \(h_{\alpha}[n] \) from \(h[n] \) corresponds to interpolation. Recently, a single-step closed-form equation to obtain \(h_{\alpha}[n] \) from \(h[n] \) was derived in [6]: That is,

\[
h_{\alpha}[n] = \sum_{k=0}^{N-1} h[k] \text{sinc}(\frac{n}{\alpha} - k)
\]

Also, \(\text{sinc}((n / \alpha) - k) \) in (2), called an interpolation sampling kernel, was further utilized in [6] to design computationally efficient linear-phase FIR filters with sharp transition. In particular, let’s consider the following FIR filter \(h_{\alpha}[n] \), when a prototype model filter \(h[n] \) is given by a linear-phase (Type 1) FIR filter of length \(N \):

\[
h_{\alpha}[n] = \frac{1}{\alpha} h[n] = \sum_{k=0}^{N-1} h[k] \cdot \frac{1}{\alpha} \text{sinc}(\frac{n}{\alpha} - k)
\]

After taking the discrete-time Fourier transform (DTFT) of both sides of (3), we can see that \(H_{\alpha}[e^{j\omega}] = H[e^{j\omega}] \) (also, see Fig. 1(a) and Fig. 1(b)). Furthermore, it was shown in [6] that, when \(\alpha \) is an integer, (3) can be expressed in the following convolution form:

\[
h_{\alpha}[n] = \frac{1}{\alpha} \sum_{m=0}^{\alpha-1} h[m] \text{sinc}(\frac{1}{\alpha}(n - \alpha m))
\]
\[
\sum_{k=0}^{N} h[n] \text{sinc} \left(\frac{1}{\alpha} (n - k) \right) = \frac{1}{\alpha} h[n] * \text{sinc} \left(\frac{n}{\alpha} \right) \quad (4)
\]

In (4), \(*\) indicates the linear convolution operation, and \(h[n]\) is obtained by inserting \((\alpha - 1)\) zeros between adjacent samples of \(h[n]\). Note that \(H[z^\alpha]\) corresponds to the Z-transform of \(h[n]\), and (4) can be implemented based on the conventional IFIR filter structure [2]. In particular, conventional computationally efficient filter design methods (e.g., IFIR and FRM) are very effective in the design of sharp FIR filters with fixed coefficients. However, it may not be easy to utilize conventional design methods further for the design of reconfigurable FIR filters allowing a great flexibility to the filter design. To solve the problem, generalized sampling kernels, derived by revising the sampling kernel of [5, 6], and the complementary filter concept [3] were employed in this paper for the design of a wide-band FIR filter with sharp transition. The convolution expression (4) can be used to design a computationally efficient FIR filter with computational complexity similar to or a bit more than those conventional approaches. In particular, since \(\text{sinc}(n / \alpha)\) in (2) (i.e., an ideal low-pass filter) is of doubly infinite length, it should be modified for the design of a sharp linear-phase FIR filter of finite order. Accordingly, one of widely used adjustable window functions whose impulse responses are of finite length [7] is employed in this paper as a lowpass filter. In the next section, a more detail procedure related to the adjustable window functions and generalized sampling kernels are discussed.

3 Design of a Wide-band Sharp FIR Filter using a Generalized Sampling Kernel

From (3) and Fig. 1(b), we can see that \(h_{(\omega)}[n]\) can be obtained by taking the inverse DTFT of only the lowpass part (i.e., \(\omega \in [-\frac{\pi}{\alpha}, \frac{\pi}{\alpha}]\)) of \(H[e^{j\omega}]\): That is,

\[
h_{(\omega)}[n] = \frac{1}{2\pi} \sum_{k=0}^{N} h[k] \left[\frac{\sin \left(\frac{\pi}{\alpha} (n - k) \right)}{\frac{\pi}{\alpha} (n - k)} \right] e^{j(n-k)\omega} d\omega
\]

Furthermore, the concept in (5) can be extended to the \([\text{single-lowpass} + \text{multi-bandpass}]\) (or multi-image as in Fig. 1(c)-(d)) case by changing the upper and lower bounds of the definite integral of (5) to include up to \(L\)-th images in addition to the lowpass part of \(H[e^{j\omega}]\) as in Fig. 1(e): i.e.,

\[
h_{(\omega, L)}[n] = \frac{1}{2\pi} \sum_{k=0}^{N} h[k] \left[\frac{\sin \left(\frac{\pi}{\alpha} (n - k) \right)}{\frac{\pi}{\alpha} (n - k)} \right] e^{j(n-k)\omega} d\omega
\]

\[
= \frac{1}{\alpha} \sum_{k=0}^{N} h[k] \left(2L + 1 \right) \text{sinc} \left(\frac{n}{\alpha} - k \right) (2L + 1) \quad (6)
\]

More specifically, we employ, as an adjustable window function [7], the raised-cosine filter with a desired roll-off factor \(R\), whose impulse response of finite length is a low-pass filter widely used for pulse shaping in the communication fields. In addition, the following modified sampling kernel can be derived by applying the raised-cosine filter, instead of the sampling kernel \(\text{sinc}(n / \alpha) - k\) in (3): That is,
In (8), $K_{ac}(n,k)$ is a generalized sampling kernel in the “single-lowpass plus multi-bandpass” case, which reduces to the sampling kernel of (3) when $L = 0$ (Fig. 1(b)). Also, R is the roll-off factor ($0 \leq R \leq 1$), and the sharpness of the lowpass FIR filter can be controlled by adjusting the R. By employing (7), (6) can be revised as

$$\overline{h}_{acL}[n] = \sum_{k=0}^{N-1} h_{ac}[k] \cdot \frac{1}{\alpha} K_{ac}(n,k) h_{ac}[n] \cdot g(\frac{n}{\alpha}) \quad (7)$$

$$K_{ac}(n,k) = \frac{\sin(\pi(n-k)/\alpha)}{\pi(n-k)} \times \frac{\cos(\pi R(n-k)/\alpha)}{1-4R^2(n-k)^2} \quad (8)$$

In this design example, we choose $2 \pi R = 0.92 \pi$, passband ripple $\delta_{p} = 0.02$, stopband ripple $\delta_{s} = 0.001$ (i.e., minimum stopband attenuation: 60 dB and peak passband ripple: 0.36 dB). We can design a wide-band filter with arbitrary passband width, depending on the number of images being included (= L; also, see Fig. 1(c)-(d)). To design a wide-band FIR filter with sharp transition as in Fig. 1(g), a sharp narrow-band lowpass filter first as in Fig. 1(b) should be determined. In this design example, we choose $L=2$ to include up to 2^{2L}th bandpass parts as in Fig. 1(d)-(f). Then, filter specifications for a narrow-band filter as in Fig. 1(b) can be calculated from the L and from Fig. 1(d)-(f): $\omega_{p} = 0.09 \pi$, $\omega_{s} = 0.11 \pi$, $\delta_{p} = 0.02$, and $\delta_{s} = 0.001$. Also, the optimal scaling factor α of (9) is calculated to be 5 (rounded), and the corresponding prototype model filter $H[e^{j\omega}]$ (as in Fig. 1(a)) is determined, where the length of the prototype model filter and that of the raised-cosine pulse are given as 53 and 27, respectively. Thus, the total number of multipliers to implement the type-1 wide-band FIR filter with sharp transition (corresponding to Fig. 1(g)), designed by the proposed approach, is equal to 41 (= $(53+1)/2+(27+1)/2$). Note that the filter length of the raised-cosine filter with a desired roll-off factor can be determined by using the equations for adjustable window functions [7]. Furthermore, $\overline{h}_{acL}[n]$ and $\overline{h}_{acL}[n]$ can be derived from (9) and (11), and, finally, the filter coefficients and the gain response of the FIR filter $h_{f}[n]$ designed from (13) are shown in Table I and Fig. 2, respectively. Note that the proposed approach enables us to save about 65% of multiplications, when compared with the filter designed by the Remez-based algorithm.

In this paper, we presented a new design of a computationally efficient wide-band FIR filter with sharp transition. The specifications of a desired wide-band FIR filter with sharp transition [10] are given as follows: passband edge $\omega_{p} = 0.90 \pi$, stopband edge $\omega_{s} = 0.92 \pi$, passband ripple $\delta_{p} = 0.02$, stopband ripple $\delta_{s} = 0.001$ (i.e., minimum stopband attenuation: 60 dB and peak passband ripple: 0.36 dB). We can design a wide-band filter with arbitrary passband width, depending on the number of images being included (= L). Also, the optimal scaling factor s is calculated to be 0.1 (rounded), and the corresponding prototype model filter $H[e^{j\omega}]$ (as in Fig. 1(a)) is determined, where the length of the prototype model filter and that of the raised-cosine pulse are given as 53 and 27, respectively. Thus, the total number of multipliers to implement the type-1 wide-band FIR filter with sharp transition (corresponding to Fig. 1(g)), designed by the proposed approach, is equal to 41 (= $(53+1)/2+(27+1)/2$). Note that the filter length of the raised-cosine filter with a desired roll-off factor can be determined by using the equations for adjustable window functions [7]. Furthermore, $\overline{h}_{acL}[n]$ and $\overline{h}_{acL}[n]$ can be derived from (9) and (11).
transition, where generalized sampling kernels are introduced and utilized along with a complementary filter concept. Also, it is shown that a closed-form expression for filter coefficients may be derived and can be further utilized for the design of reconfigurable sharp FIR filters. In addition, the proposed design approach may be further extended to the design of various kinds of linear-phase sharp FIR filter (e.g., narrow-band lowpass, narrow-band highpass, narrow-band bandpass, wide-band lowpass, wide-band highpass, wide-band bandpass, half-band, multi-band, etc.). Future researches include a systematic approach to the design of sharp FIR filters with an optimized scaling factor.

Acknowledgments
This study was supported by a grant of the Korea Health 21 R & D Project, Ministry of Health & Welfare, Republic of Korea (02-PJ3-PG6-EV08-0001).

References:

Table I. Filter coefficients of the prototype model filter h[n] and the raised-cosine function g[n].

<table>
<thead>
<tr>
<th>n</th>
<th>hn</th>
<th>n</th>
<th>gn</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 52</td>
<td>0.0012</td>
<td>0, 26</td>
<td>0.0007</td>
</tr>
<tr>
<td>1, 51</td>
<td>-0.0006</td>
<td>1, 25</td>
<td>-0.0012</td>
</tr>
<tr>
<td>2, 50</td>
<td>-0.0043</td>
<td>2, 24</td>
<td>-0.0045</td>
</tr>
<tr>
<td>3, 49</td>
<td>-0.0039</td>
<td>3, 23</td>
<td>-0.0097</td>
</tr>
<tr>
<td>4, 48</td>
<td>0.0021</td>
<td>4, 22</td>
<td>-0.0154</td>
</tr>
<tr>
<td>5, 47</td>
<td>0.0037</td>
<td>5, 21</td>
<td>-0.0186</td>
</tr>
<tr>
<td>6, 46</td>
<td>-0.0034</td>
<td>6, 20</td>
<td>-0.0155</td>
</tr>
<tr>
<td>7, 45</td>
<td>-0.0057</td>
<td>7, 19</td>
<td>-0.0023</td>
</tr>
<tr>
<td>8, 44</td>
<td>0.0094</td>
<td>8, 18</td>
<td>0.0225</td>
</tr>
<tr>
<td>9, 43</td>
<td>0.0081</td>
<td>9, 17</td>
<td>0.0573</td>
</tr>
<tr>
<td>10, 42</td>
<td>-0.0047</td>
<td>10, 16</td>
<td>0.0973</td>
</tr>
<tr>
<td>11, 41</td>
<td>-0.0112</td>
<td>11, 15</td>
<td>0.1347</td>
</tr>
<tr>
<td>12, 40</td>
<td>0.0054</td>
<td>12, 14</td>
<td>0.1614</td>
</tr>
<tr>
<td>13, 39</td>
<td>0.0153</td>
<td>13</td>
<td>0.1711</td>
</tr>
<tr>
<td>14, 38</td>
<td>-0.0061</td>
<td>15, 37</td>
<td>-0.0208</td>
</tr>
<tr>
<td>16, 36</td>
<td>0.0067</td>
<td>17, 35</td>
<td>0.0284</td>
</tr>
<tr>
<td>18, 34</td>
<td>-0.0072</td>
<td>19, 33</td>
<td>-0.0399</td>
</tr>
<tr>
<td>20, 32</td>
<td>0.0076</td>
<td>21, 31</td>
<td>0.0596</td>
</tr>
<tr>
<td>22, 30</td>
<td>-0.0008</td>
<td>23, 29</td>
<td>0.0082</td>
</tr>
<tr>
<td>24, 28</td>
<td>0.3175</td>
<td>25, 27</td>
<td>0.3175</td>
</tr>
<tr>
<td>26</td>
<td>0.4918</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Gain response of a wide-band FIR filter designed by the proposed method (also, see Fig. 1(g)).