
An Efficient Low-Complexity Joint Multi-User Power Control and Partial 
Crosstalk Cancellation in xDSL Systems 

 
M. MEASOUMI1   M. A. MASNADI-SHIRAZI2 

Dept of Electrical Engineering 
1Sciences and Researches Campus, Azad University  2Shiraz University 

1Tehran               2Shiraz  
IRAN 

1maesoumi@sr.iau.ac.ir   2masnadi@shirazu.ac.ir 
 

 
ABSTRACT: - Perfect crosstalk cancellation techniques have been proposed to mitigate the effect of crosstalk. However, 
the online complexity of these crosstalk cancellation techniques grows with the square of the number of lines in the 
binder. Fortunately, most of the crosstalk originates from a limited number of lines on a limited number of tones. As a 
result, a fraction of the complexity of perfect crosstalk cancellation suffices to cancel most of the crosstalk. This is known 
as partial crosstalk cancellation. Because the crosstalk profile changes over time, there is additional requirement that 
partial crosstalk cancellation provide a very low pre-processing complexity. Also, a much lower online complexity can be 
obtained if the multi-user power control and partial crosstalk cancellation problems are solved jointly. Currently, this joint 
problem is formulated as a constrained optimization problem and solved by employing Lagrange dual decomposition 
method. However, it suffers from per-tone exhaustive search because of non-convexity of its per-tone problem. This 
paper presents a solution for the joint multi-user power control and partial crosstalk cancellation problem with 
significantly lower pre-processing complexity than the currently proposed algorithms. The problem is considered as a 
mixed binary-non-convex problem. Then it is reformulated as a mixed binary-convex problem via a successive convex 
relaxation. Finally it is solved by an efficient branch and bound method. The complexity analysis of our algorithm shows 
that it provide much lower pre-processing complexity than currently proposed algorithms, allowing it to work efficiently 
in time-varying crosstalk environment. Moreover, the analytical and simulation results demonstrate that our algorithm is 
close to the optimal solution from the crosstalk cancellation point of view. 
 
Keywords: - Digital subscriber line (DSL), Partial crosstalk cancellation, Power control, Convex relaxation, Branch and 
bound. 

 
1 Introduction 
The ever increasing demand for higher data rates forces 
DSL systems to use higher frequencies, e.g. up to 30 
MHz for VDSL2. The major obstacle for performance 
improvement in modern xDSL systems remains to be 
crosstalk, which is the interference generated among 
different lines in the same cable binder. The crosstalk is 
typically 10-20 dB larger than the background noise [1]. 
There are two strategies for dealing with this crosstalk. 
Multi-user power control which is known as spectrum 
management and crosstalk cancellation. A multi-user 
power control algorithm chooses the transmit spectra 
such that crosstalk is avoided. As an example, optimal 
spectrum balancing (OSB) [2] addresses the spectrum 
management problem through the maximization of a 

weighted sum rate across all users, which explicitly 
takes into account the damage done to the other lines 
when optimizing each line’s spectra. Crosstalk 
cancellation techniques have been proposed to remove 
crosstalk [3] [4] [5]. Because most of the crosstalk 
originates from a limited number of lines on a limited 
number of tones, a fraction of this complexity suffices to 
cancel most of the crosstalk. This is called partial 
crosstalk cancellation [6] [7]. The challenge is then to 
determine for every user which crosstalk to cancel on 
which tones. In [6], an algorithm based on resource 
allocation is presented to solve this problem. It considers 
fixed complexity budget per user and try to find set of 
dominant cross-talkers based on line and tone selection 
while consider flat transmit spectra for every users. 
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However, it is sub-optimal and has considerable pre-
processing complexity. Thus, it is not desirable for time-
varying xDSL crosstalk environments.  
Recently, there are some available algorithms that solve 
independently the multi-user power control and partial 
crosstalk cancellation problem. First a multi-use power 
control technique chooses transmit spectra to avoid 
crosstalk, then a partial crosstalk cancellation scheme is 
used to cancel the remaining crosstalk. This approach 
can be sub-optimal. It can be seen that for strong 
crosstalk scenarios the transmit spectra result in long and 
short lines occupying different frequency bands. When 
the partial crosstalk cancellation problem is solved, there 
is not much crosstalk left to cancel. Therefore, only a 
limited crosstalk cancellation tap budget can be used 
effectively. A better solution (i.e. lower online 
complexity) can be obtained if the multi-user power 
control and partial crosstalk cancellation problems are 
solved jointly. In [8], multi-user power control and 
partial crosstalk cancellation is formulated as a 
constrained optimization problem. The Lagrange 
multipliers are used to decouple the constrained 
optimization problem into a series of per-tone 
unconstrained optimization problems. However, this 
problem suffers from per-tone exhaustive search because 
of non-convexity of its per-tone optimization problem. 
Thus, each per-tone problem still has a computational 
complexity that is exponential in the number of users. In 
this paper, we reformulate the non-convex per-tone 
optimization problem into a mixed binary-convex 
problem based on a successive convex relaxation 
technique. Then we solve it by using an efficient branch 
and bound approach. Branch and bound [9] is a general 
method for finding optimal solutions of various 
optimization problems. Branch and bound operations 
will be proposed which require a limited amount of 
computation, keeping the pre-processing complexity 
significantly low. The complexity of the proposed 
branch and bound procedure will be compared with the 
complexity of the per-tone exhaustive search. 
2 DSL Channel 
We consider a DSL network with N users (i.e., lines, 
transmitting modems) and K tones (i.e., frequency 
carriers). Assuming the standard synchronous discrete 
multi-tone (DMT) modulation, each tone is capable of 
transmitting data independently from other tones, and so 
the transmit power and the number of bits can be 

assigned individually for each tone. Transmissions can 
be modeled independently on each tone k as follows: 

. 1k k k k k K= + ≤ ≤y H x z  

The vector 1 2, , ,
TN

k k k kx x x⎡ ⎤⎣ ⎦x …  contains the 

transmitted signals on tone k for all N users, where n
kx  is 

the transmitted signal by user n on tone k. Vectors ky  
and kz  have similar structures. The vector ky  contains 
the received symbols. The vector kz  is the vector of 
additive noise on tone k, containing thermal noise, alien 
crosstalk, RFI, … . [ ] ,

,
n m

k kn m
H h=  is an N N×  matrix 

containing the channel transfer functions from 
transmitter m to receiver n. The diagonal elements are 
the direct channels; the off-diagonal elements are the 
crosstalk channels.  
To take crosstalk cancellation into account, in [8] an 
equivalent channel H  is introduced. This is the same 
channel as the original channel H , but with off-diagonal 
elements set to 0 where the crosstalk is cancelled. If user 
n is canceling crosstalk originating from user m on tone 
k, then  

, , 2 2, , , ,
,

0
(1 ) ,
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n m n m
n m n m n m n mk k
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h if c
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where ,n m
kc  is the cancellation tap assigned to the user n 

to cancel the crosstalk originating from user m on tone k 
[8]. 
We denote the transmit power as n

ks and the noise power 

as n
kσ . The DMT symbol rate is denoted as sf , the tone 

spacing as fΔ . The achievable bit loading of user n on 
tone k, given the transmit spectra of all modems in the 
system, is 

2,

2 2,

1log 1 .
n n n
k kn

k
n n m m
k k km n

h s
b

h sσ
≠

⎛ ⎞
⎜ ⎟+
⎜ ⎟Γ⎜ ⎟+⎝ ⎠∑

 

 
(1) 

Where Γ  denotes the SNR-gap to capacity, which is 
function of the desired BER, the coding gain and noise 
margin [1]. The data rate and total power for user n is 

and .n n n n
s k k

k k
R f b P s= =∑ ∑  
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3 Joint Multi-User Power Control and 
Partial Crosstalk Cancellation 
3.1 Problem formulation 
Let 1 2, , , N⎡ ⎤= ⎣ ⎦s s s s…  and [ ]1 2, , , K=c c c c…  denote 

the matrix of power spectra and crosstalk cancellation 
configuration where ns  is the vector of transmit spectra 
of user n and kc  is the matrix of crosstalk cancellation 
taps on tone k. The joint multi-user power control and 
partial crosstalk cancellation problem can be formulated 
as the following weighted sum rate maximization 
(WSRmax) problem [8]: 

{ }
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, , arg
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s c

 

 
 
 

(2)

where nα  is the weight assigned to user n. Moreover, 
there are a number of constraints: total power constraint 

,n totP  and data-rate constraint . argn t etR  for each user, 
spectral mask constraint ,n mask

ks  for each user in each 
tone and total number of cancellation taps constraint 

totC  [8]. This problem finds the optimal allocation of 
transmit spectra and set of the cross-talkers to cancel 
(i.e. allocation of crosstalk cancellation taps) that 
maximizes the weighted sum rate. The WSRmax 
problem (2) is a mixed binary-non-convex problem. To 
find the global optimum, one has to exhaustively search 
through all possible transmit spectra s  (continuous 
values) and cancellation tap configurations c (binary 
values). The cancellation taps constraint, the total power 
constraints and the target bit rate constraints are coupled 
over the tones and also the objective function is coupled 
over the users. This leads to an exponential complexity 
in both the number of users and tones, namely 

1(( 2 ) )N KNB −Ο  where B is the number of possibilities 
for power loading and 12N−  possibilities for cancellation 
taps for each user on each tone. Lagrange dual 
decomposition can be used to derive efficient algorithm 
for the WSRmax problem (2) which makes the 
complexity linear in the number of tones [8].  
3.2 Efficient resource allocation algorithm 

The Lagrangian of WSRmax problem (2), dualized with 
respect to the total power constraint and the number of 
cancellation taps constraint, is defined as  

,
1 1 1

,
1 1 1

( )

( ),

N N Kn n tot n
n n kn n k

K N Ntot n m
kk n m

J R P s

C c

α λ
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= = =
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= + − +

−

∑ ∑ ∑
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(3) 

where nα , nλ  and β  are Lagrange multipliers, 

[ ]1 2, , , T
Nα α α=α …  and [ ]1 2, , , T

Nλ λ λ=λ … . Then 
with this Lagrange dual function, the WSRmax problem 
(2) can be formulated as follows: 
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(4) 

This Lagrangian can be decomposed into the following 
K independent per-tone objective function: 

1

,
1

,
1 1 1 1

whereK

k
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k n kn

N N N Nn n n m
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(5) 

The constant has no influence on the maximization and 
can be discarded. Then (for a particular choice of 

, , ,n n nα λ β ∀ ) the optimization problem (4) can be 
solved in a per-tone fashion: 

{ }

,

, ,

, arg min ( )

0 , 0 , 0
0 0,1 ,

subject to:

,

k k

opt opt
k k k

n n
n n mask n m
k k k

J

n
s s c n m

α λ β

= −

≥ ≥ ≥ ∀

≤ ≤ ∈ ∀ ∀

s cs c

 

 
 

(6) 
 

Note that the sign of the per-tone objective function is 
changed and the maximization is changed into a 
minimization for convenience. The original complexity 
of 1(( 2 ) )N KNB −Ο , exponential in K, is now reduced to a 
linear complexity in K: 1( ( 2 ) )N NK B −Ο . Minimization 
of (6) for given Lagrange multipliers can be performed 
by an exhaustive search since it is non-convex problem. 
For each tone, the objective function should be 
evaluated for all possible combinations of the transmit 
power levels and cancellation tap configurations of the 
users [8]. 
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To solve (2) by (6), α , λ  and β  should be tuned to 
enforce the constraints. The following sub-gradient 
descent form for the Lagrange multipliers update can be 
used [8]: 

1 , arg

1 ,

1

( ) ,

( ,

( ( )) ,

t t n n t et
n n kk

t t n tot n
n n kk

t t tot

b R n
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β β μ

++

++

+ +

= − − ∀

= − − ∀

= − −

⎡ ⎤⎣ ⎦
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∑
∑  

 
 

(7) 
 

where ( )x +  means max(0, )x , t is the iteration number, 
μ  is a step size parameter and C is the total number of 
cancellation taps corresponding to the Lagrange 
multipliers at hand. Note that all the Lagrange 
multipliers are updated in parallel. The joint multi-user 
power control and partial crosstalk cancellation 
algorithm is listed in Algorithm 1, adopted from [8]. 
Algorithm 1 Joint multi-user power control and partial 
crosstalk cancellation algorithm 
1. Set the tolerance and totC , ,n totP , ,n mask

ks  and . argn t etR ; 
2. Initialize transmit spectra s and cancellation taps 
configuration c ; 
3. Initialize Lagrange multipliers [ ], ,βα λ ; 

4. distance = arg , ,t et tot totC C⎡ ⎤− − −⎣ ⎦R R P P ; 

5. repeat distance > tolerance do 
6.  1μ = ; 
7.  repeat  
8.   previous_distance = distance; 
9.   for n=1 N…  (i.e. each user) 
10.    for k=1 K…  (i.e. each tone) 
11.     [ ],k ks c = solve mixed binary-non- 
     convex optimization problem (6); 
12.    end for 
13.  end for 
14.  ,n m

kk n m
C c=∑ ∑ ∑ ; 

15.  2μ μ= × ; 
16.  for n=1 N…   
17.   update Lagrange multipliers  α , λ  and β   
   based on (7)  
18.  end for 
19.  distance = arg , ,t et tot totC C⎡ ⎤− − −⎣ ⎦R R P P ; 

20. until distance ≤ previous_distance 

21. until distance > tolerance 
where 1 2, , , NR R R⎡ ⎤= ⎣ ⎦R …  and 1 2, , , NP P P⎡ ⎤= ⎣ ⎦P … .  

4 Per-Tone Complexity Reduction 
4.1 Successive convex relaxation 
The per-tone optimization problem (6) is a 
combinatorial or mixed binary-non-convex problem. If 
we rewrite the objective function of (6) in the following 
form using (1) 

2,
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We observe that the objective function consists of a 
convex part (I) and a concave part (II). This objective 
function is a difference of two convex (d.c.) functions 
which is known to correspond to a hard optimization 
problem [10]. In this section an efficient low-complexity 
joint multi-user power control and partial crosstalk 
cancellation algorithm is presented. The problem (6) is 
reformulated as a mixed binary-convex problem based 
on a successive convex relaxation, leading to a much 
low complexity procedure [9] [10]. Our approach is to 
consider a relaxation of the non-convex problem (6) by 
an over-estimator to avoid the d.c. structure. We make 
use of the following approximation [9]: 

2 2log (1 ) log ( ) .x u x v+ ≥ +  (9) 

That is tight with equality at an approximation point x̂  
when the constants u and v are chosen as below: 

2 2
ˆ ˆˆ ˆ, log (1 ) log ( ).

ˆ ˆ1 1
x xu v x x

x x
= = + −

+ +
 

Applying (9) to objective function (6) results in the 
following relaxed objective function  

2,

2 21 ,
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The obtained relaxed objective function is still non-
convex. However, a transformation ln( )n n

k ks s=  
converts it to a convex objective function [9]. 
Fortunately, the constraints are also convex leading to a 
convex optimization problem which can be solved 
efficiently. 

2,

2 21 ,
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ˆ
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n
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(11) 
 

The solution of this convex relaxation forms an upper 
bound for the global minimum. Using the obtained 
upper bound as a new point of approximation (see 
algorithm 2 adopted from [9]), it can be proven that the 
sequence of relaxations produces a monotonically 
decreasing objective value and will always converge. 
Upon convergence it can be proven that the obtained 
solution is a local optimum. Although there is no 
theoretical proof for global optimality, simulation results 
are very promising showing global optimality for very 
different multi-user scenarios.  
Algorithm 2 Successive convex relaxation  
1: Initialize iteration counter 0z = ; 
2. Initialize ˆks  and ˆ kc ; 

3. Initialize ( ), ( )n n
k ku z v z n∀ ; 

4: loop 
5: tighten: Compute ( ), ( )n n

k ku z v z n∀ at ˆ ˆ( ), ( )k kz zs c ; 
6: minimize: ˆ ˆ( 1), ( 1)k kz z+ +s c  = Solve the (6) with the 
objective function ( )k convexJ ; 
7. increment z; 
8: until convergence 
4.2 Iterative efficient low complexity algorithm 
We can solve the convex relaxed problem (6) with the 
convex objective function ( )k convexJ  in (11) by means of 
standard convex software; however we can also use an 
efficient low complexity distributed algorithm [9]. With 
fixed value of Lagrange multipliers , ,n nα λ β , then the 
global minimum point of (11) can be obtained by taking 
partial derivative with respect to ,k ks c . This leads to the 
following fixed point equations: 

2,

2,

, , ,
,

2,

,
2,

( )
0 ( )

( )
ˆ

ln(2)
ˆ

( )
0 ( )

ˆ
1 .

ln(2)

n n nk convex
k k kn

k

n
n s k

p n
kp

n p s kp n p m m p
k k km p

n m n m n mk convex
k k kn m

k

n p p n n
k k kp n m n s k

n m m
k k

J
s w s

s

f u

h
f u

h s

J
c y c

c

h s f u

h s

δ
δ

α

λ α
σ

δ
δ

σ α
β

≠

≠

≠

= ⇒ = =

+
+ Γ

= ⇒ = =

+ Γ
+ −

Γ

∑
∑

∑

 

 
 
 
 
 
 
 

(12) 
 

By iteratively updating the transmit powers n
ks  and 

cancellation taps ,n m
kc  using (12), convergence to the 

global minimum point can be achieved due to convexity. 
Moreover, the derivative of ( )n n

k kw s  and , ,( )n m n m
k ky c  is 

typically much smaller than one for all points n
ks  and 

,n m
kc . In order to keep within the spectral mask 

constraints, the spectra have to be bounded. Moreover, 
the cancellation taps must be binary value, which leads 
to the following update formulas: 

 
,

, , ,

( 1) max(0, min( ( ( )), ))

( 1) max(0, min( ( ( )),1)),

n n n n mask
k k k k
n m n m n m
k k k

s z w s z s

c z y c z

+ =

+ =
 

 
(13) 

where z is the iteration number (see algorithm 3). 
Algorithm 3 efficient low complexity algorithm  
1: Initialize transmit spectra and cancellation taps ,k ks c ; 
2: loop 
3: calculate new ,k ks c  using (13)  
4: until convergence 
Now, the per-tone optimization problem (6) can be 
solved via joint use of algorithm 2 and 3 instead of 
exhaustive search proposed in line 13 of algorithm 1. 
This provides a significantly lower complexity than 
exhaustive search. However, the above solution only can 
be used as upper bound on the optimal solution since the 
cancellation taps are naturally binary value. In the next 
section we propose an efficient branch and bound 
method to solve optimally the per-tone optimization 
problem (6). 
4.3 Efficient branch and bound method 
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The per-tone optimization problem (6) has now 
reformulated as a mixed binary-convex problem based 
on successive convex relaxation approach, where ks  
(continuous values) and kc  (binary values) are the 
optimization variables. We denote the optimal value of 
this problem as *p . One way to solve this problem is by 

exhaustive search. That is, we must solve 
2( 1)2 N −  

convex optimization problems, one for each possible 
value of the binary matrix kc , and then choose the 
smallest of these optimal values. This involves solving 
enormous number of convex problems that is 
exponential in the size of the cancellation taps. For 

2
( 1)N −  more than 30 or so, this is clearly not possible. 
We will use an efficient branch and bound method to 
solve this problem [10]. In the worst case, we end up 
solving the 

2( 1)2 N−  convex problems, i.e., carrying an 
exhaustive search. But with luck, this does not occur. 
Fortunately, the convex relaxation 

[ ]

,

,

,

, arg min ( )

subject to 0
0 , 0, 0

0,1 ,

k k

opt opt
k k k convex
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n n
n m
k

J

s s n
n

c n m
α λ β

=

≤ ≤ ∀
≥ ≥ ≥ ∀
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s cs c

 

 
 

(14) 

with continuous variables ks  and kc , is convex, and so 
easily solved by use of algorithm 3. Its optimal value, 
which we denote 0L , is a lower bound on the optimal 
value of (6). This lower bound can be +∞  (in which 
case the original problem is surely infeasible) or −∞ . 
We can also get an upper bound on *p  using this 
relaxation. For example, we can take the solution of the 
relaxed problem, and then round each of the variables 

,n m
kc  to 0 or 1. This upper bound can be +∞ , if the 

rounded solution isn't feasible. We'll denote this upper 
bound by 0U . Of course, if we have 0 0U L ε− ≤ , the 
required tolerance, we can quit. 
Now we are going to branch. Pick any cancellation tap 
(binary value) ,p q

kc , and form two problems. We fix the 

value of ,p q
kc  to 0 in the first problem, and 1 in the 

second. We call these sub-problems of the original, since 
they can be thought of as the same problem, with one 
variable eliminated or fixed. Each of these sub-problems 

is also a mixed binary-convex problem but with 
2

1( 1)N −−  binary variables. The optimal value of the 
original problem is clearly the smaller of the optimal 
values of these two sub-problems. 
We now solve the two convex relaxations of these sub-
problems with , 0p q

kc =  and , 1p q
kc =  by joint use of 

algorithm 2, 3. Thus we can obtain a lower and upper 
bound on the optimal value of each sub-problem. We'll 
denote these as ,L U  (for , 0p q

kc = ) and ,L U  (for 
, 1p q

kc = ). Each of these two lower bounds must be 

larger than 0L , i.e., 0min( , )L L L≥ . We can also 
assume, without loss of generality, that 

0min( , )U U U≥ . From these two sets of bounds, we 

obtain the following bounds on *p : 
*

1 1min( , ) min( , )L L L p U U U= ≤ ≤ = . By the 
inequalities above, we have 1 1 0 0U L U L− ≤ − .  
At the next step, we choose either of the sub-problems, 
and then split it, by choosing another indexes (not equal 
to p, q, the indexes used to split the original problem). 
We solve the convex relaxations for the split sub-
problems (which have 2

2( 1)N −−  binary variables), and 
obtain lower and upper bounds for each. 
At this point we have formed a partial binary tree of sub-
problems. The root is the original problem; the first split 
yields two children sub-problems, one with , 0p q

kc =  and 

one with , 1p q
kc = . The second iteration yields another 

two children of one of the original children. We continue 
in this way. At each iteration, we choose a leaf node 
(which corresponds to a sub-problem, with some of the 
binary variables fixed to particular values), and split it, 
by fixing a variable that is not fixed in the parent 
problem. An edge in the tree corresponds to the value 0 
or 1 of a particular variable ,n m

kc . At the root node of the 

tree, the values of none of the ,n m
kc  are specified. A node 

at depth i in the tree corresponds to a sub-problem in 
which i of the binary variables have fixed values. For 
each node, we have an upper and lower bound on the 
optimal value of the sub-problem.  
The minimum of the lower bounds, over all the leaf 
nodes, gives a lower bound on the optimal value *p ; 
similarly, the minimum of the upper bounds, over all the 
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leaf nodes, gives an upper bound on the optimal value 
*p . We refer to these lower and upper bounds as kL  

and kU , respectively. We always have 

1 1k k k kU L U L+ +− ≤ − ; we can terminate the algorithm 
when k kU L ε− ≤ . 
Proving convergence of the algorithm is trivial: it must 
terminate in fewer than 

2( 1)2 N −  steps. To see this, note 
that if a leaf has depth 2

( 1)N − , it means that all the 
binary variables are fixed in the sub-problem, so by 
solving the convex relaxation we get the exact solution. 
In other words, for any leaf of depth 2

( 1)N − , we have 
U L= . The worst thing that can happen is that we 
develop a complete binary tree which requires 

2( 1)2 N−  
steps, at which point every sub-problem lower and upper 
bound is equal, and therefore the algorithm terminates. 
This is nothing more than exhaustive search.  
At any point in the algorithm we have an upper bound U 
on *p . If any node has a lower bound that is more than 
U, we can prune it, i.e., remove it from the tree. The 
choice of which leaf to split at a given stage in the 
algorithm is arbitrary. Several heuristics are used. One is 
to split the leaf corresponding to the smallest lower 
bound, since we might expect to find the optimal value 
in that sub-tree, and in any case splitting this leaf will 
lead to an improvement in the global lower bound. The 
same can be said for the choice of index to use to split a 
leaf. It can be any index corresponding to a binary 
variable that has not yet been fixed. One heuristic is to 
split along a binary variable in the relaxation; the hope is 
that this might allow us to discard the whole sub-tree 
starting from the other value. If many of the relaxed 
values are 0 or 1, we can choose the one with the largest 
associated Lagrange multiplier. (The idea here is that 
this is the relaxed variable that is 0 and 1, and has the 
highest pressure to stay there.) 
For this specific problem we pick the leaf of the tree 
with the lowest lower bound to compute the next 
iteration of the algorithm. Based on the solution of the 
relaxation at that node we select the variable we fix at 
the next iteration: We fix the variable whose solution in 
the relaxed problem is closest to either 0 or 1. If more 
than one of the variables is equal to 0 or 1, we select 
among these one whose associated dual variable is 
largest. The idea behind this heuristic is to fix the 
variable that, based on the solution of the relaxation, 

seems to be more likely equal to be 0 or 1 for the 
optimal solution. The complete efficient branch and 
bound procedure for one tone of optimization problem 
(6) is presented in algorithm 4. 
Algorithm 4 Efficient branch and bound method  
1: Branching: choose one of the binary values of 
cancellation taps ( ,p q

kc ) which has not been used so far 
2: Solve two convex relaxed problems with objective 
function ( )k convexJ (11) based on algorithm 3 where 

, 0p q
kc =  and , 1p q

kc =  
3: Bounding: determine the lower and upper bound of 
the two sub-problems 
4: Consider minimum of lower bounds as current lower 
bound on the optimal value of the optimization problem 
5: Consider minimum of upper bounds as current upper 
bound on the optimal value of the optimization problem 
6: Pruning: Prune the sub-problem which has lower 
bound that is more than current upper bound 
7: If desired accuracy achieved then quit the algorithm 
8: Else select the sub-tree (sub-problem) which has the 
smallest lower bound to split 
9: go to step 1 
In summary, the per-tone optimization problem (6) in 
line 11 of algorithm 1 can be solved by successive 
convex relaxation approach presented in algorithm 2. 
Algorithm 4 can be used in line 6 of algorithm 2 and 
algorithm 3 is used in line 2 of algorithm 4. 
5 Computational Complexity Comparsion 
The overall complexity of the joint multi-user power 
control and partial crosstalk cancellation problem is 

1( ( 2 ) )N NO K B −  in the case of per-tone exhaustive 
search [8]. In [8], they have used the sub-optimal 
ON/OFF power loading joint with the line selection and 
user independence observation and thus reduce this 
overall complexity to 2( 2 )NO K N . However, it has still 
exponential complexity respect to the number of users. 
In our proposed branch and bound procedure, at any 
node of the tree, we prune one of leaves (sub-problems). 
Thus, in the worst case we must solve this optimization 
problem through 2( )O N runs of convex sub-
optimization problem. Algorithm 3 can be used to solve 
the relaxed mixed binary-convex sub-optimization 
problem with complexity of 2( )O N . Hence, 4( )O KN  
executions are required to find the optimal solution of 
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the per-tone problem as well. Analytical and numerical 
studies have shown that algorithms 2 and 3 converge to 
optimal values with just 2-3 iterations. Thus, they have 
much low computational complexity and very high 
convergence speed. Consequently, the overall 
complexity of the proposed branch and bound procedure 
is 4( )O KN in the case of per-tone problem. This shows 
that our proposed solution has much lower pre-
processing complexity than the current proposed 
algorithm in [8] particularly where 4N >  and results in 
optimal power loading and crosstalk cancellation taps 
allocation. 
6 Numerical Results and Discussion 
This section provides some simulation results generated 
by using proposed joint multi-user power control and 
partial crosstalk cancellation problem. We compare the 
performance of the joint solution and the independent 
solution obtained by independently solving the multi-
user power control problem (with convex relaxation 
procedure) and the partial crosstalk cancellation 
problem.  
Our simulations consider a distributed upstream VDSL 
scenario, with strong crosstalk, that consists of 8 VDSL 
users, split into two equal groups of 4 users 
( 4 600 ,4 1200m m× × ) with full signal-level 
coordination. A line diameter of 0.5 mm (24 AWG) is 
used and the maximum transmit power is 11.5 dBm. The 
SNR gap Γ is set to 12.9 dB, corresponding to a target 
symbol error probability of -710 , coding gain of 3 dB 
and a noise margin of 6 dB. The tone spacing is fΔ = 

4.3125 kHz and the DMT symbol rate sf = 4 kHz. The 
simulations are performed in Matlab on a 2× Intel Xeon 
2.4 GHz with 4GB RAM. Due to the inherent symmetry 
in the channel model [1], the resulting bit-rates for users 
having equal loop lengths end up the same.  
The simulations are performed for the first two-user case 
(one from each user group) up to the eight-user case (see 
Table 1). Table 1 shows enormous pre-processing 
complexity reductions compared to per-tone exhaustive 
search. For example, an exhaustive search for two user 
case require 4 hours for simulation time whereas the 
proposed method only requires 10 seconds with similar 
resulting bit loadings and identical set of dominant 
cross-talkers. 
Figures 1 and 2 show the resulting bit-rate of near-users 
(600m) and far-users (1200m) versus online complexity 

budget where bit-rate of far and near users are set to 
2Mbps and 20Mbps, respectively. The figures show 
significant performance gains (bit-rate improvement) of 
the joint solution compared to the independent solution. 
The figures shows that no performance is gained by 
increasing the crosstalk cancellation tap budget beyond 
30% of full crosstalk cancellation. When the multi-user 
power control problem and the partial crosstalk 
cancellation problem are solved jointly, transmit spectra 
are chosen such that only crosstalk that cannot be 
cancelled is avoided. Depending on the crosstalk 
cancellation tap budget, transmit spectra can overlap on 
frequencies with the highest capacity, resulting in 
significant performance gains. 

Table 1. Comparison of simulation times 
Users Exhaustive search 

(Estimated time) 
Our approach 

2 4 hours 10 seconds 
4 10 days 40 seconds 
6 2 years 4 minuets 
8 20 years 10 minuets 

 
Fig. 1. Near users bit-rate versus online complexity 
budget where far users bit-rates are set to 2 Mbps 

It is also seen that with 30% complexity, our algorithm 
achieves 99% of the performance gain on near users and 
achieves 97% of performance gain on far users with 
30% complexity budget. With a target rate 15 Mbps on 
near users and 2 Mbps on far users; the required 
complexity budget is 20% for independent solution and 
4% for joint solution. These show a significant gain of 
500% in online complexity reduction as is observed in 
the figures. It is noted that the joint solution operates 
much closer to the full crosstalk canceller with much 
low online complexity in particularly near-far scenarios. 
This is due that the crosstalk coupling of the dominant 
cross-talkers are a few order of magnitude greater than 
those of the non-dominant cross-talkers in near-far 
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scenarios. This near-far effect particularly is seen in 
upstream scenarios or complex central office and remote 
terminal based scenarios.  

 
Fig. 2. Far users bit-rate versus online complexity 

budget where near users bit-rates are set to 20 Mbps 
7 Conclusion 
The DSL channel is essentially stationary. However, the 
crosstalk profile can change in time for short-term 
stationary DSL systems. Therefore, it is crucial that the 
partial crosstalk canceller has low online complexity. It 
can be achieved thorough joint use of multi-user power 
control and partial crosstalk cancellation techniques. 
However, these joint solutions suffer from pre-
processing complexity. In this paper, an efficient low 
complexity joint multi-user power control and partial 
crosstalk cancellation solution was introduced. We 
consider this problem as a mixed binary-non-convex 
optimization problem. The Lagrange multipliers are 
used to decouple the constrained optimization problem 
into a series of per-tone unconstrained optimization 
problems. However, this problem still suffers from per-
tone exhaustive search because of non-convexity of its 
per-tone optimization problem. Therefore, we 
reformulated the non-convex per-tone optimization 
problem into a mixed binary-convex problem based on a 
successive convex relaxation technique. Then we solved 
it by using an efficient branch and bound approach 
keeping the pre-processing complexity significantly low. 
Analytical and numerical studies have shown that our 
convex relaxation method have very high convergence 
speed. Thus, the simulation times are reduced 
significantly, e.g. from 20 years down to only a few 
minuets for an eight-user scenario. Moreover, it was 
shown that network capacity can be increased with this 
joint solution by efficient crosstalk cancellation taps 
allocation. Therefore, the pre-processing complexity will 
be reduced extremely due to our proposed low 

complexity algorithms. In addition, the online 
complexity will be decreased significantly by this joint 
optimal solution as shown by our simulation results 
presented in this paper and other simulation results not 
reported here. 
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