

Self Checking Systolic FIFO Stack

HUDA B. ABUGHARSA ALI H. MAAMAR
Higher Institute of Industry Higher Institute of Electronics

Musrita, LIBYA Beni Waled, LIBYA
 ali_h_maamar@yahoo.co.uk

Abstract : The advances in VLSI technology have made possible many changes not only in the amount of
hardware that can be integrated into a die permitting the implementation of single chip processor, but also in
processor architecture. This creates a need for algorithms that can exploit a high degree of pipelining and
parallelism. The algorithms that are the best at this time, for being able to incorporate a high degree of
parallelism are the systolic arrays. The systolic systems have balanced uniform architectures which typica11y
look like grids where each line indicates a communication path and each intersection represents a ce11 or a
systolic element. Unfortunately as the scale of integration has increased so also has the occurrence of
intermittent faults. The characteristics of these types of faults render them undetectable by standard test
strategies. This is particularly problematic with the wide use of complex circuits in safety-critical applications.
Ensuring the reliability of these systems is a major testing challenge. The detection of intermittent faults requires
the use of Concurrent Error Detection (coding) techniques. This paper investigates the use of Berger code as a
means of incorporating CED into a self checking systolic FIFO stack..

Key-Words : Systolic systems, self checking, intermittent faults, Berger code, Concurrent error detection,

1. Introduction
The advances in semiconductor technology have
greatly increased the scale of integration permitting
complete systems to be realized as a single chip.
This creates a need for algorithms that can exploit a
high degree of pipelining and parallelism. The
algorithms that are the best at this time, for being
able to incorporate a high degree of parallelism are
the systolic arrays[1]. Although increased scales of
integration offers many advantages, these complex
circuits are more susceptible to transient and
intermittent faults, a survey [2] [3] [4] has shown
that (90%) of hardware related crashes in VLSI
systems has been due to these types of faults. With
the extensive use of these types of circuits in safety
critical application, a major challenge which must
be addressed is the development of test techniques
to detect transient and intermitted faults.
Unfortunately the characteristics of this type of
fault, namely random occurrence and short
duration, render standard test strategies ineffective.
The detection of these types of faults necessitates
the use of a test strategy which continuously
monitors the operation of the system and compares
it with some known reference. This approach is

usually referred to as Concurrent Error Detection
(CED) that can be achieved through the use of
Redundancy. Redundancy is the use of extra
resources beyond the requirements of the
unchecked system. All CED techniques introduce
some form of redundancy. There are three types of
redundancy, namely Hardware Redundancy, Time
Redundancy, and Information Redundancy.
Information redundancy (coding techniques) has
been identified as a viable mechanism for
implementing concurrent error detection (CED) in
VLSI circuits. Invariably, the incorporation of CED
schemes incur penalties on a design in terms of area
overheads resulting from the additional hardware
and routing space necessary to implement the
scheme, the area overhead incurred is a function of
the number of the check bits (extra bits added to
information bits) used in the coding scheme.
Amongst all of the separable codes used in CED
schemes, Berger code [5] is the least redundant
separable code capable of detecting all
unidirectional errors. The construction of the code,
and its error detection capabilities are discussed
below together with a design of a self checking
systolic stack using Berger code.

7th WSEAS Int. Conf. on INSTRUMENTATION, MEASUREMENT,CIRCUITS and SYSTEMS (IMCAS '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-50-3 98 ISSN: 1790-5117

2. Berger Code
Berger code is a separable and unordered code
[5][6], it is separable because the information bits
and the check bits (check symbol) in the code word
are separate, it is an unordered code as it is not
possible to change one codeword into another
codeword by simply changing either l's to O's or O's
to l's, this means that the code can detect all
unidirectional errors. The codeword of the Berger
code is formed by appending the check bits to the
information bits, the check bits of the code is the
binary representation of the number of O's (or the
complement of the number of 1 's) in the
information bits, the number of check bits k = [Log2
(I + 1)], where I is the number of bits in the
information bits (data word), the number of bits in
the codeword n = I + k bits. If the number of
information bits in a Berger code is I =2 k -1, k≥ 1,
then it is called a maximal length Berger code;
otherwise it is known as the non-maximal length
Berger code. For example, the Berger code
1100101011 is maximal length because k=3 and I
=7= (2 k -1), whereas 110100011 is non-maximal
length because k=3 and I=6 ≠ (2 k -1).

3. Systolic Systems
The term systolic originated in the medical
community where it is used to describe the human
circulatory system. Systolic processes, like the
circulatory system, perform the operations in a
rhythmic, incremental, ce11ular and repetitive
manner much like the heart circulating blood
through the arteries, veins, and capi11aries. The
systolic computation is restricted by the array's
operations, much the same way that the heart
controls blood flow to the ce11s since it is the
source and destination for a11 blood [7]. In 1978 the
first systolic arrays were introduced by Kung and
Leiserson [1] as a feasible design for special
purpose devices. The systolic systems have
balanced uniform architectures which typica11y
look like grids where each line indicates a
communication path and each intersection
represents a ce11 or a systolic element. Systolic
arrays are suitable for VLSI implementation
because of the following advantages: 1- Their local
interconnection schemes avoid the clock skew
which arises if data is broadcast over paths of
different lengths. 2- The signal drivers are
independent of the number of ce11s in the array,
and the size of the array can be increased without

altering other design parameters. 3- They are easy to
implement because of their simple and regular
design, one has to design and test only a few cells in
order to build a complete system.

4. Systolic Stack
Many programming applications require that a data
item be inserted into a set, and at any time it can be
popped back out from the set. This type of data
structure is ca11ed Last In First Out (LIFO) stack
[8]. The device derives its name from the fact that
items may be added to the stack in sequential order,
and then popped out from the stack in reverse order.
There are two fundamentally different architectures
for implementing this simple device; a memory
stack which is essentially a portion of a memory,
this type of stack can grow and may occupy the
entire memory space if necessary. The other type of
stack is a register stack which is constructed using
shift registers the size of the stack is limited by the
size of the shift registers, and the operations of the
stack are executed without reference to the memory.
In this paper we wi11 design and implement a self
checking systolic LIFO register stack. Gulbas and
Liang [9] have presented a systolic algorithm for the
last in first out (LIFO) stack. The stack is an array
of ce11s, with each ce11 communicating with its
left and right neighborhoods. The cells can either be
in the occupied state or the empty state. The ce11s
in the systolic stack are fu11 words, each ce11
stores one word. Each word has its own control
circuit (state contro11er), the control circuits are the
same except the control circuit of the first ce11
(temporary storage ce11) which is connected to the
host and receives the push signal, and the control
circuit of the second ce11 which also connected to
the host and receives the pop signal. All other cells'
control circuits are the same, an having neither
connections to the host nor they are under the
control of the host.

4.1 The Systolic Stack algorithm
The systolic stack design is based on an algorithm
which has two rules[9]. Rule 1: If there are ever two
occupied ce11s to the left of an empty ce11, then
the element in the rightmost of the two occupied
cells will move one over to the right into the empty
ce11, as shown in Fig.1. Rule 2: If there are two
empty ce11s to the left of an occupied ce11, then
the element in the occupied will move one over to

7th WSEAS Int. Conf. on INSTRUMENTATION, MEASUREMENT,CIRCUITS and SYSTEMS (IMCAS '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-50-3 99 ISSN: 1790-5117

the left into the rightmost of the two empty ce11s,
as shown in Fig.2.

4.2 Storage array
The storage array is the main circuit of the stack, it
consists of an array of shift registers R1 R2 ,…. Rn
, where n is the number of rows in the array. The
shift registers are arranged in rows, where the
number of rows determines the number of bits in
each word. The number of bits in each shift register,
which must all be of the same length, determines the
number of words, that can be stored in the stack.
Each column of the array is a full word which is
controlled by one state controller. The storage array
is constructed of shift registers which are arranged
in columns. All the shift registers have the same
length, build up from the same basic cell, and has
two inputs and two outputs. There are four control
signals to control the data movement.

4.3 Control circuit
The control circuit in the systolic stack is the most
complicated of the whole stack. there is a state
controller for each word in the stack. The state
controllers of the words pass the information among
them selves, each controller communicating with its
two most left neighbors as will as its neighbors to its
right. There are three types of state controllers: the
state controller for the temporary cell (CUo), the
state controller for the first cell (CUI) in the stack
(top of the stack), and the state controller for the rest
of the cells in the stack (CUi), which used n-l times
(where n is the number of words that can be stored
in the stack), Fig.3.

Ci-1 Ci Ci+1

Fig.1 Rule 1 of systolic stack algorithm

Ci-1 Ci Ci+1

The heart of each controller is a two J-K master
slave flip-flop which are cascaded together. There
are some combinational logic gates to the inputs of
the first J - K of each controller, the combinational
logic is not the same and depends on the controller.
Controller of temporary cell Co (CUo): The
function of CUo is to receive the push signal from
the host and allow the new word to be pushed into
the stack; provided that the stack is not full (at least
one cell is empty). As soon as the top of the stack
becomes empty, and if there is a word waiting in the
temporary cell, then CUo controller will transfer
that word waiting to the top of the stack. The
controller generates also the signals needed to
refresh the contents of the temporary cell. It should
be noted that data will stay in temporary cell for
short time only, waiting for the rest of the stack to
be rearranged.

Ci-1 Ci
C

Fig.2 Rule 2 of systolic stack
l i h

Ci-1 Ci
C

Controller of the top of the stack (CUi): The Control
circuit of the top of the stack has three functions.
First, it should send the word stored in the top of the
stack to the data bus, when there is a pop signal
from the host. Second, it should transfer the top
word of the stack to the left (cell 2) when there is a
new push from the host and the stack is not full, the
third function is to refresh the contents of the first
storage cell (top of the stack) when there is no pop
or shift left; that means shifting the data left from
the second cell to the first cell when it is empty, and
shifting the data right to the second cell, when both
the temporary cell and the first cell are full.
Controller of the standard Cell; CUi is the state
controller for the rest of the stack. Each storage cell
of the stack has its own state controller; they are the
same except for the temporary cell and the top of
the stack. The main functions of CUi are: Move data
from Ci to Ci+1 if Ci-1 and Ci are occupied and Ci+l is
empty. Move data from Ci to Ci-1 if Ci-l and Ci-2 are
empty.

7th WSEAS Int. Conf. on INSTRUMENTATION, MEASUREMENT,CIRCUITS and SYSTEMS (IMCAS '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-50-3 100 ISSN: 1790-5117

4.4 Self Checking Hardware
When designing a circuit which incorporates a
concurrent error detection capability, the question
immediately arises regarding the number and
placement of the checkers; this is trade-off between
area and error latency time, that is the delay
between the error occurring and its detection. The
number of checkers is usually equal to the number
of the major buses used to connect the main blocks
together of the system. Figure 4 shows the self
checking systolic stack, compared with figure 3, it
is clear that there is an extra hardware. In self
checking stack two check symbol generators (CSG)
circuits are needed, one checker (Two Rail
Checker), and an extra storage cells (K) attached to
each word, these cells are used to store the check
symbol generated for each word pushed into the
stack, the number of the bits of the check symbol
depends on the code used and also on the size of
the data word. For example, if the size of the data
word that can be pushed into the stack is 32 bits (
1=32), and since we used Berger code, then the
number of bits of the check symbol is 6 bits (K=6).
When data word is pushed into the stack, its check
symbol should be generated and pushed into the

stack, as the data word moves to the left or to the
right in the stack its check symbol should also
follows the data word. When data is to be popped
out from the stack via the bus, the data should
immediately be checked for any detectable errors.
This is carried out by the checker, which consists of
a check symbol generator for Berger Code, and a
Totally Self Checking (TSC) Two-Rail Checker
(TRC). The check symbol generator is a zero
counter as presented in [10][11], it counts the
number of zeros in the information bits of any
information word, and gives the number of zeros
which represents the check symbol. When the
check symbol becomes available it is then
compared with the stored check symbol (which
generated when the data word pushed in the stack)
for that particular word to be popped out, if the
stored check symbol and the generated check
symbol of the popped word are match then the data
word is error free and can be moved out from the
stack, but if they not match then the data word is
not error free word.

Figure 3 Systolic stack architecture

C0

C1

push CU1CU0

Data in

Data out

Cn

CUn

C2

CU2

pop Control circuit

Storage array

φ

Data Bus

7th WSEAS Int. Conf. on INSTRUMENTATION, MEASUREMENT,CIRCUITS and SYSTEMS (IMCAS '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-50-3 101 ISSN: 1790-5117

 Control

 Error signals

 Figure 4 Self checking systolic stack
5. Conclusion
The work in this paper is concerned with the
investigation of Berger code as a means of
integrating a Concurrent Error Detection (CED)
scheme into a VLSI circuit. Berger code has the
advantage that it can detect all unidirectional errors
The design of a Self-Checking Systolic Stack using
Berger code have been presented, the stack is self
checking against errors affecting the data word bits
and its check bits. Since the code used is a separable
code then. The speed of the systolic stack is
independent of the capacity of the stack. The
systolic stack can be expanded to any desired
capacity with out altering the design parameters.

References:
[1] H. T. Kung, C. E. Leiserson, "Systolic Array for
VLSI", In lain S. Duss and G. W Stewart, editors,
Sparse Matrix Proceeding, 1978.
[2] Parag K. Lala, "Self Checking and Fault
tolerance digital Design",Morgan Kaufmann
Publisher, 2001.
[3] J. B Clary, R. A. Sacane, "Self-Testing
Computers", IEEE computers, Vol. no.10,October
1979, pp. 49-50.

[4] N. K.Jha, S. Gupta, "Testing of Digital
Systems", Cambridge University Press 2003.
[5] J.M. Berger, "A Note on Error Detecting Codes
for Asymmetric Channels", Information and
Control, vol4, pp. 68-73, 1961.
[6] Lala Parag k., "Digital Circuit Testing and
Testability", Academic Press, 1997.
[7] D. De Baer. J. Paredaen~ "Parallel Algorithms
and Architectures", Springer Berlin / Heidelberg.
1987.
[8] Thomas L. Floyd "Digital Fundamentals" ,
Prentice Hall, July 2005
[9] L. Guibas and F. Liang, "Systolic stacks,
queues, and Counters," in Proc. Conf. Advanced
Res. VLSI, MIT, Cambridge, 1982.
[10] S. J. Piestrak, “Design of Encoders and Self-
Testing Checkers for some Systematic
Unidirectional Error Detecting Codes", the
Workshop on Defect and fault-Tolerance in VLSI
systems, 1977.
[11] Jerzy W. Greblicki, Stanislaw J. Piestrak
,"Design of Totally Self-Checking Code Disjoint
Synchronous Sequential Circuits", Springer Berlin
Heidelberg, Feb 2004.

I

k

I

k

CSG

CSG

Checker

CUnCU1CU0

I Data in

Data out

k

7th WSEAS Int. Conf. on INSTRUMENTATION, MEASUREMENT,CIRCUITS and SYSTEMS (IMCAS '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-50-3 102 ISSN: 1790-5117

