
The geometry of Gibbs-Duhem-Pfaff thermochemical systems

CRISTINA STAMIN
University Politehnica of Bucharest

Faculty of Applied Sciences
Department of Mathematics
Splaiul Independentei 313

060042, BUCHAREST, ROMANIA
criset@yahoo.com

CONSTANTIN UDRISTE
University Politehnica of Bucharest

Faculty of Applied Sciences
Department of Mathematics
Splaiul Independentei 313

060042, BUCHAREST, ROMANIA
udriste@mathem.pub.ro

Abstract: The paper deals with problems concerning simple thermochemical systems dynamics, modelled by
Gibbs-Duhem-Pfaff equation. Section 1 analyzes the Gibbs-Duhem-Pfaff equation and the associated nonholo-
nomic hypersurface, consisting in integral manifolds with the dimension at most 3. In Section 2 there are listed
6 simple thermodynamical systems with one state. Section 3 describes 15 simple thermodynamical systems with
two states. Section 4 defines 20 simple thermodynamical systems with three states. The simple thermodynamical
systems depending on measurable state variables are emphasized.
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1 Gibbs-Duhem-Pfaff equation and
its solutions

The Gibbs-Duhem-Pfaff (GDP for short) equation

SdT − V dP +
n∑

i=1

Nidµi = 0

models the dynamics of thermodynamical behavior of
chemical systems made ofn types of particles ([1]).
There areNi particles of each type, and the chemical
potential of each of them isµi. In the previous relation
S denotes the entropy,T is the temperature,V is the
volume andP denotes the pressure.

In this paper we study chemical systems made
of one type of particles. Thus, we consider the 6-
dimensional Euclidean spaceR6 with the coordinates
S, T , V , P , N , µ, and in this space the GDP equation
for a substance made of particles of only one type is

(1) ω = SdT − V dP + Ndµ = 0.

We are looking for the solutions (integral manifolds)
of GDP equation. For this we need to check the com-
plete integrability condition. Having

dω = dS ∧ dT − dV ∧ dP + dN ∧ dµ,

and the exterior product

ω ∧ dω = −SdT ∧ dV ∧ dP + SdT ∧ dN ∧ dµ−
−V dP ∧ dS ∧ dT − V dP ∧ dN ∧ dµ+
+Ndµ ∧ dS ∧ dT −Ndµ ∧ dV ∧ dP,

we get that the GDP equation is not completely inte-
grable, becauseω ∧ dω 6= 0.

To write the matrix attached to the 2-form

θ = dω = dS ∧ dT − dV ∧ dP + dN ∧ dµ,

we use the representationθ =
∑3

i=1 dxi ∧ dyi, where
(
xi

)
i=1..3

= (S, V, N),
(
yi

)
i=1..3

= (T, P, µ).

We find the matrix

[θd∧d] =




θdS∧dS θdS∧dT ... θdS∧dµ

θdT∧dS θdT∧dT ... θdT∧dµ

... ... ... ...
θdµ∧dS θdµ∧dT ... θdµ∧dµ




=




0 1
2 0 0 0 0

−1
2 0 0 0 0 0

0 0 0 −1
2 0 0

0 0 1
2 0 0 0

0 0 0 0 0 1
2

0 0 0 0 −1
2 0




,

whose determinant is not zero, so the matrix is non-
degenerated. These two properties (the analytical con-
dition - the exterior differential ofθ is not zero, and the
algebraic condition - the nondegenerate matrix) im-
plies that the 2-formθ is a symplectic form on the
manifoldR2×3.

Becauseθ is not degenerated, the 3-formθ3 =

θ∧θ∧θ is not zero. The form
θ3

3!
is called symplectic
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volume or Liouville form of the symplectic manifold(
R2×3, θ

)
. Thus, we have the following

1.1. Proposition. The integral submanifolds of
GDP equation are 1-dimensional, 2-dimensional and
3-dimensional.

In the sequel these integral submanifolds are de-
scribed as regular functions of classC2.

1.2. Definition. The nonholonomic hypersurface
(R6, ω = 0) is called thermochemical system of GDP
type.

1) An integral curve of the GDP equation
is a regular functionc : I ⊂ R → R6,
c(t) = (S(t), T (t), V (t), P (t), N(t), µ(t)) of C2

class whose components verify the ODE

(2) S dT
dt − V dP

dt + N dµ
dt = 0.

1.3. Definition. An integral curve of the GDP equa-
tion is called thermochemical system with one state.

If we consider a pointM0 (S0, T0, V0, P0, N0, µ0)
and a nonzero vectorq = (q1, q2, q3, q4, q5, q6) satis-
fying the condition

S0q2 − V0q4 + N0q6 = 0,

then there are infinitely many solutionsc(t) of the
equation (2) satisfying the initial conditionc(t0) =
M0.

An integral curve can also be characterized by the
algebraic system

ci(S, T, V, P, N, µ) = 0, i = 1, 5,

attached to the submersion

c = (c1, c2, c3, c4, c5) : R6 → R5,

having the property that the GDP equation is a conse-
quence of

ci(S, T, V, P,N, µ) = 0,

dci(S, T, V, P,N, µ) = 0, i = 1, 5.

2) An integral surface of Gibbs-Duhem-
Pfaff equation is a regular functiong : D ⊂
R2 → R6 of C2 class whose components
(S(x, y), T (x, y), V (x, y), P (x, y), N(x, y), µ(x, y))
verify the PDE system

(3)

{
S ∂T

∂x − V ∂P
∂x + N ∂µ

∂x = 0
S ∂T

∂y − V ∂P
∂y + N ∂µ

∂y = 0.

The conditions of complete integrability

∂2T

∂x∂y
=

∂2T

∂y∂x
,

∂2P

∂x∂y
=

∂2P

∂y∂x
,

∂2µ

∂x∂y
=

∂2µ

∂y∂x
,

get the area condition

(4)
∂T
∂x

∂S
∂y − ∂S

∂x
∂T
∂y + ∂V

∂x
∂P
∂y−

∂P
∂x

∂V
∂y + ∂µ

∂x
∂N
∂y − ∂N

∂x
∂µ
∂y = 0.

1.4. Definition. An integral surface of the GDP
equation is called thermochemical system with two
states.

Consider a pointM0 (S0, T0, V0, P0, N0, µ0) and
two nonzero vectorsq = (q1, q2, q3, q4, q5, q6 andr =
(r1, r2, r3, r4, r5, r6) such that

S0q2 − V0q4 + N0q6 = 0,
S0r2 − V0r4 + N0r6 = 0,

q2r1 − q1r2 + q3r4 − q4r3 + q6r5 − q5r6 = 0.

There exists an infinity of integral surfacesg sat-
isfying the relations

g(x0, y0) = M0,
∂g
∂x(x0, y0) = q,
∂g
∂y (x0, y0) = r.

An integral surface can be also characterized by
the system of equations

gi(S, T, V, P,N, µ) = 0, i = 1, 4,

which are attached to the submersion

g = gi(S, T, V, P, N, µ) : R6 → R4,

and which have the property that GDP equation is a
consequence of:

gi(S, T, V, P, N, µ) = 0,

dgi(S, T, V, P, N, µ) = 0, i = 1, 4.

3) An integral hypersurface of dimension 3of
GDP equation is aC2 regular functions : D ⊂
R3 → R6 with six componentsS(x, y, z), T (x, y, z),
V (x, y, z), P (x, y, z), N(x, y, z), µ(x, y, z).

1.5. Definition. An integral hypersurface of di-
mension 3 of the GDP equation is called thermochem-
ical system with three states.

The components of this regular function verifies
the PDE system

(5)





S ∂T
∂x − V ∂P

∂x + N ∂µ
∂x = 0

S ∂T
∂y − V ∂P

∂y + N ∂µ
∂y = 0

S ∂T
∂z − V ∂P

∂z + N ∂µ
∂z = 0.

From the complete integrability conditions

∂2T

∂x∂y
=

∂2T

∂y∂x
,

∂2T

∂x∂z
=

∂2T

∂z∂x
,

∂2T

∂z∂y
=

∂2T

∂y∂z
,

∂2P

∂x∂y
=

∂2P

∂y∂x
,

∂2P

∂x∂z
=

∂2P

∂z∂x
,

∂2P

∂z∂y
=

∂2P

∂y∂z
,

∂2µ

∂x∂y
=

∂2µ

∂y∂x
,

∂2µ

∂x∂z
=

∂2µ

∂z∂x
,

∂2µ

∂z∂y
=

∂2µ

∂y∂z
,
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one can get the area conditions

(6)





∂S

∂y

∂T

∂x
− ∂V

∂y

∂P

∂x
+

∂N

∂y

∂µ

∂x
−

∂S

∂x

∂T

∂y
+

∂V

∂x

∂P

∂y
− ∂N

∂x

∂µ

∂y
= 0

∂S

∂z

∂T

∂x
− ∂V

∂z

∂P

∂x
+

∂N

∂z

∂µ

∂x
−

∂S

∂x

∂T

∂z
+

∂V

∂x

∂P

∂z
− ∂N

∂x

∂µ

∂z
= 0

∂S

∂z

∂T

∂y
− ∂V

∂z

∂P

∂y
+

∂N

∂z

∂µ

∂y
−

∂S

∂y

∂T

∂z
+

∂V

∂y

∂P

∂z
− ∂N

∂y

∂µ

∂z
= 0.

For a pointM0 (S0, T0, V0, P0, N0, µ0) and three
nonzero vectors

q = (q1, q2, q3, q4, q5, q6),
r = (r1, r2, r3, r4, r5, r6),
p = (p1, p2, p3, p4, p5, p6),

complying with

S0q2 − V0q4 + N0q6 = 0,
S0r2 − V0r4 + N0r6 = 0,
S0p2 − V0p4 + N0p6 = 0,

q2r1 − q1r2 + q3r4 − q4r3 + q6r5 − q5r6 = 0,
p2r1 − p1r2 + p3r4 − p4r3 + p6r5 − p5r6 = 0,
p2q1 − p1q2 + p3q4 − p4q3 + p6q5 − p5q6 = 0,

there exists an infinity of integral hypersurfacess of
dimension 3 satisfying the relations

s(x0, y0, z0) = M0,
∂s

∂x
(x0, y0, z0) = q,

∂s

∂y
(x0, y0, z0) = r,

∂s

∂z
(x0, y0, z0) = p.

We can characterize also an integral hypersurface
of dimension 3 by a system

si(S, T, V, P, N, µ) = 0, i = 1, 3,

whose equations are attached to the submersion

s = si(S, T, V, P, N, µ) : R6 → R3,

and with the property that GDP equation is a conse-
quence of

si(S, T, V, P, N, µ) = 0,
dsi(S, T, V, P, N, µ) = 0, i = 1, 3.

Thus, a nonholonomic hypersurface inR6 is
made of the set of alls. Moreover, the vector field
(0, S, 0, V, 0, N) having the field lines:

S = m1, T = m1t + n1, V = m2,
P = m2t + n2, N = m3, µ = m3t + n3, t ∈ R,

wherem1,m2,m3 andn1, n2, n3 are constants (fam-
ily of straight lines), is orthogonal to the nonholo-
nomic hypersurface.

2 Simple thermochemical systems
with one state

Consider a thermochemical system of GDP type
(R6, ω = 0). We want to introduce the canoni-
cal thermochemical systems with one statec(t), se-
lecting successivelyt as one of the 6 coordinates
S, T, V, P, N, µ.

2.1. Definition. A thermochemical system with
one statec(t) is called simple if the parameter statet
is one of the six coordinatesS, T , V , P , N ,µ.

2.2. Proposition. There exists 6 types of simple
thermochemical systems with one state.

Between the 6 types of simple systems there ex-
ists 3 in which the state variable is measurable (the
pressureP , the temperatureT and the volumeV ).

Proof. 1) If we considert = S, we will have
c(S) = (S, T (S), V (S), P (S), N(S), µ(S)) and the
ODE (2) becomes

S dT
dS − V dP

dS + N dµ
dS = 0.

The solution

T =
∫ (

V

S

dP

dS
− N

S

dµ

dS

)
dS + C1,

V = V (S), P = P (S), N = N(S), µ = µ(S)

of the previous ODE depends on 4 arbitrary functions
of S.

2) If we take t = T , the integral curve is
c(T ) = (S(T ), T, V (T ), P (T ), N (T), µ(T)). The
components ofc(T ) verify the ODE

S − V dP
dT + N dµ

dT = 0.

The most general solution is of the following form

(
V

dP

dT
−N

dµ

dT
, V (T ), P (T ), N(T ), µ(T )

)
.

Particularly, the solutions of the form
(0, 0, P (T ), 0, µ(T )) have a physical meaning.

2.3. Proposition. The solutions of the form
(0, 0, P (T ), 0, µ(T )) belongs to the vacuumN = 0,
V = 0.

Proof. The temperatureT is measurable. The
”amount” of disorder of the system (entropy)S is
zero.

3) Consideringt = V , we look for an integral
curvec(V ) = (S(V ), T (V ), V, P (V ), N(V ), µ(V )).
Its components verify the ODE

S dT
dV − V dP

dV + N dµ
dV = 0.
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The previous ODE has the solutions with components
(S, T, P,N, µ) of the form

(
0, T (V ),

∫
N

V

dµ

dV
dV + C1, N(V ), µ(V )

)
,

(
S(V ), C2,

∫
N

V

dµ

dV
dV + C1, N(V ), µ(V )

)
,

(
N dµ

dV
−V dP

dV
dT
dV

, T (V ), P (V ), N(V ), µ(V )
)

.

4) t = P produces an integral curve of the form
c(P ) = (S(P ), T (P ), V (P ), P, N(P ), µ(P )). The
ODE (2) becomes

S dT
dP − V + N dµ

dP = 0.

It follows the solutions of the form

(0, T (P ), 0, 0, µ(P )) ,(
0, T (P ), N dµ

dP , N(P ), µ(P )
)

,(
S(P ), C1, N

dµ
dP , N(P ), µ(P )

)
,(

V−N dµ
dP

dT
dP

, V (P ), N(P ), µ(P )
)

.

5) If we considert = N , the integral curve has
the form c(N) = (S(N), T (N), V (N),. Since the
components ofc verify the ODE

S
dT

dN
− V

dP

dN
+ N

dµ

dN
= 0,

the solutions can be written in the form

(0, T (N), 0, P (N), C1) ,
(0, T (N), V (N), C1, C2) ,(

0, T (N), N dµ
dN

(
dP
dN

)−1
, P (N), µ(N)

)
,

(S(N), C1, V (N), C2, C3) ,(
S(N), C1, N

dµ
dN

(
dP
dN

)−1
, P (N), µ(N)

)
,

(
V dP

dN
−N dµ

dN
dT
dN

, T (N), V (N), P (N), µ(N)
)

.

6) Taking t = µ, we impose an integral curve
c(µ) = (S(µ), T (µ), V (µ), P (µ), N(µ), µ). Since
the ODE (2) has the form

S
dT

dµ
− V

dP

dµ
+ N = 0,

we obtain the solutions

(0, T (µ), 0, P (µ), 0) ,
(0, T (µ), V (µ), C1, 0) ,(

0, T (µ), N
(

dP
dµ

)−1
, P (µ), N(µ)

)
,

(S(µ), C1, V (µ), C2, 0) ,(
S(µ), C1, N

(
dP
dµ

)−1
, P (µ), N(µ)

)
,

((
V dP

dµ −N
) (

dT
dµ

)−1
, T (µ), V (µ), P (µ), N(µ)

)
.

3 Simple thermochemical systems
with two states

Consider a thermochemical system of GDP type
(R6, ω = 0). We want to introduce the canonical ther-
mochemical systems with two statesg(x, y), selecting
successivelyx andy as any two of the 6 coordinates
S, T, V, P, N, µ.

3.1. Definition. A thermochemical system with
two states(x, y) is called simple if the parameter
states are two of the six coordinatesS, T , V , P , N ,µ.

3.2. Proposition. There existsC2
6 = 15 types of

simple thermochemical system with two states.
The simple thermochemical systems with two

states are detailed in the Proof. Taking into account
that the pressureP , the temperatureT and the volume
V are measurable, 3 of these 15 variants are essential
cases with measurable state variables.

Proof. 1) Takingx = S, y = T , one gets

g(S, T ) = (S, T, V (S, T ), P (S, T ), N(S, T ), µ(S, T )).

The PDE system (3) becomes
{
−V ∂P

∂S + N ∂µ
∂S = 0

S − V ∂P
∂T + N ∂µ

∂T = 0,

with the area condition

−1 + ∂V
∂S

∂P
∂T − ∂P

∂S
∂V
∂T + ∂µ

∂S
∂N
∂T − ∂N

∂S
∂µ
∂T = 0.

The solutions(V, P, N, µ) are of the form
(

S
(

dP
dT

)−1
, P (T ), 0, µ(S, T )

)
,

(
S

(
dP
dT

)−1
, P (T ), N(S, T ), C1

)
,

(
S

(
∂P
∂T

)−1
, P (S, T ), S ∂P

∂S

(
dµ
dS

∂P
∂T

)−1
, µ(S)

)
,

(
V (S, T ) , P (T ),

(
V dP

dT − S
) (

dµ
dT

)−1
, µ(T )

)
,

(
0, P (S, T ),−S

(
dµ
dT

)−1
, µ(T )

)
,

whereC1 is an integration constant.
2) Forx = S andy = V , we get

g(S, V ) = (S, T (S, V ), V, P (S, V ), N(S, V ), µ(S, V )).

This integral surface verifies the PDE system
{

S ∂T
∂S − V ∂P

∂S + N ∂µ
∂S = 0

S ∂T
∂V − V ∂P

∂V + N ∂µ
∂V = 0,

and the area condition rewrites

− ∂T
∂V − ∂P

∂S + ∂µ
∂S

∂N
∂V − ∂N

∂S
∂µ
∂V = 0.
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One obtains the solutions(T, P, N, µ) of the form

(C1, C2, N(S), C3) ,
(C1, C2, N(S, V ), C3) ,
(C1, C2, 0, µ(S, V )) ,(

C1, P (S), V dP
dS

(
dµ
dS

)−1
, µ(S)

)
,

(
T (S), P (S),

(
V dP

dS − S dT
dS

) (
dµ
dS

)−1
, µ(S)

)
.

3.3. Proposition. Let g(S, V ) be a simple ther-
mochemical system with two states. In the hyperplane
T (S, V ) = c1, P (S, V ) = c2, µ(S, V ) = c3, the num-
ber N of particles in the system is an arbitrary func-
tion of entropy (the first solution above), or of entropy
and volume (the second and third solution above).

3) x = S andy = P leads to

g(S, P ) = (S, T (S, P ), V (S, P ), P,N(S, P ), µ(S, P )).

The PDE system (3) becomes
{

S ∂T
∂S + N ∂µ

∂S = 0
S ∂T

∂P − V + N ∂µ
∂P = 0,

and the area condition (4) rewrites

− ∂T
∂P + ∂V

∂S + ∂µ
∂S

∂N
∂P − ∂N

∂S
∂µ
∂P = 0.

The simplest solutions(T, V, N, µ) are of the
form

(
T (P ), S dT

dP , 0, µ(S, P )
)

,(
T (P ), S dT

dP + N dµ
dP , N(S, P ), µ(P )

)
,(

T (S, P ), S
(

∂T
∂P

∂µ
∂S − ∂T

∂S
∂µ
∂P

) (
∂µ
∂S

)−1
,

−S ∂T
∂S

(
∂µ
∂S

)−1
, µ(S, P )

)
.

4) If one consider the state variablesx = S, y =
N , it follows an integral surface

g(S, N)

= (S, T (S, N), V (S,N), P (S, N), N, µ(S, P )).

Its components verify
{

S ∂T
∂S − V ∂P

∂S + N ∂µ
∂S = 0

S ∂T
∂N − V ∂P

∂N + N ∂µ
∂N = 0,

and area condition (4) becomes

− ∂T
∂N + ∂V

∂S
∂P
∂N − ∂P

∂S
∂V
∂N + ∂µ

∂S = 0.

The solutions(T, V, Pµ) of this PDE system are
expressed by complicated relations which depend on
more functions of the two state variables considered.

5) Takingx = S, y = µ, one gets

g(S, µ)

= (S, T (S, µ), V (S, µ), P (S, µ), N(S, µ), µ).

The components ofg(S, µ) verify the PDE system
{

S ∂T
∂S − V ∂P

∂S = 0
S ∂T

∂µ − V ∂P
∂µ + N = 0.

The area condition (4) becomes

−∂T
∂µ + ∂V

∂S
∂P
∂µ − ∂P

∂S
∂V
∂µ − ∂N

∂S = 0.

The solutions(T, V, P, N) of the previous PDE
system can be of the form

(
T (µ), 0, P (S, µ),−S dT

dµ

)
,(

T (µ), V (S, µ), P (µ), V dP
dµ − S dT

dµ

)
,(

T (S, µ), S ∂T
∂S

(
∂P
∂S

)−1
, P (S, µ),

S
(

∂P
∂µ

∂T
∂S − ∂T

∂µ
∂P
∂S

) (
∂P
∂S

)−1
)

.

Adding the area condition, we get simpler solutions

(C1, 0, P (S, µ), 0) ,
(C1, V (S), C2, 0) ,

(C1, V (S, µ), C2, 0) ,

whereC1 andC2 are integration constants.
6) If we consider that the state variables are the

measurable variablesx = T andy = V , the integral
surface is of the form

g(T, V ) = (S(T, V ), T, V, P (T, V ), N(T, V ), µ(T, V )).

The system (3) rewrites
{

S − V ∂P
∂T + N ∂µ

∂T = 0
−V ∂P

∂V + N ∂µ
∂V = 0,

and the area condition (4) becomes

∂S
∂V − ∂P

∂T + ∂µ
∂T

∂N
∂V − ∂N

∂T
∂µ
∂V = 0.

The first two PDEs can have solutions
(S, P, N, µ) of the form

(
V dP

dT , P (T ), 0, µ(T, V )
)

,(
−V

(
dµ
dT

dF
dT − dP

dT

)
, P (T ), V F (T ), µ(T )

)
,(

−N dµ
dT − V dP

dT , P (T ), N(T, V ), µ(T )
)

,(
V

(
∂P
∂T

∂µ
∂V − ∂P

∂V
∂µ
∂T

) (
∂µ
∂V

)−1
, P (T, V ),

V ∂P
∂V

(
∂µ
∂V

)−1
, µ(T, V )

)
.
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Adding the area condition, we obtain the next exam-
ples of solutions

(0, C1, N(T )V,C2) ,
(0, C1, N(T, V ), C2) ,
(0, C1, 0, µ(T, V )) ,(

0, P (T ), dP
dT V

(
dµ
dT

)−1
, µ(T )

)
.

3.4. Proposition. Let g(T, V ) be a simple ther-
mochemical system with two states. In the hyperplane
P (T, V ) = c1, µ(T, V ) = c2, the system has an
amount of disorder equal to zeroS = 0 (the first two
solutions above).

7) Takingx = T andy = P , one getsg(T, P ) =
(S(T, P ), T, V (T, P ), P, N(T, P ), µ(T, P )). The in-
tegral surfaceg(T, P ) must verifies

{
S + N ∂µ

∂T = 0
−V + N ∂µ

∂P = 0,

and the equation (4) rewrites

∂S
∂P + ∂V

∂T + ∂µ
∂T

∂N
∂P − ∂N

∂T
∂µ
∂P = 0.

This is also an essential case because the state vari-
ablesT andP are measurable. The nontrivial compo-
nents of a solution(S, V, N, µ) are

(0, 0, 0, µ(T, P )) ,(
−N ∂µ

∂T , N ∂µ
∂P , N(T, P ), µ(T, P )

)
.

3.5. Proposition. Let g(T, P ) be a simple ther-
mochemical system described by the measurable vari-
ables temperature and the pressure. If the entropy is
zero, then the integral surface models the behavior of
vacuumN = 0 (the first solution above).

8) Forx = T , y = N , we have

g(T,N)

= (S(T,N), T, V (T, N), P (T, N), N, µ(T, N)).

The system (3) becomes
{

S − V ∂P
∂T + N ∂µ

∂T = 0
−V ∂P

∂N + N ∂µ
∂N = 0,

and for area condition we get

∂S
∂N + ∂V

∂T
∂P
∂N − ∂P

∂T
∂V
∂N + ∂µ

∂T = 0.

The previous PDE system can have solutions
(S, V, P, µ) of the form

(
−N

(
dµ
dT − V dP

dT

)
, V (T ), P (T ), µ(T )

)
,(

−N
(

dµ
dT + V dP

dT

)
, V (T, N), P (T ), µ(T )

)
,(

N
(

∂µ
∂N

∂P
∂T − ∂µ

∂T
∂P
∂N

) (
∂P
∂N

)−1
, N ∂µ

∂N

(
∂P
∂N

)−1
,

P (T, N), µ(T, N)) .

If we add the area condition, we get simpler solutions

(0, NF (T ), C1, C2) ,
(0, V (T, N), C1, C2) ,(

0, N dµ
dT

(
dP
dT

)−1
, P (T ), µ(T )

)
,

(
F (T )dP

dT , T dµ
dT

(
dP
dT

)−1
, P (T ), µ(T )

)
,

depending on two integration constantsC1 andC2.
3.6. Proposition. Let g(T,N) be a simple ther-

mochemical system with two states. In the hyperplane
P (T,N) = c1, µ(T,N) = c2, the system has an
amount of disorder equal to zeroS = 0 (the first three
solutions above).

9) x = T , y = µ lead to an integral surface of the
form

g(T, µ) = (S(T, µ), T, V (T, µ), P (T, µ), N(T, µ), µ).

The PDE system (3) becomes
{

S − V ∂P
∂T = 0

−V ∂P
∂µ + N = 0,

and (4) rewrites

∂S
∂µ + ∂V

∂T
∂P
∂µ − ∂P

∂T
∂V
∂µ − ∂N

∂T = 0.

From the first two PDE we get the components
(S, V, P,N) of the solutions,

(0, 0, P (T, µ), 0) ,(
V ∂P

∂T , V (T, µ), P (T, µ), V ∂P
∂µ

)
.

Adding the area condition, we produce the solutions

(0, 0, P (T, µ), 0) ,
(0, V (T, µ), C1, 0) ,(

V dP
dT , V (T ), P (T ), 0

)
,

(S(T, µ), V (T, µ), P (T, µ), N(T, µ)) .

3.7. Proposition. Let g(T, µ) be a simple thermo-
chemical system with two states (the temperature and
the chemical potential). If the entropy is zero, then
the integral surface models the behavior of vacuum
(N = 0) (the first two solutions above).

10) Again measurable variablesx = V , y = P ,
i.e., an integral surface of the form

g(V, P ) = (S(V, P ), T (V, P ), V, P, N(V, P ), µ(V, P )),

where {
S ∂T

∂V + N ∂µ
∂V = 0

S ∂T
∂P − V + N ∂µ

∂P = 0.
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The components also verify the area condition

∂T
∂V

∂S
∂P − ∂S

∂V
∂T
∂P + 1 + ∂µ

∂V
∂N
∂P − ∂N

∂V
∂µ
∂P = 0.

The form of solutions(S, T,N, µ) is
(

V
(

dT
dP

)−1
, T (P ), 0, µ(V, P )

)
,

(
V

(
dT
dP

)−1
, T (P ), N(V, P ), C1

)
,

(
V

(
∂T
∂P

)
, T (V, P ),−V ∂T

∂V

(
dµ
dV

∂T
∂P

)
, µ(V )

)
,(

S(V, P ), T (P ),
(
V − S dT

dP

) (
dµ
dP

)−1
, µ(P )

)
.

Adding the area condition, we find
(

V
(

dT
dP

)−1
, T (P ), 0, µ(V, P )

)
,

(
S(V ), c1, V

(
dµ
dP

)−1
, µ(P )

)
,

(
−V c4

(
c2

dT
dV (2c4V + c1)

)−1
, T (V ),

V
(
c3c2e

c2P
√

2c4V + c1

)−1
, c3e

c2P
√

2c4V + c1

)
,

wherec1, c2, c3, c4 are integration constants.
3.8. Proposition. Let g(V, P ) be a simple ther-

mochemical system with two states (the measurable
variables volume and the pressure). If the tempera-
ture depends only on volume, then the thermochemi-
cal system does not depend on pressure but only on
volume (the third solution above).

11) If V andN are taken as state variables, one
obtains

g(V,N)

= (S(V,N), T (V, N), V, P (V, N), N, µ(V, N))

as possible integral surface. The system (3) has the
form {

S ∂T
∂V − V ∂P

∂V + N ∂µ
∂V = 0

S ∂T
∂N − V ∂P

∂N + N ∂µ
∂N = 0,

and (4) becomes

∂T
∂V

∂S
∂N − ∂S

∂V
∂T
∂N + ∂P

∂N + ∂µ
∂V = 0.

The general solution has complicated form. The
simplest case is of the form

S = S(V, N), T = C1, P = P
(

N
V

)
,

µ =
∫ 1

N
dP

d(N
V )dN + C2.

12) If we consider the state variablesx = V and
y = µ, we get a candidate

g(V, µ) = (S(V, µ), T (V, µ), V, P (V, µ), N(V, µ), µ).

for an integral surface. The PDE system (3) rewrites
{

S ∂T
∂V − V ∂P

∂V = 0
S ∂T

∂µ − V ∂P
∂µ + N = 0,

and PDE (4) is now

∂T
∂V

∂S
∂µ − ∂S

∂V
∂T
∂µ + ∂P

∂µ − ∂N
∂V = 0.

The solutions are represented by the components
(S, T, P, N):

(
S(V, µ), T (µ), P (µ),−S dT

dµ + V dP
dµ

)
,(

V ∂P
∂V

(
∂T
∂V

)−1
, T (V, µ), P (V, µ),

−V
(

∂P
∂V

∂T
∂µ − ∂P

∂µ
∂T
∂V

) (
∂T
∂V

)−1
)

.

13) Consideringx = P , y = N , one obtains

g(P, N) = (S(P, N), T (P, N), V (P, N), P,N, µ(P, N)).

The components of this integral surface verify the
PDE system

{
S ∂T

∂P − V + N ∂µ
∂P = 0

S ∂T
∂N + N ∂µ

∂N = 0,

with the area condition

∂T
∂P

∂S
∂N − ∂S

∂P
∂T
∂N − ∂V

∂N + ∂µ
∂P = 0.

It follows the solutions via the components
(S, T, V, µ):

(
F (P )N,T (P ), N

(
dµ
dP + dF

dP
dT
dP

)
, µ(P )

)
,(

S(P,N), T (P ), N dµ
dP + S dT

dP , µ(P )
)

,(
−N ∂µ

∂N

(
∂T
∂N

)−1
, T (P, N),

−N
(

∂µ
∂N

∂T
∂P − ∂µ

∂P
∂T
∂N

) (
∂T
∂N

)−1
, µ(P,N)

)
,

whereF (P ) is an arbitrary function ofP .
14) Takingx = P , y = µ, i.e.,

g(P, µ) = (S(P, µ), T (P, µ), V (P, µ), P, N(P, µ), µ),

the PDE system (3) takes the form
{

S ∂T
∂P − V = 0

S ∂T
∂µ + N = 0,

and equation (4) becomes

∂T
∂P

∂S
∂µ − ∂S

∂P
∂T
∂µ − ∂V

∂µ − ∂N
∂P = 0.
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This PDE system has solutions of the form

(0, T (P, µ), 0, 0) ,(
S(P, µ), T (P ), S dT

dP , 0
)

,(
−N

(
∂T
∂µ

)
, T (P, µ),−N ∂T

∂P

(
∂T
∂µ

)−1
, N(µ)

)
.

3.9. Proposition. Let g(P, µ) be a simple ther-
mochemical system with two states (the pressure and
the chemical potential). If the entropy is zero, then
the integral surface models the behavior of vacuum
(N = 0) (the first solution above).

15) Takingx = N , y = µ, one gets

g(N,µ)

= (S(N,µ), T (N, µ), V (N, µ), P (N, µ), N, µ).

The PDE system (3) becomes
{

S ∂T
∂N − V ∂P

∂N = 0
S ∂T

∂µ − V ∂P
∂µ + N = 0,

and (4) is now

∂T
∂N

∂S
∂µ − ∂S

∂N
∂T
∂µ + ∂V

∂N
∂P
∂µ − ∂P

∂N
∂V
∂µ − 1 = 0.

We can start with solutions of the form(S, T, V, P ),
where

(
0, T (N, µ), N

(
dP
dµ

)−1
, P (µ)

)
,

(
−N

(
dT
dµ

)−1
, T (µ), V (N,µ), C1

)
,

(
S(N,µ), T (µ),

(
S dT

dµ + N
) (

dP
dµ

)−1
, P (µ)

)
.

The area condition select the solutions
(

1
2

(
2dF2

dN

√
N + F1 (µ)

) (
dF1
dµ

dT
dN

)−1
, T (N),

√
N

(
dF1
dµ

)−1
, F2(N) + F1 (µ)

)
,

(
−1

2

(
N − 2dP

dµ F1 (µ)
)

, T (µ),
1
2N

(
dP
dµ

)−1
+ F1 (µ) , P (µ)

)
,

whereF1 is an arbitrary function ofµ andF2 is an
arbitrary function ofN .

4 Simple thermochemical systems
with three states

Consider a thermochemical system of GDP type
(R6, ω = 0). We want to introduce the canonical
thermochemical systems with three statess(x, y, z),

selecting successivelyx, y andz as three of the 6 co-
ordinatesS, T, V, P, N, µ.

4.1. Definition. A thermochemical system with
three states(x, y, z) is called simple if the parameter
states are three of the six coordinatesS, T , V , P ,
N ,µ.

4.2. Proposition. There existsC3
6 = 20 types of

simple thermochemical system with three states.
Taking into account that the pressureP , the tem-

peratureT and the volumeV are measurable, one of
these 20 variants is an essential case with measurable
state variables.

Proof. 1) Forx = S, y = T , z = V , we have an
integral hypersurface of the form

s(S, T, V )

= (S, T, V, P (S, T, V ), N(S, T, V ), µ(S, T, V )),

solution of the PDE system (5), i.e.,




−V ∂P
∂S + N ∂µ

∂S = 0
S − V ∂P

∂T + N ∂µ
∂T = 0

−V ∂P
∂V + N ∂µ

∂V = 0,

and the area relations (6) rewrites




∂N
∂T

∂µ
∂S − 1− ∂N

∂S
∂µ
∂T = 0

−∂P
∂S + ∂N

∂V
∂µ
∂S − ∂N

∂S
∂µ
∂V = 0

−∂P
∂T + ∂N

∂V
∂µ
∂T − ∂N

∂T
∂µ
∂V = 0.

One simple solution of this PDE system is of the
form

P = P (T ) ,

N =
(
−S + V dP

dT

) (
dµ
dT

)−1
,

µ = µ (T ) ,

whereP andµ are arbitrary functions ofT .
More precisely, one gets a nice solution which de-

pend on four integration constants.
4.3. Theorem.A simple thermochemical system

s(S, T, V ), with three states (the entropy, the temper-
ature and the volume), has the components

P = TS
V + C2C3

S
V + C4,

N = V T 1
C2

+ C3V,

µ = C2
S
V + C1.

2) If we takex = S, y = T , andz = P , i.e,

s(S, T, P )

= (S, T, V (S, T, P ), P, N(S, T, P ), µ(S, T, P )),

the PDE system (5) becomes




N ∂µ
∂S = 0

S + N ∂µ
∂T = 0

−V + N ∂µ
∂P = 0,
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and the area relations (6) rewrites




∂N
∂T

∂µ
∂S − 1− ∂N

∂S
∂µ
∂T = 0

∂N
∂P

∂µ
∂S + ∂V

∂S − ∂N
∂S

∂µ
∂P = 0

∂N
∂P

∂µ
∂T + ∂V

∂T − ∂N
∂T

∂µ
∂P = 0.

These PDEs have solutions of the form

V = −S
(

∂µ
∂P

) (
∂µ
∂T

)−1
,

N = −S
(

∂µ
∂T

)−1
,

µ = µ(T, P ).

Hereµ is an arbitrary function ofT andP .
3) When the state variables arex = S, y = T and

z = N , the resulting integral hypersurface must have
the form

s(S, T,N)

= (S, T, V (S, T,N), P (S, T, N), N, µ(S, T,N)).

The PDE system (5) becomes




−V ∂P
∂S + N ∂µ

∂S = 0
S − V ∂P

∂T + N ∂µ
∂T = 0

−V ∂P
∂N + N ∂µ

∂N = 0,

and the PDE system (6) rewrites




−∂V
∂T

∂P
∂S − 1 + ∂V

∂S
∂P
∂T = 0

− ∂V
∂N

∂P
∂S + ∂µ

∂S + ∂V
∂S

∂P
∂N = 0

− ∂V
∂N

∂P
∂T + ∂µ

∂T + ∂V
∂T

∂P
∂N = 0.

This PDE system (5)+(6) has complicated solu-
tions. A simple example of solution is

V =
(
S + F (T )N dP

dT

) (
dP
dT

)−1
,

P = P (T ),
µ =

∫
F (T )dP

dT dT + C1,

in whichP andF are two arbitrary functions ofT .
4) Let now consider the state variablesx = S,

y = T , z = µ. In this case we have

s(S, T, µ)

= (S, T, V (S, T, µ), P (S, T, µ), N(S, T, µ), µ)

must verifies the PDE system




−V ∂P
∂S = 0

S − V ∂P
∂T = 0

−V ∂P
∂µ + N = 0.

and the area conditions (7),




−∂V
∂T

∂P
∂S − 1 + ∂V

∂S
∂P
∂T = 0

−∂V
∂µ

∂P
∂S + ∂V

∂S
∂P
∂µ − ∂N

∂S = 0
−∂V

∂µ
∂P
∂T + ∂V

∂T
∂P
∂µ − ∂N

∂T = 0.

The solutions are of the form

V = S
(

∂P
∂T

)−1
,

P = P (T, µ),

N = −S
(

∂P
∂µ

) (
∂P
∂T

)−1
.

5) Now, let us take the states variablesx = S,
y = V , z = P. The integral hypersurface

s(S, V, P )

= (S, T (S, V, P ), V, P, N(S, V, P ), µ(S, V, P ))

is a solution of the PDE system (5)+(6), i.e.,





S ∂T
∂S + N ∂µ

∂S = 0
S ∂T

∂V + N ∂µ
∂V = 0

S ∂T
∂P − V + N ∂µ

∂P = 0,





∂N
∂V

∂µ
∂S − ∂T

∂V − ∂N
∂S

∂µ
∂V = 0

∂N
∂P

∂µ
∂S − ∂T

∂P − ∂N
∂S

∂µ
∂P = 0

∂N
∂P

∂µ
∂V + 1− ∂N

∂V
∂µ
∂P = 0.

The simplest solution for the first three PDE sys-
tem is

T = T (P ),

N =
(
V − S dT

dP

) (
dµ
dP

)−1
,

µ = µ(P ),

whereT andµ are arbitrary functions ofP determined
by the second PDE system.

6) If we takex = S, y = V andz = N or

s(S, V, N)

= (S, T (S, V,N), V, P (S, V, N), N, µ(S, V, N)),

then the PDE system (5) becomes





S ∂T
∂S − V ∂P

∂S + N ∂µ
∂S = 0

S ∂T
∂V − V ∂P

∂V + N ∂µ
∂V = 0

S ∂T
∂N − V ∂P

∂N + N ∂µ
∂N = 0.

The area relations (6) can be written in the following
form 




−∂P
∂S − ∂T

∂V = 0
∂µ
∂S − ∂T

∂N = 0
∂µ
∂V + ∂P

∂N = 0.

Looking for the solutions of these PDEs, one ob-
tains complicated expressions.

7) If the considered state variables arex = S,
y = V , z = µ then

s(S, V, µ)
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= (S, T (S, V, µ), V, P (S, V, µ), N(S, V, µ), µ),

must verify the PDE system




S ∂T
∂S − V ∂P

∂S = 0
S ∂T

∂V − V ∂P
∂V = 0

S ∂T
∂µ − V ∂P

∂µ + N = 0,

and the area conditions




−∂P
∂S − ∂T

∂V = 0
−∂T

∂µ − ∂N
∂S = 0

+∂P
∂µ − ∂N

∂V = 0.

Open problem. Find the general solution.
8) GettingS, P , N as state variables and

s(S, P, N) = (S, T (S, P, N), V (S, P,N), P,N, µ(S, P, N))

as integral hypersurface the PDE system (5), we must
have 




S ∂T
∂S + N ∂µ

∂S = 0
S ∂T

∂P − V + N ∂µ
∂P = 0

S ∂T
∂N + N ∂µ

∂N = 0.

The PDE system (6) will be written in the form




− ∂T
∂P + ∂V

∂S = 0
+ ∂µ

∂S − ∂T
∂N = 0

− ∂V
∂N + ∂µ

∂P = 0.

Open problem. Find the general solution.
9) Let consider the state variablesx = S, y = P ,

z = µ. Then
s(S, P, µ)

= (S, T (S, P, µ), V (S, P, µ), P, N(S, P, µ), µ),

must be solution of the PDE system (5)




S ∂T
∂S = 0

S ∂T
∂P − V = 0

S ∂T
∂µ + N = 0,

and of PDE system (6)




− ∂T
∂P + ∂V

∂S = 0
−∂T

∂µ − ∂N
∂S = 0

−∂V
∂µ − ∂N

∂P = 0.

It follows
(

T = T (P, µ), V = S
∂T

∂P
,N = −S

∂T

∂µ

)
,

whereT is an arbitrary function of two state variables
P andµ.

10) If x = S, y = N , z = µ, one looks for

s(S, N, µ)

= (S, T (S, N, µ), V (S,N, µ), P (S, N, µ), N, µ).

In this case (5) becomes




S ∂T
∂S − V ∂P

∂S = 0
S ∂T

∂N − V ∂P
∂N = 0

S ∂T
∂µ − V ∂P

∂µ + N = 0.

For the PDE system (6), we get




− ∂V
∂N

∂P
∂S − ∂T

∂N + ∂V
∂S

∂P
∂N = 0

−∂V
∂µ

∂P
∂S − ∂T

∂µ + ∂V
∂S

∂P
∂µ = 0

−∂V
∂µ

∂P
∂N + ∂V

∂N
∂P
∂µ − 1 = 0.

A simple solution of the first three PDEs can be
of the form

T = T (µ),

V =
(
S dT

dµ + N
) (

dP
dµ

)−1
,

P = P (µ),

whereT andP are arbitrary functions of the state vari-
ableµ. Adding the other three PDEs, we obtain two
very nice solutions. One of these depends on four in-
tegration constants, and a second one depends on 5
integration constants.

4.4. Theorem.The most general simple thermo-
chemical system of the forms(S, N, µ) has the com-
ponents

T = −µN
S − C2C3

N
S + C4,

V = 1
C2

Nµ + C3N,

P = C1 + C2 lnS − c2 lnN,

or

V = N(C2−1)(C3µ+C4)
C1C2C3

(
C2

(C3µ+C4)(C2−1)

)− C2
C2−1 ,

T = C2N(C3µ+C4)
SC3C1

(
N
S

)−C2
+ C5,

P =
(

C2
(C3µ+C4)(C2−1)

) C2
C2−1

(
C1 + C2

(
N
S

)−C2
)

.

11) GettingT , V , P as state variables, the integral
hypersurface is of the form

s(T, V, P )

= (S(T, V, P ), T, V, P, N(T, V, P ), µ(T, V, P )).

The PDE system (5) is written




S + N ∂µ
∂T = 0

N ∂µ
∂V = 0

−V + N ∂µ
∂P = 0,
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and the area conditions (6) can be put in the following
form 




∂S
∂V + ∂N

∂V
∂µ
∂T − ∂N

∂T
∂µ
∂V = 0

∂S
∂P + ∂N

∂P
∂µ
∂T − ∂N

∂T
∂µ

∂Pz = 0
∂N
∂P

∂µ
∂V + 1− ∂N

∂V
∂µ
∂P = 0.

The general solution has the form

S = −V
(

∂µ
∂P

)−1 (
∂µ
∂T

)
,

N = V
(

∂µ
∂P

)−1
,

µ = µ(T, P ),

whereµ(T, P ) is an arbitrary function of two state
variables. This model is very important for applica-
tions because all the state variables are measurable.

4.5. Theorem.If the state variables areT, V, P ,
then the corresponding simple thermochemical system
is determined only by a chemical potentialµ as an
arbitrary function of temperatureT and pressureP .

12) If we considerx = T , y = V , z = N , i.e.,

s(T, V, N)

= (S(T, V,N), T, V, P (T, V, N), N, µ(T, V, N)),

then the system (5) can be written




S − V ∂P
∂T + N ∂µ

∂T = 0
−V ∂P

∂V + N ∂µ
∂V = 0

−V ∂P
∂N + N ∂µ

∂N = 0,

and (6) will be




∂S
∂V − ∂P

∂T = 0
∂S
∂N + ∂µ

∂T = 0
∂µ
∂V + ∂P

∂N = 0.

Open problem. Find the general solution.
13) Let us considerx = T , y = V , z = µ. The

integral hypersurface

s(T, V, µ)

= (S(T, V, µ), T, V, P (T, V, µ), N(T, V, µ), µ)

must be solution of the PDE system (5),




S − V ∂P
∂T = 0

−V ∂P
∂V = 0

−V ∂P
∂µ + N = 0,

and the PDE system (6),




∂S
∂V − ∂P

∂T = 0
∂S
∂µ − ∂N

∂T = 0
+∂P

∂µ − ∂N
∂V = 0.

We get the solution

S = V

(
∂P

∂T

)
, P = P (T, µ), N = V

(
∂P

∂µ

)
,

whereP (T, µ) is an arbitrary function.
14) When the state variablesx = T , y = P , z =

N are considered, one gets

s(T, P, N)

= (S(T, P,N), T, V (T, P, N), P,N, µ(T, P, N)).

The components of this hypersurface verify the PDE
system 




S + N ∂µ
∂T = 0

−V + N ∂µ
∂P = 0

N ∂µ
∂N = 0,

and the area conditions become




∂S
∂P + ∂V

∂T = 0
∂S
∂N + ∂µ

∂T = 0
− ∂V

∂N + ∂µ
∂P = 0.

The PDE system (5)+(6) has the solution

S = −N

(
∂µ

∂T

)
, V = N

(
∂µ

∂P

)
, µ = µ(T, P ),

in whichµ is an arbitrary function ofT andP .
15) Let us takex = T , y = P , z = µ for the state

variables. This leads to

s(T, P, µ)

= (S(T, P, µ), T, V (T, P, µ), P, N(T, P, µ), µ),

and the PDE system (5) ca be written




S = 0
−V = 0
N = 0.

The area relations (6) rewrite




∂S
∂P + ∂V

∂T = 0
∂S
∂µ − ∂N

∂T = 0
−∂V

∂µ − ∂N
∂P = 0.

In this case the integral manifold is an hyperplane
of dimension 3,

s(T, P, µ) = (0, T, 0, P, 0, µ).

4.6. Theorem. If the states are the temperature,
the pressure and the chemical potential, then the inte-
gral hypersurface of dimension 3 is a hyperplane. It
models the behavior of vacuumN = 0.
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16) If we consider the state variablesx = T , y =
N andz = µ, we get the hypersurface

s(T, N, µ)

= (S(T, N, µ), T, V (T,N, µ), P (T,N, µ), N, µ).

The PDE system (5) becomes




S − V ∂P
∂T = 0

−V ∂P
∂N = 0

−V ∂P
∂µ + N = 0,

and the PDE system (6) will be




∂S
∂N − ∂V

∂N
∂P
∂T + ∂V

∂T
∂P
∂N = 0

∂S
∂µ − ∂V

∂µ
∂P
∂T + ∂V

∂T
∂P
∂µ = 0

−∂V
∂µ

∂P
∂N + ∂V

∂N
∂P
∂µ − 1 = 0.

The general solution is of the form

S = N
(

∂P
∂µ

)−1 (
∂P
∂T

)
,

V = N
(

∂P
∂µ

)−1
,

P = P (T, µ),

whereP (T, µ) is an arbitrary function.
17) When the state variablesx = V , y = P ,

z = N are considered, i.e.,

s(V, P, N)

= (S(V, P, N), T (V, P,N), V, P, N, µ(V, P,N)),

the PDE system (5) will be




S ∂T
∂V + N ∂µ

∂V = 0
S ∂T

∂P − V + N ∂µ
∂P = 0

S ∂T
∂N + N ∂µ

∂N = 0.

and the PDE system (6)




∂S
∂P

∂T
∂V − ∂S

∂V
∂T
∂P + 1 = 0

∂S
∂N

∂T
∂V + ∂µ

∂V − ∂S
∂V

∂T
∂N = 0

∂S
∂N

∂T
∂P + ∂µ

∂P − ∂S
∂P

∂T
∂N = 0.

For the first three PDEs, a simple solution is

S =
(
−N dµ

dP + V
) (

dT
dP

)−1
,

T = T (P ),
µ = µ(P ),

whereµ(P ) and T (P ) are arbitrary functions. Be-
tween the solutions of the system made by all the six
PDEs, the simplest one is

S =
(
V + F (P )N dT

dP

) (
dT
dP

)−1
,

T = T (P ),
µ =

∫ −F (P )TdP + C1),

whereF (P ) andT (P ) are arbitrary functions of state
variableP .

18) ForV , P , µ as state variables, i.e.,

s(V, P, µ)

= (S(V, P, µ), T (V, P, µ), V, P,N(V, P, µ), µ),

the PDE system (5) will be written




S ∂T
∂V = 0

S ∂T
∂P − V = 0

S ∂T
∂µ + N = 0.

The PDE system (6) is





∂S
∂P

∂T
∂V − ∂S

∂V
∂T
∂P + 1 = 0

∂S
∂µ

∂T
∂V − ∂S

∂V
∂T
∂µ − ∂N

∂V = 0
∂S
∂µ

∂T
∂P − ∂S

∂P
∂T
∂µ − ∂N

∂P = 0.

Here we can have a solution

S = V
(

∂T
∂P

)−1
,

T = T (P, µ),

N = −V
(

∂T
∂P

)−1 (
∂T
∂µ

)
,

where the arbitrary functionT is fixed by the PDE
system (6).

19) Forx = V , y = N andz = µ, an integral
hypersurface will be

s(V,N, µ)

= (S(V, N, µ), T (V, N, µ), V, P (V, N, µ), N, µ).

The components of the previous integral hypersurface
must verify the PDEs





S ∂T
∂V − V ∂P

∂V = 0
S ∂T

∂N − V ∂P
∂N = 0

S ∂T
∂µ − V ∂P

∂µ + N = 0.

The area conditions become




∂S
∂N

∂T
∂V − ∂S

∂V
∂T
∂N + ∂P

∂N = 0
∂S
∂µ

∂T
∂V − ∂S

∂V
∂T
∂µ + ∂P

∂µ = 0
∂S
∂µ

∂T
∂N − ∂S

∂N
∂T
∂µ − 1 = 0.

Open problem. Find the general solution.
20) For the case of considering the state variables

x = P , y = N , z = µ, i.e.,

s(P, N, µ)

= (S(P, N, µ), T (P, N, µ), V (P, N, µ), P, N, µ),
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the PDE system (5) becomes




S ∂T
∂P − V = 0

S ∂T
∂N = 0

S ∂T
∂µ + N = 0,

and the PDE system (6) rewrites




∂S
∂N

∂T
∂P − ∂V

∂N − ∂S
∂P

∂T
∂N = 0

∂S
∂µ

∂T
∂P − ∂V

∂µ − ∂S
∂P

∂T
∂µ = 0

∂S
∂µ

∂T
∂N − ∂S

∂N
∂T
∂µ − 1 = 0.

The simplest solution has the form

S = −N
(

∂T (P,µ)
∂µ

)−1
,

T = T (P, µ),

V = −N
(

∂T (P,µ)
∂µ

)−1 (
∂T (P,µ)

∂P

)
,

whereT (P, µ) is an arbitrary function.

5 Conclusions

This paper applies our point of view developed in [2]-
[11] to a Gibbs-Duhem-Pfaff equation in Thermody-
namics, Chemistry etc, enlightening the mathematical
theory in [1]. Since in our variant the Gibbs-Duhem-
Pfaff equation has 6 variables and it is not completely
integrable, the integral submanifolds have at most the
dimension 3. These integral submanifolds are de-
scribed as regular functions of classC2. The most im-
portant cases are those in which the state variables are
betweenmeasurable variablesin the set{pressure=P ,
temperature=T , volume=V }. All the theory can be
transferred to thenonholonomic economic systemsvia
the original dictionary in [7]-[11].
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