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The geometry of Gibbs-Duhem-Pfaff thermochemical systems
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Abstract: The paper deals with problems concerning simple thermochemical systems dynamics, modelled by
Gibbs-Duhem-Pfaff equation. Section 1 analyzes the Gibbs-Duhem-Pfaff equation and the associated nonholo
nomic hypersurface, consisting in integral manifolds with the dimension at most 3. In Section 2 there are listed
6 simple thermodynamical systems with one state. Section 3 describes 15 simple thermodynamical systems witt
two states. Section 4 defines 20 simple thermodynamical systems with three states. The simple thermodynamice
systems depending on measurable state variables are emphasized.
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1 Gibbs-Duhem-Pfaff equation and  we get that the GDP equation is not completely inte-
; ; grable, because A dw # 0.
its solutions To write the matrix attached to the 2-form
The Gibbs-Duhem-Pfaff (GDP for short) equation
0 =dw=dSANdT —dV NdP + dN A dpu,

n
SdT —VdP + Y Nidp; =0 we use the representatién= >3_, da’ A dy’, where
=1
models the dynamics of thermodynamical behavior of (ﬂfl>i:1 , = (S ViN), (?f)l,:l , = (TP ).
chemical systems made oftypes of particles ([1]). ) )
There areN; particles of each type, and the chemical We find the matrix
potential of each of them jg;. In the previous relation
S denotes the entropy, is the temperaturéd/ is the Oaspas  Oasnar - Oasndy
volume andP denotes the pressure. Oana] = Oarnds Oarnar - Odrnd
In this paper we study chemical systems made . .
of one type of particles. Thus, we consider the 6- Oaurds  Odunar - Odundp
dimensional Euclidean spa®& with the coordinates o Lo 0o o0 o0
S, T,V, P, N, u,and in this space the GDP equation 1 (2) 00 0 0
for a substance made of particles of only one type is 02 00 -1 0o o
— 2

(1) w=S8dT — VdP + Ndu = 0. 0 03 0 0 0

o 00 0 0 3%
We are looking for the solutions (integral manifolds) 0 0 0 O —% 0
of GDP equation. For this we need to check the com-
plete integrability condition. Having whose determinant is not zero, so the matrix is non-

degenerated. These two properties (the analytical con-
dw=dSANdT —dV NdP + dN A du, dition - the exterior differential of is not zero, and the
algebraic condition - the nondegenerate matrix) im-

and the exterior product plies that the 2-forn¥ is a symplectic form on the

manifold R2*3,

wAdw = —5dT AdV AdP + SdT' ANdN A dp— Because/ is not degenerated, the 3-foréi —
3

—VdP NdS ANdT —VdP NdN A du+ ) 0° . .
£ NduAdS AdT — Ndu A dV A dP, 0 AOABis notzero. The forrragﬁ! is called symplectic
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volume or Liouville form of the symplectic manifold
(R?*3,6). Thus, we have the following

1.1. Proposition. The integral submanifolds of
GDP equation are 1-dimensional, 2-dimensional and
3-dimensional.

In the sequel these integral submanifolds are de-
scribed as regular functions of class.

1.2. Definition. The nonholonomic hypersurface
(RS, w = 0) is called thermochemical system of GDP
type.

1) An integral curve of the GDP equation
is a regular functionc : I ¢ R — RS,
c(t) (S(t),T(t), V(t), P(t), N(t), u(t)) of C*
class whose components verify the ODE

(2)

1.3. Definition. An integral curve of the GDP equa-
tion is called thermochemical system with one state

If we consider a poind/ (So, 1o, Vo, Po, No, 10)
and a nonzero vectar = (g1, g2, 43, 44, g5, g6 ) Satis-
fying the condition

dr P du _
S — Vg + NG =0.

Soq2 — Voqa + Nogs = 0,

then there are infinitely many solutionst) of the
equation (2) satisfying the initial conditiof(ty) =
M.

An integral curve can also be characterized by the
algebraic system

C’i(S?Tv‘/avavM) :Oa 1= 1757
attached to the submersion
c=(c1,c2,¢3,c4,c5) : R® — R,

having the property that the GDP equation is a conse-
guence of

¢i(S,T,V,P,N, j1)
dCi(S,T,‘/,P,N,M)

0,
=0, i=

1,5.

2) An integral surface of Gibbs-Duhem-
Pfaff equation is a regular function D C
R?> — RS of C? class whose components
(S(z, ), T(2,y),V(z,y), P(x,y), N(z,y), u(z,y))
verify the PDE system

3) {

The conditions of complete integrability

T P
S — Vo +N

u _
§of _ bbb
oy oy

o*T 9T 0*P  9*P 0*p  Op
0xdy  Oydx’ dxdy  Oydx’ Oxdy  Oydx’
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get the area condition
9T 89S _ 9S8 T

ox Oy oz Oy + ox Oy

OPOV "y OuoN AN Iu _

or Oy ox Oy or Jy
1.4. Definition. An integral surface of the GDP
equation is called thermochemical system with two
states

Consider a poiniVy (So, To, Vo, Po, No, io) and

two nonzero vectorg = (q1, g2, g3, 44, 5, g6 andr =
(7“1, T2,73,7T4,T5, 7“6) such that

ov P
(4)

Soq2 — Voga + Nogs = 0,
Sore — Vora + Norg = 0,
q2r1 — q1T2 + q374 — qar3 + q675 — gs76 = 0.
There exists an infinity of integral surfacesat-
isfying the relations

ga(xo,yo) = Mo,
%%(xo, Yo) = ¢,
73(9607 Yo) =1
An integral surface can be also characterized by
the system of equations

gZ(S7T7‘/aP7NaN) = 07 i
which are attached to the submersion
g=9:(S,T,V,P,N,u) : R® — R,
and which have the property that GDP equation is a
consequence of:
9:(S,T,V,P,N, )
ng(SvTa ‘/apv Na M)

3) An integral hypersurface of dimension ¢&
GDP equation is aC? regular functions : D C
R3 — RS with six components(z, y, z), T(x,y, 2),
V(w7 3/7 Z)' P(w7 y? Z)' N(I', y? Z)' /’L(xﬂy7 Z)

1.5. Definition. An integral hypersurface of di-
mension 3 of the GDP equation is called thermochem-
ical system with three states

The components of this regular function verifies
the PDE system

orT oP ou
Sg—%—vg—%—kN—%—O

From the complete integrability conditions

1.4,

0,
0, i =T1,4.

—~

5)

o*r  9*r 9T 9T 0*T  9°T
0xdy  Oydx’ 0xdz  0z0x’ 020y  Oydz’
o’p 9*p 9*pP 9P 9°P  O°P

9x0y  Oydr’ 0x0z 0201 020y  Oydz’
Pu  Pu Pu Pu Pu Ip

0xdy  Oydx’ 0xdz 020z’ 020y  Oydz’
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one can get the area conditions
osor ov BP ON Ou

oy dr Oy Oz
R VoV
oz (9 oz 3 oz 8
oS oV 8N

o a?z a%i@’” aﬁfza

85585T %/%p f&\%u

920y 0z Oy | 9z Oy
osor’ ovor’ oNop'
8y 0z y 0z Oy 0z

For a pointM, (So, To, Vo, Po, No, po) and three
nonzero vectors
q=(q1,92,93, 94,95, 6);
r=(r1,r2,73,74,75,76),
p = (P1, D2, P3, P4, D5, D6),
complying with
Soq2 — Voga + Nogs = 0,
507"2 — Vo’l"4 + N07”6 = 0,
Sop2 — Vopa + Nops = 0,
Q21 — @172 + G374 — qar3 + g5 — q576 = 0,
par1 — p1T2 + p3ra — pars + pers — psre = 0,
P2q1 — P1qG2 + P3q4 — pag3 + Pegs — Psqe = 0,
there exists an infinity of integral hypersurfacesf
dimension 3 satisfying the relations

Js

s(xo, Yo, 20) = Mo, = o (x0, Y0, 20) = 4,

O0s

( )=, 25 )
—(x0,%0,20) =1, —(Z0, Y0, 20) = P-
dy 0, Y0, 20 02 0, Y0, 20 p

We can characterize also an integral hypersurface

of dimension 3 by a system

Si(SaTa‘/vP7N7M) =0, 7':17737
whose equations are attached to the submersion

s =s5i(S,T,V,P,N,u): R® - R?,
and with the property that GDP equation is a conse-
guence of

Si(saTa‘/vP7N7M) 07

ds;(S,T,V,P,N, ) 0, i=1,3.

Thus, a nonholonomic hypersurface RS is
made of the set of alf. Moreover, the vector field
(0,5,0,V,0, N) having the field lines:

S=mq, T=mit+n1, V=mo,
P=mot+n9, N=m3, pu=mst+ns, teR,

wheremy, ms, ms andny, ny, ng are constants (fam-
ily of straight lines), is orthogonal to the nonholo-
nomic hypersurface.
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2 Simple thermochemical
with one state

systems

Consider a thermochemical system of GDP type
(RS, w 0). We want to introduce the canoni-
cal thermochemical systems with one statg), se-
lecting successively as one of the 6 coordinates
S, T,V,P,N, p.

2.1. Definition. A thermochemical system with
one state:(t) is called simple if the parameter state
is one of the six coordinates, 7', V', P, N,u.

2.2. Proposition. There exists 6 types of simple
thermochemical systems with one state.

Between the 6 types of simple systems there ex-
ists 3 in which the state variable is measurable (the
pressureP, the temperaturé and the volumé/).

Proof. 1) If we considert = S, we will have
c(S) = (S,7(S),V(5),P(S),N(S),u(S)) and the
ODE (2) becomes

SeL —ViIE L+ N% =0.

The solution

T =

§ds _5ds
P(S),N = N(9),

VdP Ndpu
I )

of the previous ODE depends on 4 arbitrary functions
of S.

2) If we taket = T, the integral curve is
oT) = (S(T),T,V(T), P(T), N(T), u(T)). The
components of(7T") verify the ODE

dP dp
S—VIL L N — .

The most general solution is of the following form

Particularly, the solutions of the form
(0,0, P(T),0,u(T)) have a physical meaning.

2.3. Proposition. The solutions of the form
(0,0, P(T),0,u(T)) belongs to the vacuuv = 0,
V =0.

Proof. The temperaturd’ is measurable. The
"amount” of disorder of the system (entropy) is
zero.

3) Consideringt = V, we look for an integral
curvec(V) = (S(V), T(V),V,P(V),N(V), u(V)).
Its components verify the ODE

dar _ yy/dP dp
Siwv—Var TNy =

ISSN: 1790-5117
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The previous ODE has the solutions with components 3 Simple thermochemical

(S,T, P,N, ) of the form
N du
(0 T(W), [ 55dV + L N(WY), M(v>>,
m
V).Co. [ SRy + LN V) V)

( VR (), PN W) )

dV
4)t = P produces an integral curve of the form
o(P) = (S(P), T(P),V(P),P,N(P),pu(P)). The
ODE (2) becomes
d
S _V+NE=
It follows the solutions of the form
(0,7(P),0,0,u(P)) .
(0,7(P), N g, N(P), u(P))
(s(p), Ci, N A N(P),u(P))
(S v (PN () )

dapP
5) If we considert = N, the integral curve has
the forme(N) = (S(N),T(N),V(N),. Since the
components of verify the ODE
dT dP du

Sov Van tNav

the solutions can be written in the form

(0,T(N),0, P(N),C1),
(O T( ), V(N ) 01702)

N (4) PO )

( ),C1, V(N )02’03)
S a,—(%) 0,
N). V(N), P(V), <>).

Evdp Nd#
6) Takingt = p, we impose an integral curve

c(p) = (S(w), T(n), V(n), P(p), N(p), ). Since
the ODE (2) has the form

T
SVt
we obtain the solutions
(0,T(w),0,P(p),0),
(0,T(p), V(n),C1,0)
(070, () P N ) )
(S(n), C1, V(p), C2,0),
(60.C0.N () P NG )

(Ve = N) (45) T Vi) P N ().
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9

0,

0, T(N

N =0,

systems
with two states

Consider a thermochemical system of GDP type
(RS, w = 0). We want to introduce the canonical ther-
mochemical systems with two staigs, y), selecting
successivelyr andy as any two of the 6 coordinates
S,T,V,P,N, .

3.1. Definition. A thermochemical system with
two states(x,y) is called simple if the parameter
states are two of the six coordinat@€sT, V', P, N ,u.

3.2. Proposition. There exist&£? = 15 types of
simple thermochemical system with two states.

The simple thermochemical systems with two
states are detailed in the Proof. Taking into account
that the pressur®, the temperaturg’ and the volume
V are measurable, 3 of these 15 variants are essential
cases with measurable state variables.

Proof. 1) Takingx = S, y = T, one gets
9(8,T) = (5, T,V(S,T),P(5,T),

N(S,T), (S, T)).

The PDE system (3) becomes

Ve + N2 =0
S - V§§+Naﬂ =0,

with the area condition

_ QV.OP _ POV | OudN _ ON Op _
L+ 5sar —asor T asar —asor =0

The solutiongV, P, N, 1) are of the form

(s(4) " P 0sT)).

(S (42) ", P(1). N(S.T), 01) ,
(5(3) " Ps.1). 5% (%5) " us),
(Vs.1).P). (Vi - 5) (%) ().

(0.P(s.1),-5 (%) (1)),

where( is an integration constant.
2) Forz = S andy = V, we get

g(S, V)= (S, T(S,V),V,P(S,V),N(S,V), u(S,V)).

This integral surface verifies the PDE system

oT
S5 —

and the area condition rewrites

oP ou __
Vg—%—kNa—‘;—O
VW—I_NW:O?

oT uoN _ AN du _

_W_i oS ov oS v T
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One obtains the solutiortd’, P, N, 1) of the form

(CI, 027 N(S)7 03) )
(Cla 027 N(‘Su V)) 03) ’
(Ola 0270 /-L(S V)) p

(01 P5). v (%) uls),
(T(S), P(s), (V£ - 4T (%) ,M(S)) |

3.3. Proposition. Let g(S, V') be a simple ther-
mochemical system with two states. In the hyperplane
T(S,V)=c1,P(S,V) = ca, u(S, V) = c3, the num-
ber N of particles in the system is an arbitrary func-
tion of entropy (the first solution above), or of entropy
and volume (the second and third solution above).

3)z = S andy = P leads to

g(S,P)=(S,T(S,P),V(S,P),P,N(S,P), (S, P)).

The PDE system (3) becomes

8T 0
{Sg +N% =0
Sgp—V +Ngp =

and the area condition (4) rewrites

O ON _ ON Ou _

or | oV
—op T 9s Tasop — a5opP —

The simplest solutiong7’,V, N, ) are of the
form

(7(P). S 5.0.u(5.P)).
(T(P), S45 + N34, N(S, P), u(P))

(T(S,P),S (gg% _ gﬁgg},;) (7@4,
_SdT (as) (S, P)) )

4) If one consider the state variables= 5, y =
N, it follows an integral surface

g(S;N)

= (S,T(S,N),V(S,N),
Its components verify

P(S,N), N, u(S, P)).

{5? VI + NG =
oT 8P _
Son —Von + Noy =

and area condition (4) becomes

v opP
—on T oson
The solutiong 7, V, Pu) of this PDE system are
expressed by complicated relations which depend on
more functions of the two state variables considered.

P 9V

op _
—9soN Tas =

as
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5) Takingz = S, y = u, one gets
9(S, 1)
= (S, T(S, 1),V (S, 1), P(S, ), N(S, ), 1)
The components of(S, ) verify the PDE system

S@T _V(?P =0
{ %—V%+N—o

The area condition (4) becomes
OV aP _ 9P dV _ ON

95 ou ~— 95 ou a5 = 0.

oT
_W—i_

The solutions(7', V, P, N) of the previous PDE
system can be of the form

(T(,u,),O,P(S,/L),fSQ)
(T(w), V(S 1), P(n), VIE - 54T,
(5. 5% (35) " P(S.m).

-1
oT oP\ (OP
-5 (%))
Adding the area condition, we get simpler solutions

(Cl,O,P(S, ,u),()) )
(017 V(S)7 027 O) )
(Clu V(S) ,u)v 025 O) 3

whereC; and(C, are integration constants.

6) If we consider that the state variables are the
measurable variables= T andy = V/, the integral
surface is of the form

OP OT
S (5 9%

g(T, V)= (S(T,V), T,V,P(T,V),N(T, V), u(T, V)).

The system (3) rewrites

{

and the area condition (4) becomes

S—-VEE+NE=0
V& + N =0,

a8

OpoN _ ON Ou _
oV

oT oV oT ov

The first two PDEs can have solutions
(S, P, N, i) of the form

(Vg P(D),0, (I‘V))

(v (G — 98, P(D),VE(T), i(T)),
~N i = Vi, P(T), < V), u(T)),
V(%% -2 (%) Pav),

Ve (%) lauTV)
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Adding the area condition, we obtain the next exam- If we add the area condition, we get simpler solutions

ples of solutions
(0, NF(T),Cq1,Cy),

((007661111 7]{[\1g)‘/‘/5 %2))’ (07 V(Tv ]y1)> Cla 02) )
(0,10, 4(T.V)) (0.3 (4) " P@). ().

(0, P(T), &7V (%)_1 7M(T)) : <F(T);”;, T4 (%)_1 ,P(T), M(T)) ,

3.4. Proposition. Let g(T, V) be a simple ther- depending on two integration constantsandCs.

mochemical system with two states. In the hyperplane 3.6. Proposition. Let ¢(T, N) be a simple ther-

P(T,V) = c1,u(T,V) = co, the system has an . .
’ b ’ = . mochemical system with two states. In the hyperplane
amount of disorder equal to zef® = 0 (the first two P(T,N) = ¢, u(T,N) = c, the system has an

SOIU;I)O‘?zIfilr?giez T andy = P, one getsy(T, P) = amount of disorder equal to zefo= 0 (the first three
. PR VS solutions above).
S(T,P), T,V(T,P),P,N(T, P), (T, P)). Thein- ;
t(eg(rafl s&}fa’c@((T’ P))’mhst(vérifi)ééb T.F) . 9)x =T,y = pleadto an integral surface of the
’ orm

S+ N3 =
VN — 9(T,p) = (S(T, 1), T, V(T, ), P(T, 1), N(T', ), ).
orP —
and the equation (4) rewrites The PDE system (3) becomes
9S | 8V | dudN _ AN 8 :
op *ar +arap — arop = 0. {5—8‘;%:0
This is also an essential case because the state vari- _VW +N =0,
ablesI” and P are measurable. The nontrivial compo- i
nents of a solutiofS, V, N, 1) are and (4) rewrites
88 . V9P _ 9P 9V _ ON _
(0,0,0,M(T,P)), a—i_aiTaiy,_aiTai,u_aiT_o

~N% N N(T,P),u(T,P)). .
( o1 Nop, N (T, P), i(T, )) From the first two PDE we get the components

3.5. Proposition. Let g(T, P) be a simple ther- (5, V, P, N) of the solutions,
mochemical system described by the measurable vari-

ables temperature and the pressure. If the entropy is (0,0, P(T, p),0),
zero, then the integral surface models the behavior of (Vg—?, V(T, ), P(T, 1), V%—ﬁ) .
vacuumN = 0 (the first solution above).
8) Forz =T,y = N, we have Adding the area condition, we produce the solutions
9(T. ) (0,0, P(T, ),0).
= (S(T,N),T,V(T,N), P(T,N),N, u(T, N)). (0,V(T, p),C1,0),
The system (3) becomes (V%, V(T), P(T), 0) ,

{ S—Vg%—I—N% -0 (S(TaM)?V(T7M)7P(T7M)7N(T7M))'

Ve NJ =0, 3.7. Proposition. Let g(T, 1) be a simple thermo-
chemical system with two states (the temperature and
the chemical potential). If the entropy is zero, then
28 GV OF OGPV | Ou . the integral surface models the behavior of vacuum
The previous PDE system can have solutions (V= 0) (the_ first two solutlons_above).
10) Again measurable variables= V', y = P,

(S, V, P, ) of the form i.e., an integral surface of the form

and for area condition we get

(=N (&~ ViR) V(D). P(T). (D)),
N (;Lg& +V%) ,V(T,N),P(T), u T)) ,
(v 6) () RO g

o 9
0
P(T,N),u(T,N)). S —V+Ngp=0.

g(V,P) = (S(V,P),T(V,P),V,P,N(V,P),/L(V,P))’
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The components also verify the area condition for an integral surface. The PDE system (3) rewrites
T 8S _ 9S8 T Op ON _ 9N Op _ T op
avar —avor T 1+ avar — gvap = 0. Sov —Vay =0
Soy — Vg +N =0,

The form of solutiong S, 7', N, 1) is

B and PDE (4) is now
(V(#) " r@noump).

aT 9S8 98 oT oP ON 0
V ar ! T(P), N(V,P),C
(dp) ) ( )7 ( ’ )7 1>

Vop " ovop Tog —ov =V

The solutions are represented by the components

(V (%) . T(v.P),~VEE (H5F) (V) (S,T, P, N):
21
S(V,P), T(P),(V —S4L) () P).
(svepyze) (v =) () " our (S(Vi1). T(u), P), =S92 + V2.
. . , -1
Adding the area condition, we find (Vg{j (g—‘@) JT(V, 1), P(V, ),
p —1
-1 _ oP 9T _ 9P 0T\ (9T
(V (4) . 7(P),0, (v, P)) : V(e - 5e5) (5F) ) '
(S(V), c1,V (j—ﬁ)fl ,;;,(P)) , 13) Consideringg = P,y = N, one obtains
-1
<Vc4 (% CaV+a)) TV), 9(P,N) = (S(P,N),T(P,N),V(P,N),P,N, u(P,N)).
Vv (6302602})\/204‘/ + cl)fl ,c3e2P\/2e,V F Cl) , The components of this integral surface verify the
PDE system
wherecy, ¢o, c3, ¢4 are integration constants. o1 ou
3.8. Proposition. Let g(V, P) be a simple ther- { S@ -V 48' Nap =
mochemical system with two states (the measurable Soxy + Nay =0,

variables volume and the pressure). If the tempera- -
ture depends only on volume, then the thermochemi- With the area condition
cal system does not depend on pressure but only on

) . 0T 0S5 _ 98 0T _ 9V 4 Ou _
volume (the third solution above). dPON ~— 9PON ~ oN T ap — Y-
11) If V and N are taken as state variables, one . .
. It follows the solutions via the components
obtains (S, T. V. 1):
g(v" N) 9 9 ’:u .
= (S(V,N),T(V,N),V,P(V,N),N,u(V,N)) (F(P)N,T(P),N (4 + 9595) . u(P)) ,
as possible integral surface. The system (3) has the (S(R N), T P),Nd—]’ﬁ + S%,M(P)) )
form o —1
ol d 9 _NOu (o1
{S%§—V%§+N%ﬁl;: ( N (a ) ,T(P,N),
SO _yOP | N _ ouor _ ouor\ (or )\t
ON ON 0 -N (aijl\i[@% - aial) (87]7\;) 7N(P) N) )
and (4) becomes
oT 95 _ 98 OT | OP L du _ whereF'(P) is an arbitrary function of.
avoN ~avoN ton Tav = U 14) Takingz = P,y = 1, i.€.,
The general solution has complicated form. The -
SimpleSt case iS Of the form g(P7 ,U,) - (S(P7 :U’)v T(P7 M)? V(P7 ,U,), Pu N(P7 M)? ,U,),
N the PDE system (3) takes the form
S=SW,N).T=0,P=P (%),
M:f%ﬁd]\f—i-Cz. sg%—vzo
v S%n +N =0,
12) If we consider the state variables= V and _
y = u, we get a candidate and equation (4) becomes
9(V, 1) = (S(V, 1), T(V, 1), V, P(V, 1), N(V, 1), o) b on — 6% — o5 — 9p = 0-
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This PDE system has solutions of the form selecting successively, y andz as three of the 6 co-
ordinatesS, T, V, P, N, u.

(0,T(P, 11),0,0), 4.1. Definition. A thermochemical system with
(S(p ), T(P), S, ) : three statesz, y, z) is called simple if the parameter

o7 1 states are three of the six coordinatés T, V, P,

(-3 (3). 1w -NG (B) VW), W
4.2. Proposition. There exist€”§ = 20 types of
3.9. Proposition. Let g(P, ;1) be a simple ther- simple thermochemical system with three states.

mochemical system with two states (the pressure and  Taking into account that the pressurgthe tem-
the chemical potential). If the entropy is zero, then peraturel’ and the volumé’ are measurable, one of
the integral surface models the behavior of vacuum these 20 variants is an essential case with measurable

(IV = 0) (the first solution above). state variables.
15) Takingz = N, y = u, one gets Proof. 1) Forx = S,y =T, z = V, we have an
integral hypersurface of the form
g(N, p)

s(S,T,V)
= (S? T? V7 P(S7 T? V)7 N(S7 T7 V)? /’L(S7 T7 V))?
solution of the PDE system (5), i.e.,

g V§P—0 ~VIE LN =
LV N =0, 5 — V@P Na“fo

BP ou __
—VWJrNag_

= (S(N, 1), T(N, 1), V(N, 1), P(N, 1), N, ).
The PDE system (3) becomes

and (4) is now
and the area relations (6) rewrites

9T 95 _ 05 9T | OV.OP _ OPOV _ 1 _
ONow ~ ONOu T ON Oz — ON o : ONOu | _ oNou _
oT 3S 03 9T —
We can start with solutions of the fors, T, V, P), g{; + gg ag %%f,i/‘j =0
where + ON Op 87Ngi,u —0
av ar — grav =0
(07 T(N, p), N (%)‘1 7P(/~t)> : formOne S|mple solution of this PDE system is of the
-1 _

(- (?TT) ,T(m,V(N,u),cl), : P—Pgﬁ’(d N

—1 N = —S + Vﬁ ﬁ 5

whereP andy are arbitrary functions df'.

The area condition select the solutions \ : . .
More precisely, one gets a nice solution which de-

1 ; )
dF, dFy dT pend on four integration constants.
( (2 VN + Fi (u )) (d,u dN)  T(N), 4.3. Theorem. A simple thermochemical system

N (4 Fy(N) + F ) s(S,T,V), with three states (the entropy, the temper-

\F< dp ) 2(N) + Fuu) ) ature and the volume), has the components

—5 (N —28°F T

(=5 1) T(w), P=15 4 05058 + Cy,

IN ()7 4 B () ,P(u)) , N=VT& + 03V,

pu=Cop + Ch.
where F} is an arbitrary function of: and F5 is an

s(S,T, P)
4 Simple thermochemical systems = (S,T,V(S,T,P),P,N(S,T, P), (S, T, P)),
with three states the PDE system (5) becomes
Consider a thermochemical system of GDP type N% =0
(R%,w = 0). We want to introduce the canonical S+N% =
thermochemical systems with three sta€s, y, z), -V + NgT!; =
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and the area relations (6) rewrites The solutions are of the form
@@ _ _ 87]\7@ — 0 oP —1
ﬁTa—ﬁer ov N _ V=5 (87) ’
NG VNG P=P(T.p),
OP 9T T~ 9T — dT oP — V- N——S(a—P) (LP)_
- ou orT :

These PDEs have solutions of the form

o\ (op) ! 5) Now, let us take the states variables= S,
V=-5 (T) (TT) ; y =V, z = P. The integral hypersurface
_ _ofou\!
=8 () 5(S,V, P)
p= (T, P).

Herep is an arbitrary function of”’ and P. = (S,T(S,V, P),V,P,N(S,V, P), u(5,V, P))

3) When the state variables are= S, y = T'and is a solution of the PDE system (5)+(6), i.e.,
z = N, the resulting integral hypersurface must have
the form §or 4 Nk —
a3 as
T N or o
S(S’ ’ ) SW + Nﬁ =0
= (S, T,V(S,T,N),P(S,T,N),N, u(S,T,N)). Sg% —V+ N%ﬁ; =0,

The PDE system (5) becomes

_yér o _ ondn 9 AN _
S Vor + Nor =0 apov 11— gvap =0.
_yor L N _ , . ,
Vo + Nox =0, The simplest solution for the first three PDE sys-
and the PDE system (6) rewrites temis T (p
s "ot ()"
_ VAP | op  OVOP _ N:(V*SFNF) ’
IN IS T S T AS AN = u(P)
_ovop | op | OV.OP _ n=p ,
ON 0T orT oT ON .

) ) whereT andy are arbitrary functions aP determined
This PDE system (5)+(6) has complicated solu- py the second PDE system.

tions. A simple example of solution is 6) If we takez = S,y = V andz = N or
-1
V=(5+F(T)N%) (%) ; s(S,V,N)
P = P(T),
o= fF(T)%dT + C17 = (S7T(S7 v, N)v v, P(S, 2 N)7 N, /’L(S7 V. N))7

in which P and F" are two arbitrary functions ¢f . then the PDE system (5) becomes

4) Let now consider the state variables= S,

or _ v/ op ou
y =T, z = p. In this case we have Sos —Vas + N

gor _ yoP —i—N%_—
V. oV

oy
s(8,T, ) oL vk 4 NSE = 0.
= (S, T, V(ST u), P(S,T, ), N(3, T, ), 1) The area relations (6) can be written in the following
must verifies the PDE system form
9P 9T _
_Vg%; =0 ﬁs_ ﬁv_ 0
or _ S T 9N —
~VEE 4+ N =0 o oN
- Looking for the solutions of these PDESs, one ob-
and the area conditions (7), tains complicated expressions.
_ovop g, avor _ 7) If the considered state variables are= S5,
Tk e y=V.z=pthen
S AN
—afuafTﬂLafTafu—afT:Q 5(S,V, )
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= (57 T(S7 KM)’MP(S’ V? Iu')7
must verify the PDE system

N(S,V,p), 1),

SE VRO
% V%+N—o

and the area conditions

oP oT =0

:gl_gﬂ 0
o5 —
j_aﬂ 0
ov. —

Open problem. Find the general solution.
8) GettingsS, P, N as state variables and

s(S,P,N) = (8,T(S,P,N),V(S,P,N),P,N

as integral hypersurface the PDE system (5), we must

have
S8+ N =0
SaP V+Ng]lé =
SIL L NJE = 0.

The PDE system (6) will be written in the form

ol
N
+25 aTv*O

OV

Open problem. Find the general solution.
9) Let consider the state variables= S, y = P,
z = p. Then
s(S, P, )
= (SvT(S7 P?/’L)7V(Sa Palu’)v-P7N(S7 Pnu’)vu)a

must be solution of the PDE system (5)

or __
ST =
S -V =
S%+N—Q

and of PDE system (6)

_3l+8%:0
_7_371\7_0
ou 95
_9vV._ON _
op oP ’
It follows
oT oT
T=T(P V=§S—,N=-8
( (P, ), 3D 8u>

whereT is an arbitrary function of two state variables
P and.

ISBN: 978-960-6766-50-3 86

(S, P,N))

10)Ifz =S,y = N, z = u, one looks for
s(S, N, )
= (S,T(S,N,p),V(S,N, ), P(S, N, p), N, ).
In this case (5) becomes
~Vi =0

§T vk =0
T P+N—O

For the PDE system (6), we get

_oVopP _ OT 8V8P_0
TR R
aél, 658u_

dVdP Vo

aMaN+aNau 1=0.

A simple solution of the first three PDEs can be
of the form
T =T(un),
1
V= (s ) ()
P =P(u),

wherel” andP are arbitrary functions of the state vari-
ableu. Adding the other three PDES, we obtain two
very nice solutions. One of these depends on four in-
tegration constants, and a second one depends on 5
integration constants.

4.4, Theorem.The most general simple thermo-
chemical system of the forsiS, N, 1) has the com-
ponents

T =—tF — 055 + Cy,
V =& Nu+CsN,
P=C14+CyInS —cyIn N,

or

V=

N(C2—1)(C3M+C4)( Cy ) Cz-1
C1C2C3 (C3u+C4)(C2—-1) )

CoN(Csp+Cy) —C2
T = Sl{CoptCa) (g) 1O,

C —
R <Cl+02 (%) CZ)'

11) GettingI’, V, P as state variables, the integral
hypersurface is of the form

S(T,V, P)

= (S(T,V.P),T,V,P,N(T,V, P),
The PDE system (5) is written

w(T,V, P)).

0,
Nou —
oV o
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and the area conditions (6) can be put in the following

form

ON Ou _ ON du __

av+WT—WW 0
_i_iiﬂ_aﬂaﬂ =0
agNdaP oT aT 0Pz
Jod _
Ep+1-Gosk =0

The general solution has the form

s= v () (%)

N=V(5) .

p= (T, P),

where u(T, P) is an arbitrary function of two state

variables. This model is very important for applica-

tions because all the state variables are measurable.
4.5. Theorem.If the state variables ar&, V, P,

then the corresponding simple thermochemical system

is determined only by a chemical potentjalas an

arbitrary function of temperaturg’ and pressureP.

12) Ifwe consider: =T,y =V, z= N, i.e.,
S(T,V,N)
= (S(T,V,N),T,V,P(T,V,N),N, u(T, V, N)),

then the system (5) can be written

S—VI¥ L N =0
—Vg7+N@‘—o

P d

and (6) will be

oS opP

%A,
N T or =
Open problem. Find the general solution.
13) Letus considet =T,y =V, z = u. The
integral hypersurface

s(T,V, )
= (S(T,V,pu), T, V, P(T, V, ), N(T, V, ), )
must be solution of the PDE system (5),

S—-VI& =0

~Var =0

~Vg+N=0,
and the PDE system (6),

08

95 _ 9P _
gy
I5) oT —
&_QV 0
ov — V-
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We get the solution
s—v (2

o )
whereP (T, ) is an arbitrary function.
14) When the state variables=T,y = P, z =
N are considered, one gets

oP

)P P(T, ), N = V(%

s(T,P,N)

= (S(T,P,N), T,V(T,P,N),P,N, (T, P,N)).
The components of this hypersurface verify the PDE
system

S+ N =0

~V+N g}‘, =

N =0,
and the area conditions become

dP+aT O

as a _
a’i _
The PDE system (5)+(6) has the solution

ou o B

in which y is an arbitrary function of”’ and P.
15) Letustake: =T,y = P, z = p for the state
variables. This leads to

S:—N(

s(T, P, )
= (S(T7 P?/’L>7T7V<T7 P7 M)7P7 N(T7 P7 /'L)nu')a
and the PDE system (5) ca be written

S=0

-V =0

N =0.
The area relations (6) rewrite

GS

7_51N
0, 8T_
&_fﬂ 0
ou or — V-

In this case the integral manifold is an hyperplane
of dimension 3,

S(T’P7M) = (O’T707P)07/’L)'

4.6. Theorem. If the states are the temperature,
the pressure and the chemical potential, then the inte-
gral hypersurface of dimension 3 is a hyperplane. It
models the behavior of vacuuiw = 0.
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16) If we consider the state variables= T, y =
N andz = pu, we get the hypersurface

s(T, N, u)
= (S(T,N,pn), T,V(T,N, ), P(T, N, j1), N, ).
The PDE system (5) becomes
)
S—-VI =0

—Vgﬁ—o
~VeE+ N =0,

and the PDE system (6) will be
05 _ OV OP 4 9V OP _

WP TH

o T+ 97 o
_ﬂai+3l3£_1 0
ou ON ON Ou -

The general solution is of the form

oP\ ! (9
s=x(5) " (3),
_ N (2P\"
v=n(5)
P = P(T,p),
whereP (T, 1) is an arbitrary function.

17) When the state variablas = V, y = P,
z = N are considered, i.e.,

s(V,P,N)
= (S(‘/Y,P,N),T(‘/Y’P’N)’V,P’N7/,L(V7P7N))7
the PDE system (5) will be

oT op
Sav +N35—8
S V+Ndj‘§:0

6T ou __
Ssy + Nox =0.

and the PDE system (6)

oS oT 9SS oT .

apav —avop t1=0
980T | O " osor _
ON 0V Vv oV ON —

For the first three PDES, a simple solution is

= (1) ()
T =T(P),
p=pu(P),

where u(P) and T'(P) are arbitrary functions. Be-
tween the solutions of the system made by all the six

PDEs, the simplest one is

s=(v+RONE) (F)
T =T(P),
p= [ —F(P)TdP + C}),

ISBN: 978-960-6766-50-3

whereF'(P) andT'(P) are arbitrary functions of state

variableP.
18) ForV, P, u as state variables, i.e.,

s(V, P, )

= (S(V, P, ), T(V, P, p),V, P,N(V, P, ), jn),
the PDE system (5) will be written

The PDE system (6) is

980T _ 95 OT 4 1 _
P vV 9P =
oot oS on
oudvV — 9V o ov —
950T _ 9S9T _ 9N _
ou OP OP Ou opP —
Here we can have a solution

-1
d
s=v ()
T =T(P,p),
ar\ ! (o
N () (%)
where the arbitrary functiofi’ is fixed by the PDE
system (6).

19) Forz = V,y = N andz = pu, an integral
hypersurface will be

s(V.N, p)

— (S(V,N, 1), T(V, N, ), V, P(V, N, 1), N, 1).

The components of the previous integral hypersurface

must verify the PDEs

or oP
S5, =V, =0
BT VaP_O

gT §P+N_O

The area conditions become

ﬁﬂ_ﬁal oL _
N N
S T
%,LBV 6V6 ou
SaT_ﬁl_l 0.

on N ~ N o

Open problem. Find the general solution.

20) For the case of considering the state variables

r=P,y=N,z=ypu,le,
s(P, N, )
- (S(P7 N?M)7T(P7 N7 M)’V(P7 N?M)7P7 N?l”')?
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the PDE system (5) becomes

SIL -V =0
B
T

and the PDE system (6) rewrites

98 oT —0
W,
%Map 65 oP du
980T _0sor | _

ou ON ON Ou

ov. oS orT

The simplest solution has the form

§—_N (aﬂm))—l 7

o
Taf(PT ()P,_li), OT(P,y)
V=N () (M)

whereT' (P, i) is an arbitrary function.

5 Conclusions

This paper applies our point of view developed in [2]-
[11] to a Gibbs-Duhem-Pfaff equation in Thermody-
namics, Chemistry etc, enlightening the mathematical
theory in [1]. Since in our variant the Gibbs-Duhem-
Pfaff equation has 6 variables and it is not completely
integrable, the integral submanifolds have at most the
dimension 3. These integral submanifolds are de-
scribed as regular functions of clag$. The most im-

portant cases are those in which the state variables are

betweermeasurable variableis the se{ pressure®,
temperatureZ, volumes/}. All the theory can be
transferred to theaonholonomic economic systewia
the original dictionary in [7]-[11].
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