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Abstract: Some relations between intuitionistic fuzzy negations and intuitionistic fuzzy modal operations (from
standard type) are studied. In particular versions of negation are extended to deal with contradictory evidence.
Example proofs are presented for both the negations and the modal operators to show that the results from Intu-
itionistic Fuzzy Sets carry over to the extended versions incorporating contradictory evidence.
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1 On some previous results

The concept of the Intuitionistic Fuzzy Set (IFS, see
[Atanassov(1999)]) was introduced in 1983 as an ex-
tension of Zadeh’s fuzzy set. All operations, defined
over fuzzy sets were transformed for the IFS case.
One of them - operation “negation” now there is 24
different forms (see [Atanassov and Dimitrov(2007)].
In [Atanassov(1999)] the relations between the “clas-
sical” negation and the two standard modal operators
“necessity” and “possibility” are given. Here, we shall
study the same relations with the rest of the negations,
defined over IFSs. Following [Atanassov(1986)] the
definition of an intuitionistic L-fuzzy set (ILFS)A∗

over a universe of discourseE has the form:

A∗△{〈x, µA(x), νA(x)〉 | x ∈ E}

For two IFSsA andB the following relations are
valid:

A ⊆ B iff (∀x ∈ E)(µA(x) ≤ µB(x) (1)

∧νA(x) ≥ νB(x)),

A ⊇ B iff B ⊆ A, (2)

A = B iff (∀x ∈ E)(µA(x) = µB(x) (3)

∧νA(x) = νB(x)).

Where there is contradiction in-
volved, [Hinde and Patching(2007),
Cubillo and Castĩneira(2005)], if the measure of
contradiction is included in the denotation of the set
then we obtain the IIFS as defined:

Aι∗ = {〈x, µA(x), νA(x), ιA(x)〉 | x ∈ E}

subject to the constraint:

(∀x ∈ E)(µA(x) + νA(x) + ιA(x) ≤ 1)

rather than

(∀x ∈ E)(µA(x) + νA(x) ≤ 1) (4)

The quantity ιA(x) is the contradic-
tion involved in the membership and non-
membership function. [Hinde and Patching(2007)]
and [Cubillo and Castiñeira(2005)] differ in their
treatment of contradiction. Whereas Cubillo com-
putes the contradiction between the membership and
non-membership values given those values, Hinde
allows contradiction to occur before the membership
functions are complete and so whereas the hesitation
πA(x) denoting the unknown between membership
and non-membership must be zero in Cubillo’s
analysis, Hinde allows all 4 elements to be non-zero
simultaneously giving rise to Equation 5.

(∀x ∈ E)(µA(x)+νA(x)+ιA(x)+πA(x) = 1) (5)

An Interval-valued IFS (IVIFS, see
[Atanassov and Gargov(1989), Atanassov(1999)])A
overE is an object of the form:

A = {〈x, MA(x), NA(x)〉 | x ∈ E},

whereMA(x) ⊂ [0, 1] andNA(x) ⊂ [0, 1]
are intervals and for allx ∈ E:
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sup(MA(x)) + sup(NA(x)) ≤ 1 (6)

There is contradiction between the membership
curve and the non-membership curve, however even
when the two curves appear to be in agreement there
may be contradiction involved. Let us use a voting
model to derive a very simple set of curves for the
fuzzy setTall. The voters are asked to state:

1. whether they would allow a given height to be
described as tall.

• resulting in the membership curve

2. whether they would not allow a given height to
be described as tall.

• resulting in the non-membership curve

Further let the votes be cast as shown in Table 1.

Table 1: The incomplete table of votes where voter 3
casts votes for membership and non-membership

Height 160 170 180
Voter µ ν µ ν µ ν

1 - + + - + -
2 - + - - + -
3 - + + + + -
4 - + + - + -
5 - + - - + -

The resulting curves are shown in Figure 1.
Clearly voter number 3 has contradicted themselves
but it is not apparent from the membership and non-
membership curves.
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Figure 1: The membership and non-membership
curves arising from table 1

So given the membership and non-membership
votes resulting in the curves shown in Figure 1 theµ
andν values give no indication of contradiction.

Tall = {〈x, µTall(x), νTall(x)〉

| x ∈ ℜ}

Tall = {〈160, 0.0, 1.0〉 , 〈170, 0.6, 0.2〉 ,

〈180, 1.0, 0.0〉}

If we introduceιTall(x) then the following set re-
sults:

Tall = {〈x, µTall(x), νTall(x), ιTall(x)〉

| x ∈ ℜ}

Tall = {〈160, 0.0, 1.0, 0.0〉 , 〈170, 0.6, 0.2, 0.2〉 ,

〈180, 1.0, 0.0, 0.0〉}

This tells us that there is contradiction.
If we examine the intervals associated with the

memberships and non-memberships ofTall we get
the following:

Tall = {〈160, [0.0, 0.0], [1.0, 1.0]〉 ,

〈170, [0.6, 1.0], [0.2, 0, 6]〉 ,

〈180, [1.0, 1.0], [0.0, 0.0]〉}

If we complete the table so voters 2 and 5 choose
to vote for membership or non-membership we might
get the Table 2

Table 2: The completed Table 1 which show up the
hitherto latent contradiction in the membership curves

Height 160 170 180
Voter µ ν µ ν µ ν

1 - + + - + -
2 - + - + + -
3 - + + + + -
4 - + + - + -
5 - + + - + -

Table 2 shows a clear contradiction between the
membership and non-membership curves, in the man-
ner of [Cubillo and Castiñeira(2005)]. Shown in Fig-
ure 2
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Figure 2: The membership and non-membership
curves arising from table 2

The sets that arise, we do not count contradictory
votes in the membership or the membership:

Tall = {〈x, µTall(x), νTall(x), ιTall(x)〉

| x ∈ ℜ}

If we just count the votes for membership as an
IFS, then the following set arises:

Tall = {〈160, 0.0, 1.0〉 , 〈170, 0.8, 0.4〉 ,

〈180, 1.0, 0.0〉}

This would give a contradiction of 0.2 using the
methods of [Cubillo and Castiñeira(2005)]. But this
only occurs after all votes have been cast.

The set that arises using our contradictory nota-
tion, since we do not count contradictory votes in the
membership or the membership is:

Tall = {〈160, 0.0, 1.0, 0.0〉 , 〈170, 0.6, 0.2, 0.2〉 ,

〈180, 1.0, 0.0, 0.0〉}

This contradiction was apparent in the earlier set.
If we again examine the intervals associated with

the memberships and non-memberships ofTall we
get the following:

Tall = {〈160, [0.0, 0.0], [1.0, 1.0]〉 ,

〈170, [0.8, 0.8], [0.4, 0, 4]〉 ,

〈180, [1.0, 1.0], [0.0, 0.0]〉}

This also now shows the contradiction in the ev-
idence for an against height 170 as the membership
and non-membership sum to greater than 1.0 break-
ing constraint 6.

Clearly the definitions of subsets 1 need to be re-
visited as a difference in contradiction would at least
make two sets unequal. Subset is more complex as
it is unclear where the contradiction should lie. If

contradiction is regarded as part of the uncertainty
between membership and non-membership then the
equations 1 are adequate. If the two partsι andπ are
regarded as different forms of uncertainty then they
are inadequate. Equation 7 must then be the extended
definition of equality, and the definitions of subset
must also satisfy Equation 8.

A = B iff (∀x ∈ E)(µA(x) = µB(x) (7)

∧νA(x) = νB(x) ∧ ιA(x) = ιB(x)).

A ⊆ B ∧ B ⊆ A → A = B (8)

Along with Equation 1 some other choices for
subset definitions are presented in Equations 9. We
maintain Equation 2

A ⊆ B iff (∀x ∈ E)(µA(x) + ιA(x) (9)

≤ µB(x) + ιB(x) ∧

νA(x) + ιA(x) ≥ νB(x) + ιB(x)),

Each set has 3 degrees of freedom so with only 2
constraints involved in subset-hood so far we are un-
able to derive Equation 8 from either Equation 7 or
Equation 9. But a combination of both gives the req-
uisite constraints in Equation 10.

A ⊆ι B iff (∀x ∈ E) (10)

(µA(x) + ιA(x) ≤ µB(x) + ιB(x) ∧

νA(x) + ιA(x) ≥ νB(x) + ιB(x) ∧

µA(x) ≤ µB(x) ∧

νA(x) ≥ νB(x)),

In this work the extended definition will be un-
necessary as the sets being compared always have the
same level of contradiction embodied in them. In all
the equations involving⊆ the original definition can
be substituted with no actual change in the logic.

1.1 Definitions

In some definitions we shall use functions sg andsg:

sg(x) =







1 if x > 0

0 if x ≤ 0
,

sg(x) =







0 if x > 0

1 if x ≤ 0
Let A be a fixed IFS. In [Atanassov(1999)] defi-

nitions of standard modal operators are given, Equa-
tions 11 and 12:
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�A △ {〈x, µA(x), 1 − µA(x)〉 |x ∈ E} (11)

♦A △ {〈x, 1 − νA(x), νA(x)〉 |x ∈ E} (12)

If the assignment is contradictory in the sense
of [Cubillo and Castĩneira(2005)] then constraint 4
will be broken. If the contradiction is moved to
the contradiction measureι, as in Equation 5 then
the possibility measure1 − νA(x) in Equation 12
needs revision.νA(x) cannot be used for member-
ship which limits the possible values for membership
to 1 − νA(x), Equation 12, however the valueιA(x)
also cannot be used for membership which then lim-
its the maximum possible value for membership to
1 − νA(x) − ιA(x), Equation 14. A similar argument
can be made for the necessity operator. This results in
Equations 13 and 14.

�ιA △ {〈x, µA(x), 1 − µA(x) − ιA(x)〉 (13)

|x ∈ E}

♦ιA △ {〈x, 1 − νA(x) − ιA(x), νA(x)〉 (14)

|x ∈ E}

2 Main results

In [Atanassov and Dimitrov(2007),
Atanassova(2008), Atanassova(2007),
Dimitrov(2008)] the following 24 different negations
are described, these are shown in Equations 15.

A △ {〈x, µA(x), νA(x)〉 |x ∈ E}, (15)

¬1A △ {〈x, νA(x), µA(x)〉 |x ∈ E},

¬2A △ {〈x, sg(µA(x)), sg(µA(x))〉 |x ∈ E},

¬3A △ {
〈

x, νA(x), µA(x).νA(x) + µA(x)2
〉

|x ∈ E},

¬4A △ {〈x, νA(x), 1 − νA(x)〉 |x ∈ E},

¬5A △ {〈x, sg(1− νA(x)), sg(1− νA(x))〉 |x ∈ E},

¬6A △ {〈x, sg(1− νA(x)), sg(µA(x))〉 |x ∈ E},

¬7A △ {〈x, sg(1− νA(x)), µA(x)〉 |x ∈ E},

¬8A △ {〈x, 1 − µA(x), µA(x)〉 |x ∈ E},

¬9A △ {〈x, sg(µA(x)), µA(x)〉 |x ∈ E},

¬10A △ {〈x, sg(1− νA(x)), 1 − νA(x)〉 |x ∈ E},

¬11A △ {〈x, sg(νA(x)), sg(νA(x))〉 |x ∈ E},

¬12A △ {〈x, νA(x)(µA(x) + νA(x)),

µA(x)(µA(x) + νA(x) + νA(x)2)〉|x ∈ E},

¬13A △ {〈x, sg(1− νA(x)), sg(1− µA(x))〉 |x ∈ E},

¬14A △ {〈x, sg(νA(x)), sg(1 − µA(x))〉 |x ∈ E},

¬15A △ {〈x, sg(1− νA(x)), sg(1− µA(x))〉 |x ∈ E},

¬16A △ {〈x, sg(µA(x)), sg(1− µA(x))〉 |x ∈ E},

¬17A △ {〈x, sg(1− νA(x)), sg(νA(x))〉 |x ∈ E},

¬18A △ {x, 〈x, νA(x).sg(µA(x)),

µA(x)µA(x).sg(νA(x))〉|x ∈ E},

¬19A △ {〈x, νA(x).sg(µA(x)), 0〉 |x ∈ E},

¬20A △ {〈x, νA(x), 0〉 |x ∈ E},

¬21A △ {〈x, νA(x), µA(x).νA(x) + µA(x)n〉 |x ∈ E},

wheren ∈ ℜ ∧ n ∈ [2,∞),

¬22A △ {〈x, νA(x), µA(x).νA(x) + sg(1− µA(x))〉

|x ∈ E},

¬εA △ {〈x,min(1, νA(x) + ε), max(0, µA(x) − ε)〉

|x ∈ E}, whereε ∈ [0, 1],

¬ε,ηA △ {〈x,min(1, νA(x) + ε), max(0, µA(x) − η)〉

|x ∈ E}, where0 ≤ ε ≤ η ≤ 1.

Given a degree of contradiction,ιA(x) > 0, many
of remain unchanged, but some require some modifi-
cation given that the maximum sum of membership
and non-membership is now1 − ιA(x). Equations 16
list only those that are changed, except for¬1 to show
the pattern.

A △ {x, 〈µA(x), νA(x), ιA(x)〉 |x ∈ E}, (16)

¬ι1A △ {〈x, νA(x), µA(x), ιA(x)〉 |x ∈ E},

¬ι4A △ {〈x, νA(x), 1 − ιA(x) − νA(x), ιA(x)〉 |x ∈ E},

¬ι5A △ {〈x, sg(1− ιA(x) − νA(x)),

sg(1− ιA(x) − νA(x), ιA(x))〉|x ∈ E},

¬ι6A △ {〈x, sg(1− ιA(x) − νA(x)), sg(µA(x)), ιA(x)〉

|x ∈ E},

¬ι7A △ {〈x, sg(1− ιA(x) − νA(x)), µA(x), ιA(x)〉

|x ∈ E},

¬ι8A △ {〈x, 1 − ιA(x) − µA(x), µA(x), ιA(x)〉

|x ∈ E},

¬ι10A △ {〈x, sg(1− ιA(x) − νA(x)),

1 − ιA(x) − νA(x), ιA(x)〉|x ∈ E},

¬ι13A △ {〈x, sg(1− ιA(x) − νA(x)),

sg(1− ιA(x) − µA(x)), ιA(x)〉|x ∈ E},

¬ι14A △ {〈x, sg(νA(x)),

sg(1− ιA(x) − µA(x)), ιA(x)〉|x ∈ E},
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¬ι15A △ {〈x, sg(1 − ιA(x) − νA(x)),

sg(1 − ιA(x) − µA(x)), ιA(x)〉|x ∈ E},

¬ι16A △ {〈x, sg(µA(x)),

sg(1 − ιA(x) − µA(x)), ιA(x)〉|x ∈ E},

¬ι17A △ {〈x, sg(1 − ιA(x) − νA(x)),

sg(νA(x)), ιA(x)〉|x ∈ E},

¬ι22A △ {〈x, νA(x),

µA(x).νA(x) + sg(1 − ιA(x) − µA(x)), ιA(x)〉

|x ∈ E},

¬ε
ιA △ {〈x, min(1 − ιA(x),

νA(x) + ε), max(0, µA(x) − ε), ιA(x)〉

|x ∈ E},

whereε ∈ [0, 1 − ιA(x)],

¬ε,η
ι A △ {〈x, min(1 − ιA(x),

νA(x) + ε), max(0, µA(x) − η), ιA(x)〉

|x ∈ E},

where0 ≤ ε ≤ η ≤ 1 − ιA(x).

Now, following and extending the idea
from [Hinde and Patching(2007)] we shall prove
the following
Theorem 1: For every IFSA the following properties
are valid:

1. ¬ι2�ιA = �ι¬ι2A

2. ¬ι2♦ιA ⊂ ♦ι¬ι2A

3. ¬ι3�ιA ⊃ �ι¬ι3A

4. ¬ι3♦ιA ⊂ ♦ι¬ι3A

5. ¬ι4�ιA ⊃ �ι¬ι4A

6. ¬ι4♦ιA = ♦ι¬ι4A

7. ¬ι5♦ιA = ♦ι¬ι5A

8. ¬ι6♦ιA = ♦ι¬ι6A

9. ¬ι7�ιA ⊃ �ι¬ι7A

10. ¬ι7♦ιA ⊂ ♦ι¬ι7A

11. ¬ι8�ιA = �ι¬ι8A

12. ¬ι8♦ιA ⊂ ♦ι¬ι8A

13. ¬ι9�ιA ⊃ �ι¬ι9A

14. ¬ι9♦ιA ⊂ ♦ι¬ι9A

15. ¬ι10�ιA ⊃ �ι¬ι10A

16. ¬ι11�ιA = �ι¬ι11A

17. ¬ι11♦ιA = ♦ι¬ι11A

18. ¬ι13�ιA = �ι¬ι12A

19. ¬ι15�ιA ⊃ �ι¬ι15A

20. ¬ι15♦ιA ⊂ ♦ι¬ι15A

21. ¬ι16�ιA ⊃ �ι¬ι16A

22. ¬ι16♦ιA ⊂ ♦ι¬ι16A

23. ¬ι17�ιA ⊃ �ι¬ι17A

24. ¬ι17♦ιA ⊂ ♦ι¬ι17A

25. ¬ι18�ιA ⊃ �ι¬ι18A

26. ¬ι18♦ιA ⊂ ♦ι¬ι18A

27. ¬ι19�ιA ⊃ �ι¬ι19A

28. ¬ι19♦ιA ⊂ ♦ι¬ι19A

29. ¬ι20�ιA ⊃ �ι¬ι20A

30. ¬ι20♦ιA = ♦ι¬ι20A,

31. ¬ι21�ιA ⊃ �ι¬ι21A

32. ¬ι21♦ιA ⊂ ♦ι¬ι21A

33. ¬ι22�ιA ⊃ �ι¬ι22A

34. ¬ι22♦ιA ⊂ ♦ι¬ι22A

35. ¬ε
ι�ιA ⊃ �ι¬

ε
ιA

36. ¬ε
ι♦ιA ⊂ ♦ι¬

ε
ιA

37. ¬ε,η
ι �ιA ⊃ �ι¬

ε,η
ι A

38. ¬ε,η
ι ♦ιA ⊂ ♦ι¬

ε,η
ι A

Proof: Let us prove, for example (38). The remaining
assertions can be proved similarly.
Let 0 ≤ ε ≤ η ≤ 1 for someε andη.
Then

¬ε,η
ι ♦ιA = ¬ε,η

ι {〈x, 1 − ιA(x) − νA(x), νA(x)〉

|x ∈ E}

= {〈x, min(1 − ιA(x), νA(x) + ε),

max(0, 1 − ιA(x) − νA(x) − η)〉

|x ∈ E}.

♦ι¬
ε,η
ι A = ♦ι{〈x, min(1 − ιA(x), νA(x) + ε),

max(0, µA(x) − η)〉|x ∈ E}

= {〈x, 1 − ιA(x) − max(0, µA(x) − η),

max(0, µA(x) − η)〉|x ∈ E}.
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Let

X △ 1 − ιA − max(0, µA(x) − η) −

min(1 − ιA(x), νA(x) + ε).

If νA(x) + ε ≥ 1 − ιA(x),

Then

µA(x) − η ≤

1 − ιA(x) − νA(x) − η

≤ ε − η ≤ 0

So

X = 1 − ιA(x) − 0 − (1 − ιA(x))

= 0.0

If νA(x) + ε ≤ 1 − ιA(x),

Then

there are two subcases.

If µA(x) − η ≤ 0,

Then

X = 1 − ιA(x) − 0 − (νA(x) + ε) ≥ 0

So

If µA(x) − η ≥ 0,

Then

X = 1 − ιA(x) − (νA(x) + ε) − µA(x) + η

= 1 − ιA(x) − µA(x) − µA(x) + η − ε ≥ 0.

Therefore, the first component of the
second term is higher than the first compo-
nent of the first term, while the inequality
max(0, 1 − νA(x) − η) − max(0, µA(x) − η) ≥ 0 is
obvious. Therefore inclusion (38) is valid.
QED

In [Atanassov(2006)] there were shown cases
in which some intuitionistic fuzzy (non-classical)
negations do not satisfy De Morgan’s laws. Now,
by analogy with this result, we shall study the
De Morgans’ form of modal logic operators (see,
e.g. [Feys(1965)]):

�A = ¬♦¬A

♦A = ¬�¬A

In keeping with the objectives of this paper we will
use the extended modal operators with a variety of
negations.

�ιA = ¬♦ι¬A

♦ιA = ¬�ι¬A

and will formulate the following assertion that is
proved as above one.
Theorem 2: For every IFSA the following properties
are valid:

1. ¬1�ι¬1A = ♦ιA

2. ¬1♦ι¬1A = �ιA

3. ¬3�ι¬3A = ♦ιA

4. ¬4�ι¬4A = ♦ιA

5. ¬4♦ι¬4A ⊃ �ιA

6. ¬7♦ι¬7A ⊂ �ιA

7. ¬8♦ι¬8A = �ιA

8. ¬9♦ι¬9A ⊂ �ιA

Proof: Let us prove, for example (7). The remaining
assertions can be proved similarly.
¬8♦ι¬8A = �ιA

A = 〈x, µA(x), νA(x), ιA(x)〉

¬8A = 〈x, 1 − ιA(x) − µA(x), µA(x), ιA(x)〉

♦ι¬8A = 〈x, 1 − ιA(x) − µA(x), µA(x), ιA(x)〉

¬8♦ι¬8A = 〈x, 1 − ιA(x) − (1 − ιA(x) − µA(x)),

1 − ιA(x) − µA(x), ιA(x)〉

= 〈x, µA(x)), 1 − ιA(x) − µA(x), ιA(x)〉

�ιA = 〈x, µA(x)), 1 − ιA(x) − µA(x), ιA(x)〉

QED

3 Conclusion

A range of negations following the
work of [Atanassov and Dimitrov(2007),
Atanassova(2008), Atanassova(2007),
Dimitrov(2008)] have been extended
to incorporate contradictory evi-
dence [Cubillo and Castĩneira(2005),
Hinde and Patching(2007)]. An example proof
of the properties, Theorem 1, has been presented and
others may be proved similarly. Theorem 2 addresses
some properties of modal operators in relation to
the negations described, an example proof has been
presented and the other properties may be proved
similarly. In subsequent research the above properties
for the case of extended intuitionistic fuzzy modal
and topological operators will be studied.
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