
Two-Way Coupled Finite Automata and Its Usage in Translators

Tomáš Hruška, Dušan Kolář, Roman Lukáš, Eva Zámečnı́ková
Faculty of Information Technology
Department of Information Systems

Božetěchova 2, Brno 61266
Czech Republic

{hruska,kolar,lukas}@fit.vutbr.cz, xzamec10@stud.fit.vutbr.cz

Abstract: This article defines two-way coupled finite automata. Two-way coupled finite automaton enable to make
a translation from input language to output language and from output language to input language too. There is
discussed deterministic parsing by using coupled finite automaton in this article. For example, this deterministic
model can be used for translation between assembly language and a binary code.

Key–Words: Two-way coupled finite automaton, lazy finite automaton, lazy finite transducer, deterministic finite
transducer, translator, assembly language, binary code, HW/SW co-design.

1 Introduction
The goal of our project is the creation and especially
the implementation of a language - the language name
is ISAC - Instruction Set Architecture C, which is
used for description of microprocessor architecture.
For good applicability of the language, it is nec-
essary to create a development environment, which
provides development of both software tools and si-
multaneously of microprocessor hardware. Due to
the concurrent work on hardware and software (hard-
ware/software co-design), the total time of the devel-
opment will be reduced and the developmental cy-
cle will be shortened. Our project consists of several
parts. A basic research in this area is running now,
and the project comes to more intensive phase, which
should lead to practicable results in short time. The
work on the project is concentrated on the design of
typical constructions of the description language and
on the implementation of the software tools (compiler,
universal assembler, disassembler, linker, and simula-
tor). In this article we present, how we can use two-
way coupled finite automata as a model for assembler
and disassembler and how we can make deterministic
parsing by using this model.

2 Preliminaries
This paper assumes that the reader is familiar with the
formal language theory. For a set, Q, card(Q) de-
notes the cardinality of Q. For an alphabet, V , V ∗

represents the free monoid generated by V under the
operation of concatenation. The unit of V ∗ is denoted
by ε. Set V + = V ∗ − {ε}; algebraically, V + is thus

the free semigroup generated by V under the opera-
tion of concatenation.

• For every w ∈ V ∗, |w| denotes the length of w.

• For every w ∈ V ∗, alph(w) denotes the set of
symbols ocuring in w.

• For every w ∈ V ∗, perm(w) denotes the
set of all permutations of string w. Formally,
perm(ε) = {ε} and for all a ∈ V,w ∈
V ∗, perm(aw) = {xay : xy = z, z ∈
perm(w)}.

Example 1 perm(abc) = {abc, acb, bac, bca, cab,
cba}.

3 Definitions

Definition 2 A lazy finite automaton is a quintuple,
M = (Q,Σ, R, s, F), where

• Q is a finite set of states,

• Σ is an input alphabet,

• R is a finite set of rules of the form px → q,
where p, q ∈ Q and x ∈ Σ∗,

• s ∈ Q is the start state of M ,

• F ⊆ Q is a set of final states.

A configuration of M is a string px, where p ∈ Q
and x ∈ Σ∗.

Let pxy and qy be two configurations of M ,
where p, q ∈ Q, and x, y ∈ Σ∗. Let r = px→ q ∈ R

12th WSEAS International Conference on CIRCUITS, Heraklion, Greece, July 22-24, 2008

ISBN: 978-960-6766-82-4 445 ISSN: 1790-5117

be a rule. Then M makes a move from pxy to qy
according to r, written as pxy ` qy[r] or, simply,
pxy ` qy.

M makes zero moves from χ to χ; in symbols, χ `
χ[ε] or, simply χ ` χ.

Let χ0, χ1, ..., χn be a sequence of configura-
tions, where n ≥ 1, and χi−1 ` χi[ri], where ri ∈ R,
for all i = 1, ..., n. ThenM makes n moves from χ0 to
χn, written as χ0 `n χn[r1...rn] or, simply χ0 `n χn.

If χ0 `n χn[%] for some n ≥ 1, then we write
χ0 `+ χn[%].

If χ0 `n χn[%] for some n ≥ 0, then we write
χ0 `∗ χn[%].

The language accepted by M , L(M), is defined
as L(M) = {w : w ∈ Σ∗, sw `∗ f, f ∈ F}.

Definition 3 Let M be a lazy finite automaton. M
is unambiguous lazy finite automaton, if for each x ∈
L(M) there exists exactly one sequence of rules %
such that sx `∗ f [%], f ∈ F .

Definition 4 A lazy finite transducer is a sextuple,
M = (Q,Σ,Ω, R, s, F), where

• Q is a finite set of states,

• Σ is an input alphabet,

• Ω is an output alphabet,

• R is a finite set of rules of the form px → yq,
where p, q ∈ Q, x ∈ Σ∗ and y ∈ Ω∗,

• s ∈ Q is the start state of M ,

• F ⊆ Q is a set of final states.

A configuration of M is a string vpu, where p ∈
Q, u ∈ Σ∗ and v ∈ Ω∗.

Let vpxu and vyqu be two configurations of M ,
where p, q ∈ Q, x, u ∈ Σ∗ and v, y ∈ Ω∗. Let r =
px → yq ∈ R be a rule. Then M makes a move
from vpxu to vyqu according to r, written as vpxu `
vyqu[r] or, simply, vpxu ` vyqu.

M makes zero moves from χ to χ; in symbols, χ `
χ[ε] or, simply χ ` χ.

Let χ0, χ1, ..., χn be a sequence of configura-
tions, where n ≥ 1, and χi−1 ` χi[ri], where ri ∈ R,
for all i = 1, ..., n. ThenM makes n moves from χ0 to
χn, written as χ0 `n χn[r1...rn] or, simply χ0 `n χn.

If χ0 `n χn[%] for some n ≥ 1, then we write
χ0 `+ χn[%].

If χ0 `n χn[%] for some n ≥ 0, then we write
χ0 `∗ χn[%].

Translation of M , T (M), is defined as
T (M) = {(x, y) : sx `∗ yf, x ∈ Σ∗, y ∈ Ω∗, f ∈
F}

Definition 5 Let M be a lazy finite transducer.
M is unambiguous lazy finite transducer, if for each
(x, y) ∈ T (M) there exists exactly one sequence of
rules % such that sx `∗ yf [%], f ∈ F and there exists
no z and % such that sx `∗ zf [%], f ∈ F and % 6= %.

Definition 6 Let M = (Q,Σ,Ω, R, s, F) be a lazy
finite transducer. M is finite transducer, if for each
px→ yq ∈ R holds x ∈ Σ ∪ {ε}.

Definition 7 Let M = (Q,Σ,Ω, R, s, F) be a finite
transducer. M si ε-free finite transducer, if card(F) =
1 and each rule from R is of the form pa→ yq, where
p, q ∈ Q − F , a ∈ Σ, y ∈ Ω∗ or p → yf , where
p ∈ Q− F , y ∈ Ω∗, f ∈ F .

Definition 8 Let M = (Q,Σ,Ω, R, s, F)
be an ε-free finite transducer. M si
strict deterministic finite transducer, if for each
a ∈ Σ and p ∈ Q there exist no more than one rule of
the form pa → yq, where p, q ∈ Q − F , y ∈ Ω∗ and
for each p ∈ Q there exist no more than one rule of
the form p→ yf , where f ∈ F and y ∈ Ω∗.

Definition 9 A two-way coupled finite automaton is a
triple, Γ = (M1,M2, h), where

• Mi = (Qi,Σi, Ri, si, Fi) is a lazy finite automa-
ton for each i ∈ {1, 2}

• h is a bijective mapping from R1 to R2.

Let h∗ be a mapping from R∗
1 to R∗

2 defined as:
h∗(ε) = {ε} and for r1, r2, ..., rn ∈ R1,
h∗(r1r2...rn) = h(r1)(r2)...(rn), where n ≥ 1.

Then, the translation of Γ, T (Γ), is defined as
T (Γ) = {(w1, w2) : w1 ∈ Σ∗

1, w2 ∈ Σ∗
2, s1w1 `∗

f1[%1] in M1, s2w2 `∗ f2[%2] in M2, f1 ∈ F1, f2 ∈
F2, % ∈ perm(%1), %2 = h∗(%)}.

Example 10 Γ = (M1,M2, h), where

• M1 = ({s1, f1}, {a, b}, {1 : s1 → as1, 2 : s1 →
f1, 3 : f1 → bf1}, s1, {f1});

• M2 = ({s2, f2}, {a, b}, {1 : s2 → bs2, 2 : s2 →
f2, 3 : f2 → af2}, s2, {f2});

• h = {(1, 3), (2, 2), (3, 1)}

is two-way coupled finite automaton.
For example, (a2b3, b3a2) ∈ T (Γ), because

s1a
2b3 `∗ f1[112333], s2b3a2 `∗ f2[111233], f1 ∈

F1, f2 ∈ F2, 333211 ∈ perm(112333) and 111233 =
h∗(333211).

Notice that T (Γ) = {(ambn, bnam) : m,n ≥ 0}.

12th WSEAS International Conference on CIRCUITS, Heraklion, Greece, July 22-24, 2008

ISBN: 978-960-6766-82-4 446 ISSN: 1790-5117

4 Results
Algorithm 11 Convertion from lazy finite transducer
to finite transducer

• Input:
Lazy finite transducer M1 =
(Q1,Σ,Ω, R1, s, F)

• Output:
Finite transducer M2 = (Q2,Σ,Ω, R2, s, F),
such that T (M1) = T (M2)

• Method:
Q2 := Q1;
for each px→ yq ∈ R1 do
if |x| ≤ 1 then

add px→ yq to R2

else
let x = a1a2 . . . an, where n ≥ 2:
add 〈p, a1〉, 〈p, a1a2〉, . . . , 〈p, a1a2 . . . an−1〉 to
Q

add pa1 → 〈p, a1〉, 〈p, a1〉a2 → 〈p, a1a2〉,
. . . 〈p, a1a2 . . . an−2〉an−1 → 〈p, a1a2 . . . an−1〉,
〈p, a1a2 . . . an−1〉an → yq to R2

Theorem 12 For every lazy finite transducer M1

there exists a finite transducerM2 such that T (M1) =
T (M2).

Proof: Use the Algorithm for convertion from
lazy finite transducer to finite transducer. ut

Definition 13 Let M = (Q,Σ,Ω, R, s, F) be a finite
transducer and q ∈ Q. ε− closure(q) is defined as:
ε− closure(q) = {(p, y) : q `∗ yp, p ∈ Q, y ∈ Ω∗}

Algorithm 14 Computation of ε-closure

• Input:
Lazy finite transducer M1 =
(Q1,Σ,Ω, R1, s, F); q ∈ Q

• Output:
ε−closure(q) or error of ambiguity, if there exist
p ∈ Q and different u, v ∈ Ω∗ such that q `∗ up
and q `∗ vp

• Method:
Sundone := {(q, ε)};
Sdone := ∅;
while Sundone 6= ∅ do begin

let (p, v) ∈ Sundone:
if exists w ∈ Ω∗, w 6= v such that

(p, w) ∈ Sdone

then error(ambiguity)
Sundone := Sundone − {(p, v)};

Sdone := Sdone ∪ {(p, v)};
Sundone := Sundone ∪ {(t, vy) : p→ yt ∈ R};

end
ε− closure(q) := Sdone;

Algorithm 15 Convertion from finite transcuder to ε-
free finite transducer

• Input:
Finite transducer M1 = (Q1,Σ,Ω, R1, s, F1),
ε− closure(q) for all q ∈ Q

• Output:
ε-free finite transducer M2 =
(Q2,Σ,Ω, R2, s, F2), such that T (M1) =
T (M2)

• Method:
Q2 := Q1 ∪ {f2};
R2 := ∅;
F2 := {f2};
for each q ∈ Q do
R2 := R2 ∪ {qa → xyt : pa → yt ∈

R1, (p, x) ∈ ε − closure(q), a ∈ Σ, t ∈ Q} ∪
{q → xf2 : (f, x) ∈ ε− closure(q), f ∈ F};

Theorem 16 For every unambiguous finite trans-
ducer M1 = (Q1,Σ,Ω, R1, s, F1) there exists an
ε-free finite transducer M2 = (Q2,Σ,Ω, R2, s, F2)
such that T (M1) = T (M2).

Proof: Use the Algorithm for convertion from fi-
nite transcuder to ε-free finite transducer. If M1 is
unambiguous finite transducer, there not exist p ∈ Q1

and different u, v ∈ Ω∗ such that q `∗ up and q `∗ vp
and it is possible to compute ε− closure(q) for each
q ∈ Q1. ut

Algorithm 17 Convertion from ε-free finite trans-
ducer to strict deterministic finite transducer

• Input:
ε-free finite transducer M1 =
(Q1,Σ,Ω, R1, s1, {f1}),

• Output:
deterministic finite transducer M2 =
(Q2,Σ,Ω, R2, s2, {f2}), such that
T (M1) = T (M2) or error, if M1 is not
unambiugous or if M1 is not convetable to M2

using this algorithm.

• Method:
s2 := {〈s1, ε〉};
f2 := {〈f1, ε〉};
Sundone := {s2};

12th WSEAS International Conference on CIRCUITS, Heraklion, Greece, July 22-24, 2008

ISBN: 978-960-6766-82-4 447 ISSN: 1790-5117

Sdone := ∅;
Scycle := {(s2, ε)};
while Sundone 6= ∅ do begin

let X ∈ Sundone:
Sundone := Sundone − {X};
Sdone := Sdone ∪ {X};
for each a ∈ Σ ∪ {ε} do
Qin := {〈p, z〉 : 〈p, z〉 ∈ X, pa → yq ∈

R1, y, z ∈ Ω∗, q ∈ Q1};
if |Qin| = 1 then
let 〈p, z〉 ∈ Qin:
Qout := {〈q, y〉 : q ∈ Q1, y ∈ Ω∗, pa →

yq ∈ R1};
if |Qout| = 1 then
let 〈q, y〉 ∈ Qout:
Qout := {〈q, ε〉};
add Xa→ zyQout to R2;

if |Qout| > 1 then
add Xa→ zQout to R2;

if |Qin| > 1 then
Qout := {〈q, zy〉 : 〈p, z〉 ∈ X, pa → yq ∈

R1, y, z ∈ Ω∗, q ∈ Q1};
add Xa→ Qout to R2;
Sundone := Sundone ∪ {Qout};
if exists q ∈ Q1 such that |{y : 〈q, y〉 ∈

Qout}| > 1 then error(ambiguity)
let (X,x) ∈ Scycle:
if exists (Y, y) ∈ Scycle such that y is a prefix

of x, X 6= Y , {p : 〈p, u〉 ∈ X} = {q : 〈q, v〉 ∈
Y } then error(cycle)

add (Qout, xa) to Scycle;
end
Q2 := Sdone;

Theorem 18 For every unambiguous ε-free finite
transducerM1, where T (M1) is a finite relation, there
exists a strict deterministic finite transducer M2 such
that T (M1) = T (M2).

Proof: Use the Algorithm for convertion from ε-
free finite transducer to strict deterministic finite trans-
ducer. ut

Notice: The basic idea of construction is follow-
ing. There is described a determinization of ε-free
finite automaton to deterministic finite automaton in
[6]. Each state in deterministic finite automaton rep-
resents a set of states in original finite automaton. In
previous algorithm, this determininization is modified
for finite transducers. Each state in deterministic finite
transducer represents a set of states in original finite
transducer. If a state in deterministic finite transducer
contains more than one state from original finite trans-
ducer, then it is not known, which of them is simulated
in the original automaton. Hence, it is not possible to
generate an output. These parts of generated outputs

are assigned to their states and nothing is generated.
If some state in deterministic finite transducer con-
tains exactly one state from original finite transducer,
then it is possible to generate the whole history of out-
puts, which is known from this state. Notice that this
algorithm can convert only unambiguous ε-free finite
transducer (ambiguity is detected), which specifies the
finite translation. There exist some unambiguous ε-
free finite transducers, which specify infinite transla-
tion and this algorithm cannot convert them to strict
deterministic finite transducers.

Example 19 Consider ε-free finite transducer M1 =
(Q1,Σ,Ω, R1, s1, {f1}), where:

• Q1 = {s1, q1, q2, q3, q4, f1}

• Σ = {a, b}

• Ω = {1, 2, 3, 4, 5, 6, 7}

• R1 = {s1a → 1q1, s1b → 2q1, s1a →
4q3, s1b → 6q4, q1a → 3q2, q3b → 5q2, q4b →
7q2, q2 → f1}

The previous algorithm constructs a
strict deterministic finite transducer M2 =
(Q2,Σ,Ω, R2, 〈s1, ε〉, {〈f1ε〉}), where:

• Q2 = {{〈s1, ε〉}, {〈q1, 1〉, 〈q3, 4〉},
{〈q1, 2〉, 〈q4, 6〉}, {〈q2, ε〉}, {〈f1, ε〉}}

• Σ = {a, b}

• Ω = {1, 2, 3, 4, 5, 6, 7}

• R2 = {{〈s1, ε〉}a→ {〈q1, 1〉, 〈q3, 4〉},
{〈s1, ε〉}b→ {〈q1, 2〉, 〈q4, 6〉},
{〈q1, 1〉, 〈q3, 4〉}a→ 13{〈q2, ε〉},
{〈q1, 1〉, 〈q3, 4〉}b→ 45{〈q2, ε〉},
{〈q1, 2〉, 〈q4, 6〉}a→ 23{〈q2, ε〉},
{〈q1, 2〉, 〈q4, 6〉}b→ 67{〈q2, ε〉},
{〈q2, ε〉} → {〈f1, ε〉}}.

Notice thatM1 is unambiguous and specifies the finite
translation.

Example 20 Consider ε-free finite transducer M1 =
(Q1,Σ,Ω, R1, s1, {f1}), where:

• Q1 = {s1, q1, f1}

• Σ = {a}

• Ω = {1, 2}

• R1 = {s1a→ 1s1, s1a→ 2q1, q1 → f1}

12th WSEAS International Conference on CIRCUITS, Heraklion, Greece, July 22-24, 2008

ISBN: 978-960-6766-82-4 448 ISSN: 1790-5117

The previous algorithm constructs a
strict deterministic finite transducer M2 =
(Q2,Σ,Ω, R2, 〈s1, ε〉, {〈f1, ε〉}), where:

• Q2 = {{〈s1, ε〉}, {〈s1, 1〉, 〈q1, 2〉}, {〈f1, ε〉}}

• Σ = {a}

• Ω = {1, 2}

• R2 = {{〈s1, ε〉}a→ {〈s1, 1〉, 〈q1, 2〉},
{〈s1, 1〉, 〈q1, 2〉}a→ 1{〈s1, 1〉, 〈q1, 2〉},
{〈s1, 1〉, 〈q1, 2〉} → 2{〈f1, ε〉}}.

Notice that M1 is unambiguous and specifies the infi-
nite translation.

5 Applications
Two-way coupled finite automata can be used as effec-
tive models for description of translation, especially
for the finite translation. For example, we use this
model as an inner representation of relations between
assembly instructions and their binary codes in our
project. Then, there is generated an assembler (trans-
lator, which translates assembly language to binary
code) and a disassembler (translator, which translates
binary code to assembly language) in automatic way.
The automatic construction of assembler and disas-
sembler can be described in the following steps:

• Relations between assembly and binary codes of
instructions are described in language ISAC 0.0.

• Description in language ISAC 0.0 is converted
to equivalent two-way coupled finite automaton
Γ = (M1,M2, h), where M1 is a lazy finite au-
tomaton for assembly format’s description of in-
structions, M2 is a lazy finite automaton for bi-
nary format’s description of instructions, and h
describes translating relations between rules of
M1 and M2.

• Deterministic translation from assembly lan-
guage to binary code and automatic construc-
tion of this translator: Lazy finite automa-
ton M1 is converted to lazy finite transducer
M1, which generates the sequence of accept-
ing moves to the output. It means that the la-
bel of each rule from M1 is added to this rule
itself as a generated output. Lazy finite trans-
ducer M1 is converted to equivalent strict de-
terministic finite transducer Md by using algo-
rithms described in previous section. It is pos-
sible because this translation is a finite relation
(the length of each instruction is fixed) and M1

is unambiguous because relation between assem-
bly and binary code of instructions is a bijection.
This model is a basic structure of assembler-
translator. An assembler-translator reads assem-
bly code of instruction and simulates the activity
of the strict deterministic finite transducer Md.
The output sequence of symbols is not generated
to the output, but this sequence activates corre-
sponding edges in M2. After accepting this in-
struction, M2 generates corresponding output by
using activated edges. Analogically, determin-
istic translation from binary code to assembly
language and automatic construction of this
translator is realized.

6 Conclusion

This article showed that we can use effectively two-
way coupled finite automaton as a model for transla-
tions. Especially, two-way coupled finite automaton
can be used as a model for inner structure’s descrip-
tion of language ISAC 0.0. Assembler and dissasem-
bler can be created in an automatic way by using this
model.

References:

[1] Češka M., Hruška T., Beneš, M., Překladače,
VUT Brno, 1993.

[2] Hruška T., Instruction Set Architecture C., FIT
VUT Brno, 2004.

[3] Lukáš R., Hruška T., Kolář D., Masařı́k K., it
Two-Way Deterministic Translantion and Its Us-
age in Practice, Proceedings of 8th Spring In-
ternational Conference - ISIM’05, pp. 101-107,
2005.

[4] Masařı́k K., Hruška T., Kolář D., Lukáš R.,
System for design and simulation of micropro-
cessors, Proceedings of 8th Spring International
Conference - ISIM’05, pp. 269-276, 2005.

[5] Masařı́k K., Hruška T., Kolář D., Language and
Development Environment For Microprocessor
Design Of Embedded Systems, Proceedings of
IFAC Workshop on PROGRAMMABLE DE-
VICES and EMBEDDED SYSTEMS PDeS, pp.
120-125, 2006.

[6] Meduna A., Automata and Languages: Theory
and Applications, Springer, London, 2000.

12th WSEAS International Conference on CIRCUITS, Heraklion, Greece, July 22-24, 2008

ISBN: 978-960-6766-82-4 449 ISSN: 1790-5117

	Text1:

